ai-content-maker/.venv/Lib/site-packages/Cython/Compiler/ParseTreeTransforms.py

4235 lines
168 KiB
Python

# cython: language_level=3str
from __future__ import absolute_import
import cython
cython.declare(PyrexTypes=object, Naming=object, ExprNodes=object, Nodes=object,
Options=object, UtilNodes=object, LetNode=object,
LetRefNode=object, TreeFragment=object, EncodedString=object,
error=object, warning=object, copy=object, hashlib=object, sys=object,
_unicode=object)
import copy
import hashlib
import sys
from . import PyrexTypes
from . import Naming
from . import ExprNodes
from . import Nodes
from . import Options
from . import Builtin
from . import Errors
from .Visitor import VisitorTransform, TreeVisitor
from .Visitor import CythonTransform, EnvTransform, ScopeTrackingTransform
from .UtilNodes import LetNode, LetRefNode
from .TreeFragment import TreeFragment
from .StringEncoding import EncodedString, _unicode
from .Errors import error, warning, CompileError, InternalError
from .Code import UtilityCode
class SkipDeclarations(object):
"""
Variable and function declarations can often have a deep tree structure,
and yet most transformations don't need to descend to this depth.
Declaration nodes are removed after AnalyseDeclarationsTransform, so there
is no need to use this for transformations after that point.
"""
def visit_CTypeDefNode(self, node):
return node
def visit_CVarDefNode(self, node):
return node
def visit_CDeclaratorNode(self, node):
return node
def visit_CBaseTypeNode(self, node):
return node
def visit_CEnumDefNode(self, node):
return node
def visit_CStructOrUnionDefNode(self, node):
return node
def visit_CppClassNode(self, node):
if node.visibility != "extern":
# Need to traverse methods.
self.visitchildren(node)
return node
class NormalizeTree(CythonTransform):
"""
This transform fixes up a few things after parsing
in order to make the parse tree more suitable for
transforms.
a) After parsing, blocks with only one statement will
be represented by that statement, not by a StatListNode.
When doing transforms this is annoying and inconsistent,
as one cannot in general remove a statement in a consistent
way and so on. This transform wraps any single statements
in a StatListNode containing a single statement.
b) The PassStatNode is a noop and serves no purpose beyond
plugging such one-statement blocks; i.e., once parsed a
` "pass" can just as well be represented using an empty
StatListNode. This means less special cases to worry about
in subsequent transforms (one always checks to see if a
StatListNode has no children to see if the block is empty).
"""
def __init__(self, context):
super(NormalizeTree, self).__init__(context)
self.is_in_statlist = False
self.is_in_expr = False
def visit_ModuleNode(self, node):
self.visitchildren(node)
if not isinstance(node.body, Nodes.StatListNode):
# This can happen when the body only consists of a single (unused) declaration and no statements.
node.body = Nodes.StatListNode(pos=node.pos, stats=[node.body])
return node
def visit_ExprNode(self, node):
stacktmp = self.is_in_expr
self.is_in_expr = True
self.visitchildren(node)
self.is_in_expr = stacktmp
return node
def visit_StatNode(self, node, is_listcontainer=False):
stacktmp = self.is_in_statlist
self.is_in_statlist = is_listcontainer
self.visitchildren(node)
self.is_in_statlist = stacktmp
if not self.is_in_statlist and not self.is_in_expr:
return Nodes.StatListNode(pos=node.pos, stats=[node])
else:
return node
def visit_StatListNode(self, node):
self.is_in_statlist = True
self.visitchildren(node)
self.is_in_statlist = False
return node
def visit_ParallelAssignmentNode(self, node):
return self.visit_StatNode(node, True)
def visit_CEnumDefNode(self, node):
return self.visit_StatNode(node, True)
def visit_CStructOrUnionDefNode(self, node):
return self.visit_StatNode(node, True)
def visit_PassStatNode(self, node):
"""Eliminate PassStatNode"""
if not self.is_in_statlist:
return Nodes.StatListNode(pos=node.pos, stats=[])
else:
return []
def visit_ExprStatNode(self, node):
"""Eliminate useless string literals"""
if node.expr.is_string_literal:
return self.visit_PassStatNode(node)
else:
return self.visit_StatNode(node)
def visit_CDeclaratorNode(self, node):
return node
class PostParseError(CompileError): pass
# error strings checked by unit tests, so define them
ERR_CDEF_INCLASS = 'Cannot assign default value to fields in cdef classes, structs or unions'
ERR_BUF_DEFAULTS = 'Invalid buffer defaults specification (see docs)'
ERR_INVALID_SPECIALATTR_TYPE = 'Special attributes must not have a type declared'
class PostParse(ScopeTrackingTransform):
"""
Basic interpretation of the parse tree, as well as validity
checking that can be done on a very basic level on the parse
tree (while still not being a problem with the basic syntax,
as such).
Specifically:
- Default values to cdef assignments are turned into single
assignments following the declaration (everywhere but in class
bodies, where they raise a compile error)
- Interpret some node structures into Python runtime values.
Some nodes take compile-time arguments (currently:
TemplatedTypeNode[args] and __cythonbufferdefaults__ = {args}),
which should be interpreted. This happens in a general way
and other steps should be taken to ensure validity.
Type arguments cannot be interpreted in this way.
- For __cythonbufferdefaults__ the arguments are checked for
validity.
TemplatedTypeNode has its directives interpreted:
Any first positional argument goes into the "dtype" attribute,
any "ndim" keyword argument goes into the "ndim" attribute and
so on. Also it is checked that the directive combination is valid.
- __cythonbufferdefaults__ attributes are parsed and put into the
type information.
Note: Currently Parsing.py does a lot of interpretation and
reorganization that can be refactored into this transform
if a more pure Abstract Syntax Tree is wanted.
- Some invalid uses of := assignment expressions are detected
"""
def __init__(self, context):
super(PostParse, self).__init__(context)
self.specialattribute_handlers = {
'__cythonbufferdefaults__' : self.handle_bufferdefaults
}
def visit_LambdaNode(self, node):
# unpack a lambda expression into the corresponding DefNode
collector = YieldNodeCollector()
collector.visitchildren(node.result_expr)
if collector.has_yield or collector.has_await or isinstance(node.result_expr, ExprNodes.YieldExprNode):
body = Nodes.ExprStatNode(
node.result_expr.pos, expr=node.result_expr)
else:
body = Nodes.ReturnStatNode(
node.result_expr.pos, value=node.result_expr)
node.def_node = Nodes.DefNode(
node.pos, name=node.name,
args=node.args, star_arg=node.star_arg,
starstar_arg=node.starstar_arg,
body=body, doc=None)
self.visitchildren(node)
return node
def visit_GeneratorExpressionNode(self, node):
# unpack a generator expression into the corresponding DefNode
collector = YieldNodeCollector()
collector.visitchildren(node.loop, attrs=None, exclude=["iterator"])
node.def_node = Nodes.DefNode(
node.pos, name=node.name, doc=None,
args=[], star_arg=None, starstar_arg=None,
body=node.loop, is_async_def=collector.has_await,
is_generator_expression=True)
_AssignmentExpressionChecker.do_checks(node.loop, scope_is_class=self.scope_type in ("pyclass", "cclass"))
self.visitchildren(node)
return node
def visit_ComprehensionNode(self, node):
# enforce local scope also in Py2 for async generators (seriously, that's a Py3.6 feature...)
if not node.has_local_scope:
collector = YieldNodeCollector()
collector.visitchildren(node.loop)
if collector.has_await:
node.has_local_scope = True
_AssignmentExpressionChecker.do_checks(node.loop, scope_is_class=self.scope_type in ("pyclass", "cclass"))
self.visitchildren(node)
return node
# cdef variables
def handle_bufferdefaults(self, decl):
if not isinstance(decl.default, ExprNodes.DictNode):
raise PostParseError(decl.pos, ERR_BUF_DEFAULTS)
self.scope_node.buffer_defaults_node = decl.default
self.scope_node.buffer_defaults_pos = decl.pos
def visit_CVarDefNode(self, node):
# This assumes only plain names and pointers are assignable on
# declaration. Also, it makes use of the fact that a cdef decl
# must appear before the first use, so we don't have to deal with
# "i = 3; cdef int i = i" and can simply move the nodes around.
try:
self.visitchildren(node)
stats = [node]
newdecls = []
for decl in node.declarators:
declbase = decl
while isinstance(declbase, Nodes.CPtrDeclaratorNode):
declbase = declbase.base
if isinstance(declbase, Nodes.CNameDeclaratorNode):
if declbase.default is not None:
if self.scope_type in ('cclass', 'pyclass', 'struct'):
if isinstance(self.scope_node, Nodes.CClassDefNode):
handler = self.specialattribute_handlers.get(decl.name)
if handler:
if decl is not declbase:
raise PostParseError(decl.pos, ERR_INVALID_SPECIALATTR_TYPE)
handler(decl)
continue # Remove declaration
raise PostParseError(decl.pos, ERR_CDEF_INCLASS)
first_assignment = self.scope_type != 'module'
stats.append(Nodes.SingleAssignmentNode(node.pos,
lhs=ExprNodes.NameNode(node.pos, name=declbase.name),
rhs=declbase.default, first=first_assignment))
declbase.default = None
newdecls.append(decl)
node.declarators = newdecls
return stats
except PostParseError as e:
# An error in a cdef clause is ok, simply remove the declaration
# and try to move on to report more errors
self.context.nonfatal_error(e)
return None
# Split parallel assignments (a,b = b,a) into separate partial
# assignments that are executed rhs-first using temps. This
# restructuring must be applied before type analysis so that known
# types on rhs and lhs can be matched directly. It is required in
# the case that the types cannot be coerced to a Python type in
# order to assign from a tuple.
def visit_SingleAssignmentNode(self, node):
self.visitchildren(node)
return self._visit_assignment_node(node, [node.lhs, node.rhs])
def visit_CascadedAssignmentNode(self, node):
self.visitchildren(node)
return self._visit_assignment_node(node, node.lhs_list + [node.rhs])
def _visit_assignment_node(self, node, expr_list):
"""Flatten parallel assignments into separate single
assignments or cascaded assignments.
