379 lines
15 KiB
Python
379 lines
15 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 Hugging Face
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import re
|
|
import time
|
|
from typing import Optional
|
|
|
|
import IPython.display as disp
|
|
|
|
from ..trainer_callback import TrainerCallback
|
|
from ..trainer_utils import IntervalStrategy, has_length
|
|
|
|
|
|
def format_time(t):
|
|
"Format `t` (in seconds) to (h):mm:ss"
|
|
t = int(t)
|
|
h, m, s = t // 3600, (t // 60) % 60, t % 60
|
|
return f"{h}:{m:02d}:{s:02d}" if h != 0 else f"{m:02d}:{s:02d}"
|
|
|
|
|
|
def html_progress_bar(value, total, prefix, label, width=300):
|
|
# docstyle-ignore
|
|
return f"""
|
|
<div>
|
|
{prefix}
|
|
<progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>
|
|
{label}
|
|
</div>
|
|
"""
|
|
|
|
|
|
def text_to_html_table(items):
|
|
"Put the texts in `items` in an HTML table."
|
|
html_code = """<table border="1" class="dataframe">\n"""
|
|
html_code += """ <thead>\n <tr style="text-align: left;">\n"""
|
|
for i in items[0]:
|
|
html_code += f" <th>{i}</th>\n"
|
|
html_code += " </tr>\n </thead>\n <tbody>\n"
|
|
for line in items[1:]:
|
|
html_code += " <tr>\n"
|
|
for elt in line:
|
|
elt = f"{elt:.6f}" if isinstance(elt, float) else str(elt)
|
|
html_code += f" <td>{elt}</td>\n"
|
|
html_code += " </tr>\n"
|
|
html_code += " </tbody>\n</table><p>"
|
|
return html_code
|
|
|
|
|
|
class NotebookProgressBar:
|
|
"""
|
|
A progress par for display in a notebook.
|
|
|
|
Class attributes (overridden by derived classes)
|
|
|
|
- **warmup** (`int`) -- The number of iterations to do at the beginning while ignoring `update_every`.
|
|
- **update_every** (`float`) -- Since calling the time takes some time, we only do it every presumed
|
|
`update_every` seconds. The progress bar uses the average time passed up until now to guess the next value
|
|
for which it will call the update.
|
|
|
|
Args:
|
|
total (`int`):
|
|
The total number of iterations to reach.
|
|
prefix (`str`, *optional*):
|
|
A prefix to add before the progress bar.
|
|
leave (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to leave the progress bar once it's completed. You can always call the
|
|
[`~utils.notebook.NotebookProgressBar.close`] method to make the bar disappear.
|
|
parent ([`~notebook.NotebookTrainingTracker`], *optional*):
|
|
A parent object (like [`~utils.notebook.NotebookTrainingTracker`]) that spawns progress bars and handle
|
|
their display. If set, the object passed must have a `display()` method.
|
|
width (`int`, *optional*, defaults to 300):
|
|
The width (in pixels) that the bar will take.
|
|
|
|
Example:
|
|
|
|
```python
|
|
import time
|
|
|
|
pbar = NotebookProgressBar(100)
|
|
for val in range(100):
|
|
pbar.update(val)
|
|
time.sleep(0.07)
|
|
pbar.update(100)
|
|
```"""
|
|
|
|
warmup = 5
|
|
update_every = 0.2
|
|
|
|
def __init__(
|
|
self,
|
|
total: int,
|
|
prefix: Optional[str] = None,
|
|
leave: bool = True,
|
|
parent: Optional["NotebookTrainingTracker"] = None,
|
|
width: int = 300,
|
|
):
|
|
self.total = total
|
|
self.prefix = "" if prefix is None else prefix
|
|
self.leave = leave
|
|
self.parent = parent
|
|
self.width = width
|
|
self.last_value = None
|
|
self.comment = None
|
|
self.output = None
|
|
|
|
def update(self, value: int, force_update: bool = False, comment: str = None):
|
|
"""
|
|
The main method to update the progress bar to `value`.
|
|
|
|
Args:
|
|
value (`int`):
|
|
The value to use. Must be between 0 and `total`.
|
|
force_update (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to force and update of the internal state and display (by default, the bar will wait for
|
|
`value` to reach the value it predicted corresponds to a time of more than the `update_every` attribute
|
|
since the last update to avoid adding boilerplate).
|
|
comment (`str`, *optional*):
|
|
A comment to add on the left of the progress bar.
