53 lines
1.7 KiB
Python
53 lines
1.7 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
|
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from ..models.auto import AutoModelForSeq2SeqLM, AutoTokenizer
|
|
from .base import PipelineTool
|
|
|
|
|
|
class TextSummarizationTool(PipelineTool):
|
|
"""
|
|
Example:
|
|
|
|
```py
|
|
from transformers.tools import TextSummarizationTool
|
|
|
|
summarizer = TextSummarizationTool()
|
|
summarizer(long_text)
|
|
```
|
|
"""
|
|
|
|
default_checkpoint = "philschmid/bart-large-cnn-samsum"
|
|
description = (
|
|
"This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, "
|
|
"and returns a summary of the text."
|
|
)
|
|
name = "summarizer"
|
|
pre_processor_class = AutoTokenizer
|
|
model_class = AutoModelForSeq2SeqLM
|
|
|
|
inputs = ["text"]
|
|
outputs = ["text"]
|
|
|
|
def encode(self, text):
|
|
return self.pre_processor(text, return_tensors="pt", truncation=True)
|
|
|
|
def forward(self, inputs):
|
|
return self.model.generate(**inputs)[0]
|
|
|
|
def decode(self, outputs):
|
|
return self.pre_processor.decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|