"""
if sum([ 1 for expr in expr_list
if expr.is_sequence_constructor or expr.is_string_literal ]) < 2:
# no parallel assignments => nothing to do
return node
expr_list_list = []
flatten_parallel_assignments(expr_list, expr_list_list)
temp_refs = []
eliminate_rhs_duplicates(expr_list_list, temp_refs)
nodes = []
for expr_list in expr_list_list:
lhs_list = expr_list[:-1]
rhs = expr_list[-1]
if len(lhs_list) == 1:
node = Nodes.SingleAssignmentNode(rhs.pos,
lhs = lhs_list[0], rhs = rhs)
else:
node = Nodes.CascadedAssignmentNode(rhs.pos,
lhs_list = lhs_list, rhs = rhs)
nodes.append(node)
if len(nodes) == 1:
assign_node = nodes[0]
else:
assign_node = Nodes.ParallelAssignmentNode(nodes[0].pos, stats = nodes)
if temp_refs:
duplicates_and_temps = [ (temp.expression, temp)
for temp in temp_refs ]
sort_common_subsequences(duplicates_and_temps)
for _, temp_ref in duplicates_and_temps[::-1]:
assign_node = LetNode(temp_ref, assign_node)
return assign_node
def _flatten_sequence(self, seq, result):
for arg in seq.args:
if arg.is_sequence_constructor:
self._flatten_sequence(arg, result)
else:
result.append(arg)
return result
def visit_DelStatNode(self, node):
self.visitchildren(node)
node.args = self._flatten_sequence(node, [])
return node
def visit_ExceptClauseNode(self, node):
if node.is_except_as:
# except-as must delete NameNode target at the end
del_target = Nodes.DelStatNode(
node.pos,
args=[ExprNodes.NameNode(
node.target.pos, name=node.target.name)],
ignore_nonexisting=True)
node.body = Nodes.StatListNode(
node.pos,
stats=[Nodes.TryFinallyStatNode(
node.pos,
body=node.body,
finally_clause=Nodes.StatListNode(
node.pos,
stats=[del_target]))])
self.visitchildren(node)
return node
def visit_AssertStatNode(self, node):
"""Extract the exception raising into a RaiseStatNode to simplify GIL handling.
"""
if node.exception is None:
node.exception = Nodes.RaiseStatNode(
node.pos,
exc_type=ExprNodes.NameNode(node.pos, name=EncodedString("AssertionError")),
exc_value=node.value,
exc_tb=None,
cause=None,
builtin_exc_name="AssertionError",
wrap_tuple_value=True,
)
node.value = None
self.visitchildren(node)
return node
class _AssignmentExpressionTargetNameFinder(TreeVisitor):
def __init__(self):
super(_AssignmentExpressionTargetNameFinder, self).__init__()
self.target_names = {}
def find_target_names(self, target):
if target.is_name:
return [target.name]
elif target.is_sequence_constructor:
names = []
for arg in target.args:
names.extend(self.find_target_names(arg))
return names
# other targets are possible, but it isn't necessary to investigate them here
return []
def visit_ForInStatNode(self, node):
self.target_names[node] = tuple(self.find_target_names(node.target))
self.visitchildren(node)
def visit_ComprehensionNode(self, node):
pass # don't recurse into nested comprehensions
def visit_LambdaNode(self, node):
pass # don't recurse into nested lambdas/generator expressions
def visit_Node(self, node):
self.visitchildren(node)
class _AssignmentExpressionChecker(TreeVisitor):
"""
Enforces rules on AssignmentExpressions within generator expressions and comprehensions
"""
def __init__(self, loop_node, scope_is_class):
super(_AssignmentExpressionChecker, self).__init__()
target_name_finder = _AssignmentExpressionTargetNameFinder()
target_name_finder.visit(loop_node)
self.target_names_dict = target_name_finder.target_names
self.in_iterator = False
self.in_nested_generator = False
self.scope_is_class = scope_is_class
self.current_target_names = ()
self.all_target_names = set()
for names in self.target_names_dict.values():
self.all_target_names.update(names)
def _reset_state(self):
old_state = (self.in_iterator, self.in_nested_generator, self.scope_is_class, self.all_target_names, self.current_target_names)
# note: not resetting self.in_iterator here, see visit_LambdaNode() below
self.in_nested_generator = False
self.scope_is_class = False
self.current_target_names = ()
self.all_target_names = set()
return old_state
def _set_state(self, old_state):
self.in_iterator, self.in_nested_generator, self.scope_is_class, self.all_target_names, self.current_target_names = old_state
@classmethod
def do_checks(cls, loop_node, scope_is_class):
checker = cls(loop_node, scope_is_class)
checker.visit(loop_node)
def visit_ForInStatNode(self, node):
if self.in_nested_generator:
self.visitchildren(node) # once nested, don't do anything special
return
current_target_names = self.current_target_names
target_name = self.target_names_dict.get(node, None)
if target_name:
self.current_target_names += target_name
self.in_iterator = True
self.visit(node.iterator)
self.in_iterator = False
self.visitchildren(node, exclude=("iterator",))
self.current_target_names = current_target_names
def visit_AssignmentExpressionNode(self, node):
if self.in_iterator:
error(node.pos, "assignment expression cannot be used in a comprehension iterable expression")
if self.scope_is_class:
error(node.pos, "assignment expression within a comprehension cannot be used in a class body")
if node.target_name in self.current_target_names:
error(node.pos, "assignment expression cannot rebind comprehension iteration variable '%s'" %
node.target_name)
elif node.target_name in self.all_target_names:
error(node.pos, "comprehension inner loop cannot rebind assignment expression target '%s'" %
node.target_name)
def visit_LambdaNode(self, node):
# Don't reset "in_iterator" - an assignment expression in a lambda in an
# iterator is explicitly tested by the Python testcases and banned.
old_state = self._reset_state()
# the lambda node's "def_node" is not set up at this point, so we need to recurse into it explicitly.
self.visit(node.result_expr)
self._set_state(old_state)
def visit_ComprehensionNode(self, node):
in_nested_generator = self.in_nested_generator
self.in_nested_generator = True
self.visitchildren(node)
self.in_nested_generator = in_nested_generator
def visit_GeneratorExpressionNode(self, node):
in_nested_generator = self.in_nested_generator
self.in_nested_generator = True
# def_node isn't set up yet, so we need to visit the loop directly.
self.visit(node.loop)
self.in_nested_generator = in_nested_generator
def visit_Node(self, node):
self.visitchildren(node)
def eliminate_rhs_duplicates(expr_list_list, ref_node_sequence):
"""Replace rhs items by LetRefNodes if they appear more than once.
Creates a sequence of LetRefNodes that set up the required temps
and appends them to ref_node_sequence. The input list is modified
in-place.
"""
seen_nodes = set()
ref_nodes = {}
def find_duplicates(node):
if node.is_literal or node.is_name:
# no need to replace those; can't include attributes here
# as their access is not necessarily side-effect free
return
if node in seen_nodes:
if node not in ref_nodes:
ref_node = LetRefNode(node)
ref_nodes[node] = ref_node
ref_node_sequence.append(ref_node)
else:
seen_nodes.add(node)
if node.is_sequence_constructor:
for item in node.args:
find_duplicates(item)
for expr_list in expr_list_list:
rhs = expr_list[-1]
find_duplicates(rhs)
if not ref_nodes:
return
def substitute_nodes(node):
if node in ref_nodes:
return ref_nodes[node]
elif node.is_sequence_constructor:
node.args = list(map(substitute_nodes, node.args))
return node
# replace nodes inside of the common subexpressions
for node in ref_nodes:
if node.is_sequence_constructor:
node.args = list(map(substitute_nodes, node.args))
# replace common subexpressions on all rhs items
for expr_list in expr_list_list:
expr_list[-1] = substitute_nodes(expr_list[-1])
def sort_common_subsequences(items):
"""Sort items/subsequences so that all items and subsequences that
an item contains appear before the item itself. This is needed
because each rhs item must only be evaluated once, so its value
must be evaluated first and then reused when packing sequences
that contain it.
This implies a partial order, and the sort must be stable to
preserve the original order as much as possible, so we use a
simple insertion sort (which is very fast for short sequences, the
normal case in practice).
"""
def contains(seq, x):
for item in seq:
if item is x:
return True
elif item.is_sequence_constructor and contains(item.args, x):
return True
return False
def lower_than(a,b):
return b.is_sequence_constructor and contains(b.args, a)
for pos, item in enumerate(items):
key = item[1] # the ResultRefNode which has already been injected into the sequences
new_pos = pos
for i in range(pos-1, -1, -1):
if lower_than(key, items[i][0]):
new_pos = i
if new_pos != pos:
for i in range(pos, new_pos, -1):
items[i] = items[i-1]
items[new_pos] = item
def unpack_string_to_character_literals(literal):
chars = []
pos = literal.pos
stype = literal.__class__
sval = literal.value
sval_type = sval.__class__
for char in sval:
cval = sval_type(char)
chars.append(stype(pos, value=cval, constant_result=cval))
return chars
def flatten_parallel_assignments(input, output):
# The input is a list of expression nodes, representing the LHSs
# and RHS of one (possibly cascaded) assignment statement. For
# sequence constructors, rearranges the matching parts of both
# sides into a list of equivalent assignments between the
# individual elements. This transformation is applied
# recursively, so that nested structures get matched as well.
rhs = input[-1]
if (not (rhs.is_sequence_constructor or isinstance(rhs, ExprNodes.UnicodeNode))
or not sum([lhs.is_sequence_constructor for lhs in input[:-1]])):
output.append(input)
return
complete_assignments = []
if rhs.is_sequence_constructor:
rhs_args = rhs.args
elif rhs.is_string_literal:
rhs_args = unpack_string_to_character_literals(rhs)
rhs_size = len(rhs_args)
lhs_targets = [[] for _ in range(rhs_size)]
starred_assignments = []
for lhs in input[:-1]:
if not lhs.is_sequence_constructor:
if lhs.is_starred:
error(lhs.pos, "starred assignment target must be in a list or tuple")
complete_assignments.append(lhs)
continue
lhs_size = len(lhs.args)
starred_targets = sum([1 for expr in lhs.args if expr.is_starred])
if starred_targets > 1:
error(lhs.pos, "more than 1 starred expression in assignment")
output.append([lhs,rhs])
continue
elif lhs_size - starred_targets > rhs_size:
error(lhs.pos, "need more than %d value%s to unpack"
% (rhs_size, (rhs_size != 1) and 's' or ''))
output.append([lhs,rhs])
continue
elif starred_targets:
map_starred_assignment(lhs_targets, starred_assignments,
lhs.args, rhs_args)
elif lhs_size < rhs_size:
error(lhs.pos, "too many values to unpack (expected %d, got %d)"
% (lhs_size, rhs_size))
output.append([lhs,rhs])
continue
else:
for targets, expr in zip(lhs_targets, lhs.args):
targets.append(expr)
if complete_assignments:
complete_assignments.append(rhs)
output.append(complete_assignments)
# recursively flatten partial assignments
for cascade, rhs in zip(lhs_targets, rhs_args):
if cascade:
cascade.append(rhs)
flatten_parallel_assignments(cascade, output)
# recursively flatten starred assignments
for cascade in starred_assignments:
if cascade[0].is_sequence_constructor:
flatten_parallel_assignments(cascade, output)
else:
output.append(cascade)
def map_starred_assignment(lhs_targets, starred_assignments, lhs_args, rhs_args):
