66 lines
2.4 KiB
Python
66 lines
2.4 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
|
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import torch
|
|
|
|
from ..models.speecht5 import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor
|
|
from ..utils import is_datasets_available
|
|
from .base import PipelineTool
|
|
|
|
|
|
if is_datasets_available():
|
|
from datasets import load_dataset
|
|
|
|
|
|
class TextToSpeechTool(PipelineTool):
|
|
default_checkpoint = "microsoft/speecht5_tts"
|
|
description = (
|
|
"This is a tool that reads an English text out loud. It takes an input named `text` which should contain the "
|
|
"text to read (in English) and returns a waveform object containing the sound."
|
|
)
|
|
name = "text_reader"
|
|
pre_processor_class = SpeechT5Processor
|
|
model_class = SpeechT5ForTextToSpeech
|
|
post_processor_class = SpeechT5HifiGan
|
|
|
|
inputs = ["text"]
|
|
outputs = ["audio"]
|
|
|
|
def setup(self):
|
|
if self.post_processor is None:
|
|
self.post_processor = "microsoft/speecht5_hifigan"
|
|
super().setup()
|
|
|
|
def encode(self, text, speaker_embeddings=None):
|
|
inputs = self.pre_processor(text=text, return_tensors="pt", truncation=True)
|
|
|
|
if speaker_embeddings is None:
|
|
if not is_datasets_available():
|
|
raise ImportError("Datasets needs to be installed if not passing speaker embeddings.")
|
|
|
|
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
|
speaker_embeddings = torch.tensor(embeddings_dataset[7305]["xvector"]).unsqueeze(0)
|
|
|
|
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
|
|
|
|
def forward(self, inputs):
|
|
with torch.no_grad():
|
|
return self.model.generate_speech(**inputs)
|
|
|
|
def decode(self, outputs):
|
|
with torch.no_grad():
|
|
return self.post_processor(outputs).cpu().detach()
|