|
|
"""
|
|
self.value = value
|
|
if comment is not None:
|
|
self.comment = comment
|
|
if self.last_value is None:
|
|
self.start_time = self.last_time = time.time()
|
|
self.start_value = self.last_value = value
|
|
self.elapsed_time = self.predicted_remaining = None
|
|
self.first_calls = self.warmup
|
|
self.wait_for = 1
|
|
self.update_bar(value)
|
|
elif value <= self.last_value and not force_update:
|
|
return
|
|
elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for, self.total):
|
|
if self.first_calls > 0:
|
|
self.first_calls -= 1
|
|
current_time = time.time()
|
|
self.elapsed_time = current_time - self.start_time
|
|
# We could have value = self.start_value if the update is called twixe with the same start value.
|
|
if value > self.start_value:
|
|
self.average_time_per_item = self.elapsed_time / (value - self.start_value)
|
|
else:
|
|
self.average_time_per_item = None
|
|
if value >= self.total:
|
|
value = self.total
|
|
self.predicted_remaining = None
|
|
if not self.leave:
|
|
self.close()
|
|
elif self.average_time_per_item is not None:
|
|
self.predicted_remaining = self.average_time_per_item * (self.total - value)
|
|
self.update_bar(value)
|
|
self.last_value = value
|
|
self.last_time = current_time
|
|
if (self.average_time_per_item is None) or (self.average_time_per_item == 0):
|
|
self.wait_for = 1
|
|
else:
|
|
self.wait_for = max(int(self.update_every / self.average_time_per_item), 1)
|
|
|
|
def update_bar(self, value, comment=None):
|
|
spaced_value = " " * (len(str(self.total)) - len(str(value))) + str(value)
|
|
if self.elapsed_time is None:
|
|
self.label = f"[{spaced_value}/{self.total} : < :"
|
|
elif self.predicted_remaining is None:
|
|
self.label = f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)}"
|
|
else:
|
|
self.label = (
|
|
f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <"
|
|
f" {format_time(self.predicted_remaining)}"
|
|
)
|
|
if self.average_time_per_item == 0:
|
|
self.label += ", +inf it/s"
|
|
else:
|
|
self.label += f", {1/self.average_time_per_item:.2f} it/s"
|
|
|
|
self.label += "]" if self.comment is None or len(self.comment) == 0 else f", {self.comment}]"
|
|
self.display()
|
|
|
|
def display(self):
|
|
self.html_code = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width)
|
|
if self.parent is not None:
|
|
# If this is a child bar, the parent will take care of the display.
|
|
self.parent.display()
|
|
return
|
|
if self.output is None:
|
|
self.output = disp.display(disp.HTML(self.html_code), display_id=True)
|
|
else:
|
|
self.output.update(disp.HTML(self.html_code))
|
|
|
|
def close(self):
|
|
"Closes the progress bar."
|
|
if self.parent is None and self.output is not None:
|
|
self.output.update(disp.HTML(""))
|
|
|
|
|
|
class NotebookTrainingTracker(NotebookProgressBar):
|
|
"""
|
|
An object tracking the updates of an ongoing training with progress bars and a nice table reporting metrics.
|
|
|
|
Args:
|
|
num_steps (`int`): The number of steps during training. column_names (`List[str]`, *optional*):
|
|
The list of column names for the metrics table (will be inferred from the first call to
|
|
[`~utils.notebook.NotebookTrainingTracker.write_line`] if not set).
|
|
"""
|
|
|
|
def __init__(self, num_steps, column_names=None):
|
|
super().__init__(num_steps)
|
|
self.inner_table = None if column_names is None else [column_names]
|
|
self.child_bar = None
|
|
|
|
def display(self):
|
|
self.html_code = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width)
|
|
if self.inner_table is not None:
|
|
self.html_code += text_to_html_table(self.inner_table)
|
|
if self.child_bar is not None:
|
|
self.html_code += self.child_bar.html_code
|
|
if self.output is None:
|
|
self.output = disp.display(disp.HTML(self.html_code), display_id=True)
|
|
else:
|
|
self.output.update(disp.HTML(self.html_code))
|
|
|
|
def write_line(self, values):
|
|
"""
|
|
Write the values in the inner table.
|
|
|
|
Args:
|
|
values (`Dict[str, float]`): The values to display.
|
|
"""
|
|
if self.inner_table is None:
|
|
self.inner_table = [list(values.keys()), list(values.values())]
|
|
else:
|
|
columns = self.inner_table[0]
|
|
for key in values.keys():
|
|
if key not in columns:
|
|
columns.append(key)
|
|
self.inner_table[0] = columns
|
|
if len(self.inner_table) > 1:
|
|
last_values = self.inner_table[-1]
|
|
first_column = self.inner_table[0][0]
|
|
if last_values[0] != values[first_column]:
|
|
# write new line
|
|
self.inner_table.append([values[c] if c in values else "No Log" for c in columns])
|
|
else:
|
|
# update last line
|
|
new_values = values
|
|
for c in columns:
|
|
if c not in new_values.keys():
|
|
new_values[c] = last_values[columns.index(c)]
|
|
self.inner_table[-1] = [new_values[c] for c in columns]
|
|
else:
|
|
self.inner_table.append([values[c] for c in columns])
|
|
|
|
def add_child(self, total, prefix=None, width=300):
|
|
"""
|
|
Add a child progress bar displayed under the table of metrics. The child progress bar is returned (so it can be
|
|
easily updated).