# Appends the fixed-position LHS targets to the target list that
# appear left and right of the starred argument.
#
# The starred_assignments list receives a new tuple
# (lhs_target, rhs_values_list) that maps the remaining arguments
# (those that match the starred target) to a list.
# left side of the starred target
for i, (targets, expr) in enumerate(zip(lhs_targets, lhs_args)):
if expr.is_starred:
starred = i
lhs_remaining = len(lhs_args) - i - 1
break
targets.append(expr)
else:
raise InternalError("no starred arg found when splitting starred assignment")
# right side of the starred target
for i, (targets, expr) in enumerate(zip(lhs_targets[-lhs_remaining:],
lhs_args[starred + 1:])):
targets.append(expr)
# the starred target itself, must be assigned a (potentially empty) list
target = lhs_args[starred].target # unpack starred node
starred_rhs = rhs_args[starred:]
if lhs_remaining:
starred_rhs = starred_rhs[:-lhs_remaining]
if starred_rhs:
pos = starred_rhs[0].pos
else:
pos = target.pos
starred_assignments.append([
target, ExprNodes.ListNode(pos=pos, args=starred_rhs)])
class PxdPostParse(CythonTransform, SkipDeclarations):
"""
Basic interpretation/validity checking that should only be
done on pxd trees.
A lot of this checking currently happens in the parser; but
what is listed below happens here.
- "def" functions are let through only if they fill the
getbuffer/releasebuffer slots
- cdef functions are let through only if they are on the
top level and are declared "inline"
"""
ERR_INLINE_ONLY = "function definition in pxd file must be declared 'cdef inline'"
ERR_NOGO_WITH_INLINE = "inline function definition in pxd file cannot be '%s'"
def __call__(self, node):
self.scope_type = 'pxd'
return super(PxdPostParse, self).__call__(node)
def visit_CClassDefNode(self, node):
old = self.scope_type
self.scope_type = 'cclass'
self.visitchildren(node)
self.scope_type = old
return node
def visit_FuncDefNode(self, node):
# FuncDefNode always come with an implementation (without
# an imp they are CVarDefNodes..)
err = self.ERR_INLINE_ONLY
if (isinstance(node, Nodes.DefNode) and self.scope_type == 'cclass'
and node.name in ('__getbuffer__', '__releasebuffer__')):
err = None # allow these slots
if isinstance(node, Nodes.CFuncDefNode):
if (u'inline' in node.modifiers and
self.scope_type in ('pxd', 'cclass')):
node.inline_in_pxd = True
if node.visibility != 'private':
err = self.ERR_NOGO_WITH_INLINE % node.visibility
elif node.api:
err = self.ERR_NOGO_WITH_INLINE % 'api'
else:
err = None # allow inline function
else:
err = self.ERR_INLINE_ONLY
if err:
self.context.nonfatal_error(PostParseError(node.pos, err))
return None
else:
return node
class TrackNumpyAttributes(VisitorTransform, SkipDeclarations):
# TODO: Make name handling as good as in InterpretCompilerDirectives() below - probably best to merge the two.
def __init__(self):
super(TrackNumpyAttributes, self).__init__()
self.numpy_module_names = set()
def visit_CImportStatNode(self, node):
if node.module_name == u"numpy":
self.numpy_module_names.add(node.as_name or u"numpy")
return node
def visit_AttributeNode(self, node):
self.visitchildren(node)
obj = node.obj
if (obj.is_name and obj.name in self.numpy_module_names) or obj.is_numpy_attribute:
node.is_numpy_attribute = True
return node
visit_Node = VisitorTransform.recurse_to_children
class InterpretCompilerDirectives(CythonTransform):
"""
After parsing, directives can be stored in a number of places:
- #cython-comments at the top of the file (stored in ModuleNode)
- Command-line arguments overriding these
- @cython.directivename decorators
- with cython.directivename: statements
- replaces "cython.compiled" with BoolNode(value=True)
allowing unreachable blocks to be removed at a fairly early stage
before cython typing rules are forced on applied
This transform is responsible for interpreting these various sources
and store the directive in two ways:
- Set the directives attribute of the ModuleNode for global directives.
- Use a CompilerDirectivesNode to override directives for a subtree.
(The first one is primarily to not have to modify with the tree
structure, so that ModuleNode stay on top.)
The directives are stored in dictionaries from name to value in effect.
Each such dictionary is always filled in for all possible directives,
using default values where no value is given by the user.
The available directives are controlled in Options.py.
Note that we have to run this prior to analysis, and so some minor
duplication of functionality has to occur: We manually track cimports
and which names the "cython" module may have been imported to.
"""
unop_method_nodes = {
'typeof': ExprNodes.TypeofNode,
'operator.address': ExprNodes.AmpersandNode,
'operator.dereference': ExprNodes.DereferenceNode,
'operator.preincrement' : ExprNodes.inc_dec_constructor(True, '++'),
'operator.predecrement' : ExprNodes.inc_dec_constructor(True, '--'),
'operator.postincrement': ExprNodes.inc_dec_constructor(False, '++'),
'operator.postdecrement': ExprNodes.inc_dec_constructor(False, '--'),
'operator.typeid' : ExprNodes.TypeidNode,
# For backwards compatibility.
'address': ExprNodes.AmpersandNode,
}
binop_method_nodes = {
'operator.comma' : ExprNodes.c_binop_constructor(','),
}
special_methods = {
'declare', 'union', 'struct', 'typedef',
'sizeof', 'cast', 'pointer', 'compiled',
'NULL', 'fused_type', 'parallel',
}
special_methods.update(unop_method_nodes)
valid_cython_submodules = {
'cimports',
'dataclasses',
'operator',
'parallel',
'view',
}
valid_parallel_directives = {
"parallel",
"prange",
"threadid",
#"threadsavailable",
}
def __init__(self, context, compilation_directive_defaults):
super(InterpretCompilerDirectives, self).__init__(context)
self.cython_module_names = set()
self.directive_names = {'staticmethod': 'staticmethod'}
self.parallel_directives = {}
directives = copy.deepcopy(Options.get_directive_defaults())
for key, value in compilation_directive_defaults.items():
directives[_unicode(key)] = copy.deepcopy(value)
self.directives = directives
def check_directive_scope(self, pos, directive, scope):
legal_scopes = Options.directive_scopes.get(directive, None)
if legal_scopes and scope not in legal_scopes:
self.context.nonfatal_error(PostParseError(pos, 'The %s compiler directive '
'is not allowed in %s scope' % (directive, scope)))
return False
else:
if directive not in Options.directive_types:
error(pos, "Invalid directive: '%s'." % (directive,))
return True
def _check_valid_cython_module(self, pos, module_name):
if not module_name.startswith("cython."):
return
submodule = module_name.split('.', 2)[1]
if submodule in self.valid_cython_submodules:
return
extra = ""
# This is very rarely used, so don't waste space on static tuples.
hints = [
line.split() for line in """\
imp cimports
cimp cimports
para parallel
parra parallel
dataclass dataclasses
""".splitlines()[:-1]
]
for wrong, correct in hints:
if module_name.startswith("cython." + wrong):
extra = "Did you mean 'cython.%s' ?" % correct
break
if not extra:
is_simple_cython_name = submodule in Options.directive_types
if not is_simple_cython_name and not submodule.startswith("_"):
# Try to find it in the Shadow module (i.e. the pure Python namespace of cython.*).
# FIXME: use an internal reference of "cython.*" names instead of Shadow.py
from .. import Shadow
is_simple_cython_name = hasattr(Shadow, submodule)
if is_simple_cython_name:
extra = "Instead, use 'import cython' and then 'cython.%s'." % submodule
error(pos, "'%s' is not a valid cython.* module%s%s" % (
module_name,
". " if extra else "",
extra,
))
# Set up processing and handle the cython: comments.
def visit_ModuleNode(self, node):
for key in sorted(node.directive_comments):
if not self.check_directive_scope(node.pos, key, 'module'):
self.wrong_scope_error(node.pos, key, 'module')
del node.directive_comments[key]
self.module_scope = node.scope
self.directives.update(node.directive_comments)
node.directives = self.directives
node.parallel_directives = self.parallel_directives
self.visitchildren(node)
node.cython_module_names = self.cython_module_names
return node
def visit_CompilerDirectivesNode(self, node):
old_directives, self.directives = self.directives, node.directives
self.visitchildren(node)
self.directives = old_directives
return node
# The following four functions track imports and cimports that
# begin with "cython"
def is_cython_directive(self, name):
return (name in Options.directive_types or
name in self.special_methods or
PyrexTypes.parse_basic_type(name))
def is_parallel_directive(self, full_name, pos):
"""
Checks to see if fullname (e.g. cython.parallel.prange) is a valid
parallel directive. If it is a star import it also updates the
parallel_directives.
