59 lines
2.1 KiB
Python
59 lines
2.1 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
|
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import numpy as np
|
|
import torch
|
|
|
|
from ..models.clipseg import CLIPSegForImageSegmentation
|
|
from ..utils import is_vision_available, requires_backends
|
|
from .base import PipelineTool
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
class ImageSegmentationTool(PipelineTool):
|
|
description = (
|
|
"This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image. "
|
|
"It takes two arguments named `image` which should be the original image, and `label` which should be a text "
|
|
"describing the elements what should be identified in the segmentation mask. The tool returns the mask."
|
|
)
|
|
default_checkpoint = "CIDAS/clipseg-rd64-refined"
|
|
name = "image_segmenter"
|
|
model_class = CLIPSegForImageSegmentation
|
|
|
|
inputs = ["image", "text"]
|
|
outputs = ["image"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
requires_backends(self, ["vision"])
|
|
super().__init__(*args, **kwargs)
|
|
|
|
def encode(self, image: "Image", label: str):
|
|
return self.pre_processor(text=[label], images=[image], padding=True, return_tensors="pt")
|
|
|
|
def forward(self, inputs):
|
|
with torch.no_grad():
|
|
logits = self.model(**inputs).logits
|
|
return logits
|
|
|
|
def decode(self, outputs):
|
|
array = outputs.cpu().detach().numpy()
|
|
array[array <= 0] = 0
|
|
array[array > 0] = 1
|
|
return Image.fromarray((array * 255).astype(np.uint8))
|