|
|
|
|
Args:
|
|
total (`int`): The number of iterations for the child progress bar.
|
|
prefix (`str`, *optional*): A prefix to write on the left of the progress bar.
|
|
width (`int`, *optional*, defaults to 300): The width (in pixels) of the progress bar.
|
|
"""
|
|
self.child_bar = NotebookProgressBar(total, prefix=prefix, parent=self, width=width)
|
|
return self.child_bar
|
|
|
|
def remove_child(self):
|
|
"""
|
|
Closes the child progress bar.
|
|
"""
|
|
self.child_bar = None
|
|
self.display()
|
|
|
|
|
|
class NotebookProgressCallback(TrainerCallback):
|
|
"""
|
|
A [`TrainerCallback`] that displays the progress of training or evaluation, optimized for Jupyter Notebooks or
|
|
Google colab.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.training_tracker = None
|
|
self.prediction_bar = None
|
|
self._force_next_update = False
|
|
|
|
def on_train_begin(self, args, state, control, **kwargs):
|
|
self.first_column = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step"
|
|
self.training_loss = 0
|
|
self.last_log = 0
|
|
column_names = [self.first_column] + ["Training Loss"]
|
|
if args.evaluation_strategy != IntervalStrategy.NO:
|
|
column_names.append("Validation Loss")
|
|
self.training_tracker = NotebookTrainingTracker(state.max_steps, column_names)
|
|
|
|
def on_step_end(self, args, state, control, **kwargs):
|
|
epoch = int(state.epoch) if int(state.epoch) == state.epoch else f"{state.epoch:.2f}"
|
|
self.training_tracker.update(
|
|
state.global_step + 1,
|
|
comment=f"Epoch {epoch}/{state.num_train_epochs}",
|
|
force_update=self._force_next_update,
|
|
)
|
|
self._force_next_update = False
|
|
|
|
def on_prediction_step(self, args, state, control, eval_dataloader=None, **kwargs):
|
|
if not has_length(eval_dataloader):
|
|
return
|
|
if self.prediction_bar is None:
|
|
if self.training_tracker is not None:
|
|
self.prediction_bar = self.training_tracker.add_child(len(eval_dataloader))
|
|
else:
|
|
self.prediction_bar = NotebookProgressBar(len(eval_dataloader))
|
|
self.prediction_bar.update(1)
|
|
else:
|
|
self.prediction_bar.update(self.prediction_bar.value + 1)
|
|
|
|
def on_predict(self, args, state, control, **kwargs):
|
|
if self.prediction_bar is not None:
|
|
self.prediction_bar.close()
|
|
self.prediction_bar = None
|
|
|
|
def on_log(self, args, state, control, logs=None, **kwargs):
|
|
# Only for when there is no evaluation
|
|
if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs:
|
|
values = {"Training Loss": logs["loss"]}
|
|
# First column is necessarily Step sine we're not in epoch eval strategy
|
|
values["Step"] = state.global_step
|
|
self.training_tracker.write_line(values)
|
|
|
|
def on_evaluate(self, args, state, control, metrics=None, **kwargs):
|
|
if self.training_tracker is not None:
|
|
values = {"Training Loss": "No log", "Validation Loss": "No log"}
|
|
for log in reversed(state.log_history):
|
|
if "loss" in log:
|
|
values["Training Loss"] = log["loss"]
|
|
break
|
|
|
|
if self.first_column == "Epoch":
|
|
values["Epoch"] = int(state.epoch)
|
|
else:
|
|
values["Step"] = state.global_step
|
|
metric_key_prefix = "eval"
|
|
for k in metrics:
|
|
if k.endswith("_loss"):
|
|
metric_key_prefix = re.sub(r"\_loss$", "", k)
|
|
_ = metrics.pop("total_flos", None)
|
|
_ = metrics.pop("epoch", None)
|
|
_ = metrics.pop(f"{metric_key_prefix}_runtime", None)
|
|
_ = metrics.pop(f"{metric_key_prefix}_samples_per_second", None)
|
|
_ = metrics.pop(f"{metric_key_prefix}_steps_per_second", None)
|
|
_ = metrics.pop(f"{metric_key_prefix}_jit_compilation_time", None)
|
|
for k, v in metrics.items():
|
|
splits = k.split("_")
|
|
name = " ".join([part.capitalize() for part in splits[1:]])
|
|
if name == "Loss":
|
|
# Single dataset
|
|
name = "Validation Loss"
|
|
values[name] = v
|
|
self.training_tracker.write_line(values)
|
|
self.training_tracker.remove_child()
|
|
self.prediction_bar = None
|
|
# Evaluation takes a long time so we should force the next update.
|
|
self._force_next_update = True
|
|
|
|
def on_train_end(self, args, state, control, **kwargs):
|
|
self.training_tracker.update(
|
|
state.global_step,
|
|
comment=f"Epoch {int(state.epoch)}/{state.num_train_epochs}",
|
|
force_update=True,
|
|
)
|
|
self.training_tracker = None
|