"""
result = (full_name + ".").startswith("cython.parallel.")
if result:
directive = full_name.split('.')
if full_name == u"cython.parallel":
self.parallel_directives[u"parallel"] = u"cython.parallel"
elif full_name == u"cython.parallel.*":
for name in self.valid_parallel_directives:
self.parallel_directives[name] = u"cython.parallel.%s" % name
elif (len(directive) != 3 or
directive[-1] not in self.valid_parallel_directives):
error(pos, "No such directive: %s" % full_name)
self.module_scope.use_utility_code(
UtilityCode.load_cached("InitThreads", "ModuleSetupCode.c"))
return result
def visit_CImportStatNode(self, node):
module_name = node.module_name
if module_name == u"cython.cimports":
error(node.pos, "Cannot cimport the 'cython.cimports' package directly, only submodules.")
if module_name.startswith(u"cython.cimports."):
if node.as_name and node.as_name != u'cython':
node.module_name = module_name[len(u"cython.cimports."):]
return node
error(node.pos,
"Python cimports must use 'from cython.cimports... import ...'"
" or 'import ... as ...', not just 'import ...'")
if module_name == u"cython":
self.cython_module_names.add(node.as_name or u"cython")
elif module_name.startswith(u"cython."):
if module_name.startswith(u"cython.parallel."):
error(node.pos, node.module_name + " is not a module")
else:
self._check_valid_cython_module(node.pos, module_name)
if module_name == u"cython.parallel":
if node.as_name and node.as_name != u"cython":
self.parallel_directives[node.as_name] = module_name
else:
self.cython_module_names.add(u"cython")
self.parallel_directives[
u"cython.parallel"] = module_name
self.module_scope.use_utility_code(
UtilityCode.load_cached("InitThreads", "ModuleSetupCode.c"))
elif node.as_name:
self.directive_names[node.as_name] = module_name[7:]
else:
self.cython_module_names.add(u"cython")
# if this cimport was a compiler directive, we don't
# want to leave the cimport node sitting in the tree
return None
return node
def visit_FromCImportStatNode(self, node):
module_name = node.module_name
if module_name == u"cython.cimports" or module_name.startswith(u"cython.cimports."):
# only supported for convenience
return self._create_cimport_from_import(
node.pos, module_name, node.relative_level, node.imported_names)
elif not node.relative_level and (
module_name == u"cython" or module_name.startswith(u"cython.")):
self._check_valid_cython_module(node.pos, module_name)
submodule = (module_name + u".")[7:]
newimp = []
for pos, name, as_name in node.imported_names:
full_name = submodule + name
qualified_name = u"cython." + full_name
if self.is_parallel_directive(qualified_name, node.pos):
# from cython cimport parallel, or
# from cython.parallel cimport parallel, prange, ...
self.parallel_directives[as_name or name] = qualified_name
elif self.is_cython_directive(full_name):
self.directive_names[as_name or name] = full_name
elif full_name in ['dataclasses', 'typing']:
self.directive_names[as_name or name] = full_name
# unlike many directives, still treat it as a regular module
newimp.append((pos, name, as_name))
else:
newimp.append((pos, name, as_name))
if not newimp:
return None
node.imported_names = newimp
return node
def visit_FromImportStatNode(self, node):
import_node = node.module
module_name = import_node.module_name.value
if module_name == u"cython.cimports" or module_name.startswith(u"cython.cimports."):
imported_names = []
for name, name_node in node.items:
imported_names.append(
(name_node.pos, name, None if name == name_node.name else name_node.name))
return self._create_cimport_from_import(
node.pos, module_name, import_node.level, imported_names)
elif module_name == u"cython" or module_name.startswith(u"cython."):
self._check_valid_cython_module(import_node.module_name.pos, module_name)
submodule = (module_name + u".")[7:]
newimp = []
for name, name_node in node.items:
full_name = submodule + name
qualified_name = u"cython." + full_name
if self.is_parallel_directive(qualified_name, node.pos):
self.parallel_directives[name_node.name] = qualified_name
elif self.is_cython_directive(full_name):
self.directive_names[name_node.name] = full_name
else:
newimp.append((name, name_node))
if not newimp:
return None
node.items = newimp
return node
def _create_cimport_from_import(self, node_pos, module_name, level, imported_names):
if module_name == u"cython.cimports" or module_name.startswith(u"cython.cimports."):
module_name = EncodedString(module_name[len(u"cython.cimports."):]) # may be empty
if module_name:
# from cython.cimports.a.b import x, y, z => from a.b cimport x, y, z
return Nodes.FromCImportStatNode(
node_pos, module_name=module_name,
relative_level=level,
imported_names=imported_names)
else:
# from cython.cimports import x, y, z => cimport x; cimport y; cimport z
return [
Nodes.CImportStatNode(
pos,
module_name=dotted_name,
as_name=as_name,
is_absolute=level == 0)
for pos, dotted_name, as_name in imported_names
]
def visit_SingleAssignmentNode(self, node):
if isinstance(node.rhs, ExprNodes.ImportNode):
module_name = node.rhs.module_name.value
if module_name != u"cython" and not module_name.startswith("cython."):
return node
node = Nodes.CImportStatNode(node.pos, module_name=module_name, as_name=node.lhs.name)
node = self.visit_CImportStatNode(node)
else:
self.visitchildren(node)
return node
def visit_NameNode(self, node):
if node.annotation:
self.visitchild(node, 'annotation')
if node.name in self.cython_module_names:
node.is_cython_module = True
else:
directive = self.directive_names.get(node.name)
if directive is not None:
node.cython_attribute = directive
if node.as_cython_attribute() == "compiled":
return ExprNodes.BoolNode(node.pos, value=True) # replace early so unused branches can be dropped
# before they have a chance to cause compile-errors
return node
def visit_AttributeNode(self, node):
self.visitchildren(node)
if node.as_cython_attribute() == "compiled":
return ExprNodes.BoolNode(node.pos, value=True) # replace early so unused branches can be dropped
# before they have a chance to cause compile-errors
return node
def visit_AnnotationNode(self, node):
# for most transforms annotations are left unvisited (because they're unevaluated)
# however, it is important to pick up compiler directives from them
if node.expr:
self.visit(node.expr)
return node
def visit_NewExprNode(self, node):
self.visitchild(node, 'cppclass')
self.visitchildren(node)
return node
def try_to_parse_directives(self, node):
# If node is the contents of an directive (in a with statement or
# decorator), returns a list of (directivename, value) pairs.
# Otherwise, returns None
if isinstance(node, ExprNodes.CallNode):
self.visitchild(node, 'function')
optname = node.function.as_cython_attribute()
if optname:
directivetype = Options.directive_types.get(optname)
if directivetype:
args, kwds = node.explicit_args_kwds()
directives = []
key_value_pairs = []
if kwds is not None and directivetype is not dict:
for keyvalue in kwds.key_value_pairs:
key, value = keyvalue
sub_optname = "%s.%s" % (optname, key.value)
if Options.directive_types.get(sub_optname):
directives.append(self.try_to_parse_directive(sub_optname, [value], None, keyvalue.pos))
else:
key_value_pairs.append(keyvalue)
if not key_value_pairs:
kwds = None
else:
kwds.key_value_pairs = key_value_pairs
if directives and not kwds and not args:
return directives
directives.append(self.try_to_parse_directive(optname, args, kwds, node.function.pos))
return directives
elif isinstance(node, (ExprNodes.AttributeNode, ExprNodes.NameNode)):
self.visit(node)
optname = node.as_cython_attribute()
if optname:
directivetype = Options.directive_types.get(optname)
if directivetype is bool:
arg = ExprNodes.BoolNode(node.pos, value=True)
return [self.try_to_parse_directive(optname, [arg], None, node.pos)]
elif directivetype is None or directivetype is Options.DEFER_ANALYSIS_OF_ARGUMENTS:
return [(optname, None)]
else:
raise PostParseError(
node.pos, "The '%s' directive should be used as a function call." % optname)
return None
def try_to_parse_directive(self, optname, args, kwds, pos):
if optname == 'np_pythran' and not self.context.cpp:
raise PostParseError(pos, 'The %s directive can only be used in C++ mode.' % optname)
elif optname == 'exceptval':
# default: exceptval(None, check=True)
arg_error = len(args) > 1
check = True
if kwds and kwds.key_value_pairs:
kw = kwds.key_value_pairs[0]
if (len(kwds.key_value_pairs) == 1 and
kw.key.is_string_literal and kw.key.value == 'check' and
isinstance(kw.value, ExprNodes.BoolNode)):
check = kw.value.value
else:
arg_error = True
if arg_error:
raise PostParseError(
pos, 'The exceptval directive takes 0 or 1 positional arguments and the boolean keyword "check"')
return ('exceptval', (args[0] if args else None, check))
directivetype = Options.directive_types.get(optname)
if len(args) == 1 and isinstance(args[0], ExprNodes.NoneNode):
return optname, Options.get_directive_defaults()[optname]
elif directivetype is bool:
if kwds is not None or len(args) != 1 or not isinstance(args[0], ExprNodes.BoolNode):
raise PostParseError(pos,
'The %s directive takes one compile-time boolean argument' % optname)
return (optname, args[0].value)
elif directivetype is int:
if kwds is not None or len(args) != 1 or not isinstance(args[0], ExprNodes.IntNode):
raise PostParseError(pos,
'The %s directive takes one compile-time integer argument' % optname)
return (optname, int(args[0].value))
elif directivetype is str:
if kwds is not None or len(args) != 1 or not isinstance(
args[0], (ExprNodes.StringNode, ExprNodes.UnicodeNode)):
raise PostParseError(pos,
'The %s directive takes one compile-time string argument' % optname)
return (optname, str(args[0].value))
elif directivetype is type:
if kwds is not None or len(args) != 1:
raise PostParseError(pos,
'The %s directive takes one type argument' % optname)
return (optname, args[0])
elif directivetype is dict:
if len(args) != 0:
raise PostParseError(pos,
'The %s directive takes no prepositional arguments' % optname)
return optname, kwds.as_python_dict()
elif directivetype is list:
if kwds and len(kwds.key_value_pairs) != 0:
raise PostParseError(pos,
'The %s directive takes no keyword arguments' % optname)
return optname, [ str(arg.value) for arg in args ]
elif callable(directivetype):
if kwds is not None or len(args) != 1 or not isinstance(
args[0], (ExprNodes.StringNode, ExprNodes.UnicodeNode)):
raise PostParseError(pos,
'The %s directive takes one compile-time string argument' % optname)
return (optname, directivetype(optname, str(args[0].value)))
elif directivetype is Options.DEFER_ANALYSIS_OF_ARGUMENTS:
# signal to pass things on without processing
return (optname, (args, kwds.as_python_dict() if kwds else {}))
else:
assert False
def visit_with_directives(self, node, directives, contents_directives):
# contents_directives may be None
if not directives:
assert not contents_directives
return self.visit_Node(node)
old_directives = self.directives
new_directives = Options.copy_inherited_directives(old_directives, **directives)
if contents_directives is not None:
new_contents_directives = Options.copy_inherited_directives(
old_directives, **contents_directives)
else:
new_contents_directives = new_directives
if new_directives == old_directives:
return self.visit_Node(node)
self.directives = new_directives
if (contents_directives is not None and
new_contents_directives != new_directives):
# we need to wrap the node body in a compiler directives node
node.body = Nodes.StatListNode(
node.body.pos,
stats=[
Nodes.CompilerDirectivesNode(
node.body.pos,
directives=new_contents_directives,
body=node.body)
]
)
retbody = self.visit_Node(node)
self.directives = old_directives
if not isinstance(retbody, Nodes.StatListNode):
retbody = Nodes.StatListNode(node.pos, stats=[retbody])
return Nodes.CompilerDirectivesNode(
pos=retbody.pos, body=retbody, directives=new_directives)
# Handle decorators
def visit_FuncDefNode(self, node):
directives, contents_directives = self._extract_directives(node, 'function')
return self.visit_with_directives(node, directives, contents_directives)
def visit_CVarDefNode(self, node):
directives, _ = self._extract_directives(node, 'function')
for name, value in directives.items():
if name == 'locals':
node.directive_locals = value
elif name not in ('final', 'staticmethod'):
self.context.nonfatal_error(PostParseError(
node.pos,
"Cdef functions can only take cython.locals(), "
"staticmethod, or final decorators, got %s." % name))
return self.visit_with_directives(node, directives, contents_directives=None)
def visit_CClassDefNode(self, node):
directives, contents_directives = self._extract_directives(node, 'cclass')
return self.visit_with_directives(node, directives, contents_directives)
def visit_CppClassNode(self, node):
directives, contents_directives = self._extract_directives(node, 'cppclass')
return self.visit_with_directives(node, directives, contents_directives)
def visit_PyClassDefNode(self, node):
directives, contents_directives = self._extract_directives(node, 'class')
return self.visit_with_directives(node, directives, contents_directives)
def _extract_directives(self, node, scope_name):
"""
Returns two dicts - directives applied to this function/class
and directives applied to its contents. They aren't always the
same (since e.g. cfunc should not be applied to inner functions)
"""
if not node.decorators:
return {}, {}
# Split the decorators into two lists -- real decorators and directives
directives = []
realdecs = []
both = []
current_opt_dict = dict(self.directives)
missing = object()
# Decorators coming first take precedence.
for dec in node.decorators[::-1]:
new_directives = self.try_to_parse_directives(dec.decorator)
if new_directives is not None:
for directive in new_directives:
if self.check_directive_scope(node.pos, directive[0], scope_name):
name, value = directive
if name in ('nogil', 'with_gil'):
if value is None:
value = True
else:
args, kwds = value
if kwds or len(args) != 1 or not isinstance(args[0], ExprNodes.BoolNode):
raise PostParseError(dec.pos, 'The %s directive takes one compile-time boolean argument' % name)
value = args[0].value
directive = (name, value)
if current_opt_dict.get(name, missing) != value:
if name == 'cfunc' and 'ufunc' in current_opt_dict:
error(dec.pos, "Cannot apply @cfunc to @ufunc, please reverse the decorators.")
directives.append(directive)
current_opt_dict[name] = value
else:
warning(dec.pos, "Directive does not change previous value (%s%s)" % (
name, '=%r' % value if value is not None else ''))
if directive[0] == 'staticmethod':
both.append(dec)
# Adapt scope type based on decorators that change it.
if directive[0] == 'cclass' and scope_name == 'class':
scope_name = 'cclass'
else:
realdecs.append(dec)
node.decorators = realdecs[::-1] + both[::-1]
# merge or override repeated directives
optdict = {}
contents_optdict = {}
for name, value in directives:
if name in optdict:
old_value = optdict[name]
# keywords and arg lists can be merged, everything
# else overrides completely
if isinstance(old_value, dict):
old_value.update(value)
elif isinstance(old_value, list):
old_value.extend(value)
else:
optdict[name] = value
else:
optdict[name] = value
if name not in Options.immediate_decorator_directives:
contents_optdict[name] = value
return optdict, contents_optdict
# Handle with-statements
def visit_WithStatNode(self, node):
directive_dict = {}
for directive in self.try_to_parse_directives(node.manager) or []:
if directive is not None:
if node.target is not None:
self.context.nonfatal_error(
PostParseError(node.pos, "Compiler directive with statements cannot contain 'as'"))
else:
name, value = directive
if name in ('nogil', 'gil'):
# special case: in pure mode, "with nogil" spells "with cython.nogil"
condition = None
if isinstance(node.manager, ExprNodes.SimpleCallNode) and len(node.manager.args) > 0:
if len(node.manager.args) == 1:
condition = node.manager.args[0]
else:
self.context.nonfatal_error(
PostParseError(node.pos, "Compiler directive %s accepts one positional argument." % name))
elif isinstance(node.manager, ExprNodes.GeneralCallNode):
self.context.nonfatal_error(
PostParseError(node.pos, "Compiler directive %s accepts one positional argument." % name))
node = Nodes.GILStatNode(node.pos, state=name, body=node.body, condition=condition)
return self.visit_Node(node)
if self.check_directive_scope(node.pos, name, 'with statement'):
directive_dict[name] = value
if directive_dict:
return self.visit_with_directives(node.body, directive_dict, contents_directives=None)
return self.visit_Node(node)
class ParallelRangeTransform(CythonTransform, SkipDeclarations):
"""
Transform cython.parallel stuff. The parallel_directives come from the
module node, set there by InterpretCompilerDirectives.
x = cython.parallel.threadavailable() -> ParallelThreadAvailableNode
with nogil, cython.parallel.parallel(): -> ParallelWithBlockNode
print cython.parallel.threadid() -> ParallelThreadIdNode
for i in cython.parallel.prange(...): -> ParallelRangeNode
...
"""
# a list of names, maps 'cython.parallel.prange' in the code to
# ['cython', 'parallel', 'prange']
parallel_directive = None
# Indicates whether a namenode in an expression is the cython module
namenode_is_cython_module = False
# Keep track of whether we are the context manager of a 'with' statement
in_context_manager_section = False
# One of 'prange' or 'with parallel'. This is used to disallow closely
# nested 'with parallel:' blocks
state = None
directive_to_node = {
u"cython.parallel.parallel": Nodes.ParallelWithBlockNode,
# u"cython.parallel.threadsavailable": ExprNodes.ParallelThreadsAvailableNode,
u"cython.parallel.threadid": ExprNodes.ParallelThreadIdNode,
u"cython.parallel.prange": Nodes.ParallelRangeNode,
}
def node_is_parallel_directive(self, node):
return node.name in self.parallel_directives or node.is_cython_module
def get_directive_class_node(self, node):
"""
Figure out which parallel directive was used and return the associated
Node class.
E.g. for a cython.parallel.prange() call we return ParallelRangeNode
"""
if self.namenode_is_cython_module:
directive = '.'.join(self.parallel_directive)
else:
directive = self.parallel_directives[self.parallel_directive[0]]
directive = '%s.%s' % (directive,
'.'.join(self.parallel_directive[1:]))
directive = directive.rstrip('.')
cls = self.directive_to_node.get(directive)
if cls is None and not (self.namenode_is_cython_module and
self.parallel_directive[0] != 'parallel'):
error(node.pos, "Invalid directive: %s" % directive)
self.namenode_is_cython_module = False
self.parallel_directive = None
return cls
def visit_ModuleNode(self, node):
"""
If any parallel directives were imported, copy them over and visit
the AST
"""
if node.parallel_directives:
self.parallel_directives = node.parallel_directives
return self.visit_Node(node)
# No parallel directives were imported, so they can't be used :)
return node
def visit_NameNode(self, node):
if self.node_is_parallel_directive(node):
self.parallel_directive = [node.name]
self.namenode_is_cython_module = node.is_cython_module
return node
def visit_AttributeNode(self, node):
self.visitchildren(node)
if self.parallel_directive:
self.parallel_directive.append(node.attribute)
return node
def visit_CallNode(self, node):
self.visitchild(node, 'function')
if not self.parallel_directive:
self.visitchildren(node, exclude=('function',))
return node
# We are a parallel directive, replace this node with the
# corresponding ParallelSomethingSomething node
if isinstance(node, ExprNodes.GeneralCallNode):
args = node.positional_args.args
kwargs = node.keyword_args
else:
args = node.args
kwargs = {}
parallel_directive_class = self.get_directive_class_node(node)
if parallel_directive_class:
# Note: in case of a parallel() the body is set by
# visit_WithStatNode
node = parallel_directive_class(node.pos, args=args, kwargs=kwargs)
return node
def visit_WithStatNode(self, node):
"Rewrite with cython.parallel.parallel() blocks"
newnode = self.visit(node.manager)
if isinstance(newnode, Nodes.ParallelWithBlockNode):
if self.state == 'parallel with':
error(node.manager.pos,
"Nested parallel with blocks are disallowed")
self.state = 'parallel with'
body = self.visitchild(node, 'body')
self.state = None
newnode.body = body
return newnode
elif self.parallel_directive:
parallel_directive_class = self.get_directive_class_node(node)
if not parallel_directive_class:
# There was an error, stop here and now
return None
if parallel_directive_class is Nodes.ParallelWithBlockNode:
error(node.pos, "The parallel directive must be called")
return None
self.visitchild(node, 'body')
return node
def visit_ForInStatNode(self, node):
"Rewrite 'for i in cython.parallel.prange(...):'"
self.visitchild(node, 'iterator')
self.visitchild(node, 'target')
in_prange = isinstance(node.iterator.sequence,
Nodes.ParallelRangeNode)
previous_state = self.state
if in_prange:
# This will replace the entire ForInStatNode, so copy the
# attributes
parallel_range_node = node.iterator.sequence
parallel_range_node.target = node.target
parallel_range_node.body = node.body
parallel_range_node.else_clause = node.else_clause
node = parallel_range_node
if not isinstance(node.target, ExprNodes.NameNode):
error(node.target.pos,
"Can only iterate over an iteration variable")
self.state = 'prange'
self.visitchild(node, 'body')
self.state = previous_state
self.visitchild(node, 'else_clause')
return node
def visit(self, node):
"Visit a node that may be None"
if node is not None:
return super(ParallelRangeTransform, self).visit(node)
class WithTransform(VisitorTransform, SkipDeclarations):
def visit_WithStatNode(self, node):
self.visitchildren(node, 'body')
pos = node.pos
is_async = node.is_async
body, target, manager = node.body, node.target, node.manager
manager = node.manager = ExprNodes.ProxyNode(manager)
node.enter_call = ExprNodes.SimpleCallNode(
pos, function=ExprNodes.AttributeNode(
pos, obj=ExprNodes.CloneNode(manager),
attribute=EncodedString('__aenter__' if is_async else '__enter__'),
is_special_lookup=True),
args=[],
is_temp=True)
if is_async:
node.enter_call = ExprNodes.AwaitExprNode(pos, arg=node.enter_call)
if target is not None:
body = Nodes.StatListNode(
pos, stats=[
Nodes.WithTargetAssignmentStatNode(
pos, lhs=target, with_node=node),
body])
excinfo_target = ExprNodes.TupleNode(pos, slow=True, args=[
ExprNodes.ExcValueNode(pos) for _ in range(3)])
except_clause = Nodes.ExceptClauseNode(
pos, body=Nodes.IfStatNode(
pos, if_clauses=[
Nodes.IfClauseNode(
pos, condition=ExprNodes.NotNode(
pos, operand=ExprNodes.WithExitCallNode(
pos, with_stat=node,
test_if_run=False,
args=excinfo_target,
await_expr=ExprNodes.AwaitExprNode(pos, arg=None) if is_async else None)),
body=Nodes.ReraiseStatNode(pos),
),
],
else_clause=None),
pattern=None,
target=None,
excinfo_target=excinfo_target,
)
node.body = Nodes.TryFinallyStatNode(
pos, body=Nodes.TryExceptStatNode(
pos, body=body,
except_clauses=[except_clause],
else_clause=None,
),
finally_clause=Nodes.ExprStatNode(
pos, expr=ExprNodes.WithExitCallNode(
pos, with_stat=node,
test_if_run=True,
args=ExprNodes.TupleNode(
pos, args=[ExprNodes.NoneNode(pos) for _ in range(3)]),
await_expr=ExprNodes.AwaitExprNode(pos, arg=None) if is_async else None)),
handle_error_case=False,
)
return node
def visit_ExprNode(self, node):
# With statements are never inside expressions.
return node
visit_Node = VisitorTransform.recurse_to_children
class _GeneratorExpressionArgumentsMarker(TreeVisitor, SkipDeclarations):
# called from "MarkClosureVisitor"
def __init__(self, gen_expr):
super(_GeneratorExpressionArgumentsMarker, self).__init__()
self.gen_expr = gen_expr
def visit_ExprNode(self, node):
if not node.is_literal:
# Don't bother tagging literal nodes
assert (not node.generator_arg_tag) # nobody has tagged this first
node.generator_arg_tag = self.gen_expr
self.visitchildren(node)
def visit_Node(self, node):
# We're only interested in the expressions that make up the iterator sequence,
# so don't go beyond ExprNodes (e.g. into ForFromStatNode).
return
def visit_GeneratorExpressionNode(self, node):
node.generator_arg_tag = self.gen_expr
# don't visit children, can't handle overlapping tags
# (and assume generator expressions don't end up optimized out in a way
# that would require overlapping tags)
class _HandleGeneratorArguments(VisitorTransform, SkipDeclarations):
# used from within CreateClosureClasses
def __call__(self, node):
from . import Visitor
assert isinstance(node, ExprNodes.GeneratorExpressionNode)
self.gen_node = node
self.args = list(node.def_node.args)
self.call_parameters = list(node.call_parameters)
self.tag_count = 0
self.substitutions = {}
self.visitchildren(node)
for k, v in self.substitutions.items():
# doing another search for replacements here (at the end) allows us to sweep up
# CloneNodes too (which are often generated by the optimizer)
# (it could arguably be done more efficiently with a single traversal though)
Visitor.recursively_replace_node(node, k, v)
node.def_node.args = self.args
node.call_parameters = self.call_parameters
return node
def visit_GeneratorExpressionNode(self, node):
# a generator can also be substituted itself, so handle that case
new_node = self._handle_ExprNode(node, do_visit_children=False)
# However do not traverse into it. A new _HandleGeneratorArguments visitor will be used
# elsewhere to do that.
return node
def _handle_ExprNode(self, node, do_visit_children):
if (node.generator_arg_tag is not None and self.gen_node is not None and
self.gen_node == node.generator_arg_tag):
pos = node.pos
# The reason for using ".x" as the name is that this is how CPython
# tracks internal variables in loops (e.g.
# { locals() for v in range(10) }
# will produce "v" and ".0"). We don't replicate this behaviour completely
# but use it as a starting point
name_source = self.tag_count
self.tag_count += 1
name = EncodedString(".{0}".format(name_source))
def_node = self.gen_node.def_node
if not def_node.local_scope.lookup_here(name):
from . import Symtab
cname = EncodedString(Naming.genexpr_arg_prefix + Symtab.punycodify_name(str(name_source)))
name_decl = Nodes.CNameDeclaratorNode(pos=pos, name=name)
type = node.type
# strip away cv types - they shouldn't be applied to the
# function argument or to the closure struct.
# It isn't obvious whether the right thing to do would be to capture by reference or by
# value (C++ itself doesn't know either for lambda functions and forces a choice).
# However, capture by reference involves converting to FakeReference which would require
# re-analysing AttributeNodes. Therefore I've picked capture-by-value out of convenience
# TODO - could probably be optimized by making the arg a reference but the closure not
# (see https://github.com/cython/cython/issues/2468)
type = PyrexTypes.remove_cv_ref(type, remove_fakeref=False)
name_decl.type = type
new_arg = Nodes.CArgDeclNode(pos=pos, declarator=name_decl,
base_type=None, default=None, annotation=None)
new_arg.name = name_decl.name
new_arg.type = type
self.args.append(new_arg)
node.generator_arg_tag = None # avoid the possibility of this being caught again
self.call_parameters.append(node)
new_arg.entry = def_node.declare_argument(def_node.local_scope, new_arg)
new_arg.entry.cname = cname
new_arg.entry.in_closure = True
if do_visit_children:
# now visit the Nodes's children (but remove self.gen_node to not to further
# argument substitution)
gen_node, self.gen_node = self.gen_node, None
self.visitchildren(node)
self.gen_node = gen_node
# replace the node inside the generator with a looked-up name
# (initialized_check can safely be False because the source variable will be checked
# before it is captured if the check is required)
name_node = ExprNodes.NameNode(pos, name=name, initialized_check=False)
name_node.entry = self.gen_node.def_node.gbody.local_scope.lookup(name_node.name)
name_node.type = name_node.entry.type
self.substitutions[node] = name_node
return name_node
if do_visit_children:
self.visitchildren(node)
return node
def visit_ExprNode(self, node):
return self._handle_ExprNode(node, True)
visit_Node = VisitorTransform.recurse_to_children
class DecoratorTransform(ScopeTrackingTransform, SkipDeclarations):
"""
Transforms method decorators in cdef classes into nested calls or properties.
Python-style decorator properties are transformed into a PropertyNode
with up to the three getter, setter and deleter DefNodes.
The functional style isn't supported yet.
"""
_properties = None
_map_property_attribute = {
'getter': EncodedString('__get__'),
'setter': EncodedString('__set__'),
'deleter': EncodedString('__del__'),
}.get
def visit_CClassDefNode(self, node):
if self._properties is None:
self._properties = []
self._properties.append({})
node = super(DecoratorTransform, self).visit_CClassDefNode(node)
self._properties.pop()
return node
def visit_PropertyNode(self, node):
# Low-level warning for other code until we can convert all our uses over.
level = 2 if isinstance(node.pos[0], str) else 0
warning(node.pos, "'property %s:' syntax is deprecated, use '@property'" % node.name, level)
return node
def visit_CFuncDefNode(self, node):
node = self.visit_FuncDefNode(node)
if not node.decorators:
return node
elif self.scope_type != 'cclass' or self.scope_node.visibility != "extern":
# at the moment cdef functions are very restricted in what decorators they can take
# so it's simple to test for the small number of allowed decorators....
if not (len(node.decorators) == 1 and node.decorators[0].decorator.is_name and
node.decorators[0].decorator.name == "staticmethod"):
error(node.decorators[0].pos, "Cdef functions cannot take arbitrary decorators.")
return node
ret_node = node
decorator_node = self._find_property_decorator(node)
if decorator_node:
if decorator_node.decorator.is_name:
name = node.declared_name()
if name:
ret_node = self._add_property(node, name, decorator_node)
else:
error(decorator_node.pos, "C property decorator can only be @property")
if node.decorators:
return self._reject_decorated_property(node, node.decorators[0])
return ret_node
def visit_DefNode(self, node):
scope_type = self.scope_type
node = self.visit_FuncDefNode(node)
if scope_type != 'cclass' or not node.decorators:
return node
# transform @property decorators
decorator_node = self._find_property_decorator(node)
if decorator_node is not None:
decorator = decorator_node.decorator
if decorator.is_name:
return self._add_property(node, node.name, decorator_node)
else:
handler_name = self._map_property_attribute(decorator.attribute)
if handler_name:
if decorator.obj.name != node.name:
# CPython does not generate an error or warning, but not something useful either.
error(decorator_node.pos,
"Mismatching property names, expected '%s', got '%s'" % (
decorator.obj.name, node.name))
elif len(node.decorators) > 1:
return self._reject_decorated_property(node, decorator_node)
else:
return self._add_to_property(node, handler_name, decorator_node)
# we clear node.decorators, so we need to set the
# is_staticmethod/is_classmethod attributes now
for decorator in node.decorators:
func = decorator.decorator
if func.is_name:
node.is_classmethod |= func.name == 'classmethod'
node.is_staticmethod |= func.name == 'staticmethod'
# transform normal decorators
decs = node.decorators
node.decorators = None
return self.chain_decorators(node, decs, node.name)
def _find_property_decorator(self, node):
properties = self._properties[-1]
for decorator_node in node.decorators[::-1]:
decorator = decorator_node.decorator
if decorator.is_name and decorator.name == 'property':
# @property
return decorator_node
elif decorator.is_attribute and decorator.obj.name in properties:
# @prop.setter etc.
return decorator_node
return None
@staticmethod
def _reject_decorated_property(node, decorator_node):
# restrict transformation to outermost decorator as wrapped properties will probably not work
for deco in node.decorators:
if deco != decorator_node:
error(deco.pos, "Property methods with additional decorators are not supported")
return node
def _add_property(self, node, name, decorator_node):
if len(node.decorators) > 1:
return self._reject_decorated_property(node, decorator_node)
node.decorators.remove(decorator_node)
properties = self._properties[-1]
is_cproperty = isinstance(node, Nodes.CFuncDefNode)
body = Nodes.StatListNode(node.pos, stats=[node])
if is_cproperty:
if name in properties:
error(node.pos, "C property redeclared")
if 'inline' not in node.modifiers:
error(node.pos, "C property method must be declared 'inline'")
prop = Nodes.CPropertyNode(node.pos, doc=node.doc, name=name, body=body)
elif name in properties:
prop = properties[name]
if prop.is_cproperty:
error(node.pos, "C property redeclared")
else:
node.name = EncodedString("__get__")
prop.pos = node.pos
prop.doc = node.doc
prop.body.stats = [node]
return None
else:
node.name = EncodedString("__get__")
prop = Nodes.PropertyNode(
node.pos, name=name, doc=node.doc, body=body)
properties[name] = prop
return prop
def _add_to_property(self, node, name, decorator):
properties = self._properties[-1]
prop = properties[node.name]
if prop.is_cproperty:
error(node.pos, "C property redeclared")
return None
node.name = name
node.decorators.remove(decorator)
stats = prop.body.stats
for i, stat in enumerate(stats):
if stat.name == name:
stats[i] = node
break
else:
stats.append(node)
return None
@staticmethod
def chain_decorators(node, decorators, name):
"""
Decorators are applied directly in DefNode and PyClassDefNode to avoid
reassignments to the function/class name - except for cdef class methods.
For those, the reassignment is required as methods are originally
defined in the PyMethodDef struct.
The IndirectionNode allows DefNode to override the decorator.
"""
decorator_result = ExprNodes.NameNode(node.pos, name=name)
for decorator in decorators[::-1]:
decorator_result = ExprNodes.SimpleCallNode(
decorator.pos,
function=decorator.decorator,
args=[decorator_result])
name_node = ExprNodes.NameNode(node.pos, name=name)
reassignment = Nodes.SingleAssignmentNode(
node.pos,
lhs=name_node,
rhs=decorator_result)
reassignment = Nodes.IndirectionNode([reassignment])
node.decorator_indirection = reassignment
return [node, reassignment]
class CnameDirectivesTransform(CythonTransform, SkipDeclarations):
"""
Only part of the CythonUtilityCode pipeline. Must be run before
DecoratorTransform in case this is a decorator for a cdef class.
It filters out @cname('my_cname') decorators and rewrites them to
CnameDecoratorNodes.
"""
def handle_function(self, node):
if not getattr(node, 'decorators', None):
return self.visit_Node(node)
for i, decorator in enumerate(node.decorators):
decorator = decorator.decorator
if (isinstance(decorator, ExprNodes.CallNode) and
decorator.function.is_name and
decorator.function.name == 'cname'):
args, kwargs = decorator.explicit_args_kwds()
if kwargs:
raise AssertionError(
"cname decorator does not take keyword arguments")
if len(args) != 1:
raise AssertionError(
"cname decorator takes exactly one argument")
if not (args[0].is_literal and
args[0].type == Builtin.str_type):
raise AssertionError(
"argument to cname decorator must be a string literal")
cname = args[0].compile_time_value(None)
del node.decorators[i]
node = Nodes.CnameDecoratorNode(pos=node.pos, node=node,
cname=cname)
break
return self.visit_Node(node)
visit_FuncDefNode = handle_function
visit_CClassDefNode = handle_function
visit_CEnumDefNode = handle_function
visit_CStructOrUnionDefNode = handle_function
class ForwardDeclareTypes(CythonTransform):
"""
Declare all global cdef names that we allow referencing in other places,
before declaring everything (else) in source code order.
"""
def visit_CompilerDirectivesNode(self, node):
env = self.module_scope
old = env.directives
env.directives = node.directives
self.visitchildren(node)
env.directives = old
return node
def visit_ModuleNode(self, node):
self.module_scope = node.scope
self.module_scope.directives = node.directives
self.visitchildren(node)
return node
def visit_CDefExternNode(self, node):
old_cinclude_flag = self.module_scope.in_cinclude
self.module_scope.in_cinclude = 1
self.visitchildren(node)
self.module_scope.in_cinclude = old_cinclude_flag
return node
def visit_CEnumDefNode(self, node):
node.declare(self.module_scope)
return node
def visit_CStructOrUnionDefNode(self, node):
if node.name not in self.module_scope.entries:
node.declare(self.module_scope)
return node
def visit_CClassDefNode(self, node):
if node.class_name not in self.module_scope.entries:
node.declare(self.module_scope)
# Expand fused methods of .pxd declared types to construct the final vtable order.
type = self.module_scope.entries[node.class_name].type
if type is not None and type.is_extension_type and not type.is_builtin_type and type.scope:
scope = type.scope
for entry in scope.cfunc_entries:
if entry.type and entry.type.is_fused:
entry.type.get_all_specialized_function_types()
return node
def visit_FuncDefNode(self, node):
# no traversal needed
return node
def visit_PyClassDefNode(self, node):
# no traversal needed
return node
class AnalyseDeclarationsTransform(EnvTransform):
basic_property = TreeFragment(u"""
property NAME:
def __get__(self):
return ATTR
def __set__(self, value):
ATTR = value
""", level='c_class', pipeline=[NormalizeTree(None)])
basic_pyobject_property = TreeFragment(u"""
property NAME:
def __get__(self):
return ATTR
def __set__(self, value):
ATTR = value
def __del__(self):
ATTR = None
""", level='c_class', pipeline=[NormalizeTree(None)])
basic_property_ro = TreeFragment(u"""
property NAME:
def __get__(self):
return ATTR
""", level='c_class', pipeline=[NormalizeTree(None)])
struct_or_union_wrapper = TreeFragment(u"""
cdef class NAME:
cdef TYPE value
def __init__(self, MEMBER=None):
cdef int count
count = 0
INIT_ASSIGNMENTS
if IS_UNION and count > 1:
raise ValueError, "At most one union member should be specified."
def __str__(self):
return STR_FORMAT % MEMBER_TUPLE
def __repr__(self):
return REPR_FORMAT % MEMBER_TUPLE
""", pipeline=[NormalizeTree(None)])
init_assignment = TreeFragment(u"""
if VALUE is not None:
ATTR = VALUE
count += 1
""", pipeline=[NormalizeTree(None)])
fused_function = None
in_lambda = 0
def __call__(self, root):
# needed to determine if a cdef var is declared after it's used.
self.seen_vars_stack = []
self.fused_error_funcs = set()
super_class = super(AnalyseDeclarationsTransform, self)
self._super_visit_FuncDefNode = super_class.visit_FuncDefNode
return super_class.__call__(root)
def visit_NameNode(self, node):
self.seen_vars_stack[-1].add(node.name)
return node
def visit_ModuleNode(self, node):
# Pickling support requires injecting module-level nodes.
self.extra_module_declarations = []
self.seen_vars_stack.append(set())
node.analyse_declarations(self.current_env())
self.visitchildren(node)
self.seen_vars_stack.pop()
node.body.stats.extend(self.extra_module_declarations)
return node
def visit_LambdaNode(self, node):
self.in_lambda += 1
node.analyse_declarations(self.current_env())
self.visitchildren(node)
self.in_lambda -= 1
return node
def visit_CClassDefNode(self, node):
node = self.visit_ClassDefNode(node)
if node.scope and 'dataclasses.dataclass' in node.scope.directives:
from .Dataclass import handle_cclass_dataclass
handle_cclass_dataclass(node, node.scope.directives['dataclasses.dataclass'], self)
if node.scope and node.scope.implemented and node.body:
stats = []
for entry in node.scope.var_entries:
if entry.needs_property:
property = self.create_Property(entry)
property.analyse_declarations(node.scope)
self.visit(property)
stats.append(property)
if stats:
node.body.stats += stats
if (node.visibility != 'extern'
and not node.scope.lookup('__reduce__')
and not node.scope.lookup('__reduce_ex__')):
self._inject_pickle_methods(node)
return node
def _inject_pickle_methods(self, node):
env = self.current_env()
if node.scope.directives['auto_pickle'] is False: # None means attempt it.
# Old behavior of not doing anything.
return
auto_pickle_forced = node.scope.directives['auto_pickle'] is True
all_members = []
cls = node.entry.type
cinit = None
inherited_reduce = None
while cls is not None:
all_members.extend(e for e in cls.scope.var_entries if e.name not in ('__weakref__', '__dict__'))
cinit = cinit or cls.scope.lookup('__cinit__')
inherited_reduce = inherited_reduce or cls.scope.lookup('__reduce__') or cls.scope.lookup('__reduce_ex__')
cls = cls.base_type
all_members.sort(key=lambda e: e.name)
if inherited_reduce:
# This is not failsafe, as we may not know whether a cimported class defines a __reduce__.
# This is why we define __reduce_cython__ and only replace __reduce__
# (via ExtensionTypes.SetupReduce utility code) at runtime on class creation.
return
non_py = [
e for e in all_members
if not e.type.is_pyobject and (not e.type.can_coerce_to_pyobject(env)
or not e.type.can_coerce_from_pyobject(env))
]
structs = [e for e in all_members if e.type.is_struct_or_union]
if cinit or non_py or (structs and not auto_pickle_forced):
if cinit:
# TODO(robertwb): We could allow this if __cinit__ has no require arguments.
msg = 'no default __reduce__ due to non-trivial __cinit__'
elif non_py:
msg = "%s cannot be converted to a Python object for pickling" % ','.join("self.%s" % e.name for e in non_py)
else:
# Extern structs may be only partially defined.
# TODO(robertwb): Limit the restriction to extern
# (and recursively extern-containing) structs.
msg = ("Pickling of struct members such as %s must be explicitly requested "
"with @auto_pickle(True)" % ','.join("self.%s" % e.name for e in structs))
if auto_pickle_forced:
error(node.pos, msg)
pickle_func = TreeFragment(u"""
def __reduce_cython__(self):
raise TypeError, "%(msg)s"
def __setstate_cython__(self, __pyx_state):
raise TypeError, "%(msg)s"
""" % {'msg': msg},
level='c_class', pipeline=[NormalizeTree(None)]).substitute({})
pickle_func.analyse_declarations(node.scope)
self.visit(pickle_func)
node.body.stats.append(pickle_func)
else:
for e in all_members:
if not e.type.is_pyobject:
e.type.create_to_py_utility_code(env)
e.type.create_from_py_utility_code(env)
all_members_names = [e.name for e in all_members]
checksums = _calculate_pickle_checksums(all_members_names)
unpickle_func_name = '__pyx_unpickle_%s' % node.punycode_class_name
# TODO(robertwb): Move the state into the third argument
# so it can be pickled *after* self is memoized.
unpickle_func = TreeFragment(u"""
def %(unpickle_func_name)s(__pyx_type, long __pyx_checksum, __pyx_state):
cdef object __pyx_PickleError
cdef object __pyx_result
if __pyx_checksum not in %(checksums)s:
from pickle import PickleError as __pyx_PickleError
raise __pyx_PickleError, "Incompatible checksums (0x%%x vs %(checksums)s = (%(members)s))" %% __pyx_checksum
__pyx_result = %(class_name)s.__new__(__pyx_type)
if __pyx_state is not None:
%(unpickle_func_name)s__set_state(<%(class_name)s> __pyx_result, __pyx_state)
return __pyx_result
cdef %(unpickle_func_name)s__set_state(%(class_name)s __pyx_result, tuple __pyx_state):
%(assignments)s
if len(__pyx_state) > %(num_members)d and hasattr(__pyx_result, '__dict__'):
__pyx_result.__dict__.update(__pyx_state[%(num_members)d])
""" % {
'unpickle_func_name': unpickle_func_name,
'checksums': "(%s)" % ', '.join(checksums),
'members': ', '.join(all_members_names),
'class_name': node.class_name,
'assignments': '; '.join(
'__pyx_result.%s = __pyx_state[%s]' % (v, ix)
for ix, v in enumerate(all_members_names)),
'num_members': len(all_members_names),
}, level='module', pipeline=[NormalizeTree(None)]).substitute({})
unpickle_func.analyse_declarations(node.entry.scope)
self.visit(unpickle_func)
self.extra_module_declarations.append(unpickle_func)
pickle_func = TreeFragment(u"""
def __reduce_cython__(self):
cdef tuple state
cdef object _dict
cdef bint use_setstate
state = (%(members)s)
_dict = getattr(self, '__dict__', None)
if _dict is not None:
state += (_dict,)
use_setstate = True
else:
use_setstate = %(any_notnone_members)s
if use_setstate:
return %(unpickle_func_name)s, (type(self), %(checksum)s, None), state
else:
return %(unpickle_func_name)s, (type(self), %(checksum)s, state)
def __setstate_cython__(self, __pyx_state):
%(unpickle_func_name)s__set_state(self, __pyx_state)
""" % {
'unpickle_func_name': unpickle_func_name,
'checksum': checksums[0],
'members': ', '.join('self.%s' % v for v in all_members_names) + (',' if len(all_members_names) == 1 else ''),
# Even better, we could check PyType_IS_GC.
'any_notnone_members' : ' or '.join(['self.%s is not None' % e.name for e in all_members if e.type.is_pyobject] or ['False']),
},
level='c_class', pipeline=[NormalizeTree(None)]).substitute({})
pickle_func.analyse_declarations(node.scope)
self.enter_scope(node, node.scope) # functions should be visited in the class scope
self.visit(pickle_func)
self.exit_scope()
node.body.stats.append(pickle_func)
def _handle_fused_def_decorators(self, old_decorators, env, node):
"""
Create function calls to the decorators and reassignments to
the function.
"""
# Delete staticmethod and classmethod decorators, this is
# handled directly by the fused function object.
decorators = []
for decorator in old_decorators:
func = decorator.decorator
if (not func.is_name or
func.name not in ('staticmethod', 'classmethod') or
env.lookup_here(func.name)):
# not a static or classmethod
decorators.append(decorator)
if decorators:
transform = DecoratorTransform(self.context)
def_node = node.node
_, reassignments = transform.chain_decorators(
def_node, decorators, def_node.name)
reassignments.analyse_declarations(env)
node = [node, reassignments]
return node
def _handle_def(self, decorators, env, node):
"Handle def or cpdef fused functions"
# Create PyCFunction nodes for each specialization
node.stats.insert(0, node.py_func)
self.visitchild(node, 'py_func')
node.update_fused_defnode_entry(env)
# For the moment, fused functions do not support METH_FASTCALL
node.py_func.entry.signature.use_fastcall = False
pycfunc = ExprNodes.PyCFunctionNode.from_defnode(node.py_func, binding=True)
pycfunc = ExprNodes.ProxyNode(pycfunc.coerce_to_temp(env))
node.resulting_fused_function = pycfunc
# Create assignment node for our def function
node.fused_func_assignment = self._create_assignment(
node.py_func, ExprNodes.CloneNode(pycfunc), env)
if decorators:
node = self._handle_fused_def_decorators(decorators, env, node)
return node
def _create_fused_function(self, env, node):
"Create a fused function for a DefNode with fused arguments"
from . import FusedNode
if self.fused_function or self.in_lambda:
if self.fused_function not in self.fused_error_funcs:
if self.in_lambda:
error(node.pos, "Fused lambdas not allowed")
else:
error(node.pos, "Cannot nest fused functions")
self.fused_error_funcs.add(self.fused_function)
node.body = Nodes.PassStatNode(node.pos)
for arg in node.args:
if arg.type.is_fused:
arg.type = arg.type.get_fused_types()[0]
return node
decorators = getattr(node, 'decorators', None)
node = FusedNode.FusedCFuncDefNode(node, env)
self.fused_function = node
self.visitchildren(node)
self.fused_function = None
if node.py_func:
node = self._handle_def(decorators, env, node)
return node
def _handle_fused(self, node):
if node.is_generator and node.has_fused_arguments:
node.has_fused_arguments = False
error(node.pos, "Fused generators not supported")
node.gbody = Nodes.StatListNode(node.pos,
stats=[],
body=Nodes.PassStatNode(node.pos))
return node.has_fused_arguments
def visit_FuncDefNode(self, node):
"""
Analyse a function and its body, as that hasn't happened yet. Also
analyse the directive_locals set by @cython.locals().
Then, if we are a function with fused arguments, replace the function
(after it has declared itself in the symbol table!) with a
FusedCFuncDefNode, and analyse its children (which are in turn normal
functions). If we're a normal function, just analyse the body of the
function.
"""
env = self.current_env()
self.seen_vars_stack.append(set())
lenv = node.local_scope
node.declare_arguments(lenv)
# @cython.locals(...)
for var, type_node in node.directive_locals.items():
if not lenv.lookup_here(var): # don't redeclare args
type = type_node.analyse_as_type(lenv)
if type and type.is_fused and lenv.fused_to_specific:
type = type.specialize(lenv.fused_to_specific)
if type:
lenv.declare_var(var, type, type_node.pos)
else:
error(type_node.pos, "Not a type")
if self._handle_fused(node):
node = self._create_fused_function(env, node)
else:
node.body.analyse_declarations(lenv)
self._super_visit_FuncDefNode(node)
self.seen_vars_stack.pop()
if "ufunc" in lenv.directives:
from . import UFuncs
return UFuncs.convert_to_ufunc(node)
return node
def visit_DefNode(self, node):
node = self.visit_FuncDefNode(node)
env = self.current_env()
if (not isinstance(node, Nodes.DefNode) or
node.fused_py_func or node.is_generator_body or
not node.needs_assignment_synthesis(env)):
return node
return [node, self._synthesize_assignment(node, env)]
def visit_GeneratorBodyDefNode(self, node):
return self.visit_FuncDefNode(node)
def _synthesize_assignment(self, node, env):
# Synthesize assignment node and put it right after defnode
genv = env
while genv.is_py_class_scope or genv.is_c_class_scope:
genv = genv.outer_scope
if genv.is_closure_scope:
rhs = node.py_cfunc_node = ExprNodes.InnerFunctionNode(
node.pos, def_node=node,
pymethdef_cname=node.entry.pymethdef_cname,
code_object=ExprNodes.CodeObjectNode(node))
else:
binding = self.current_directives.get('binding')
rhs = ExprNodes.PyCFunctionNode.from_defnode(node, binding)
node.code_object = rhs.code_object
if node.is_generator:
node.gbody.code_object = node.code_object
if env.is_py_class_scope:
rhs.binding = True
node.is_cyfunction = rhs.binding
return self._create_assignment(node, rhs, env)
def _create_assignment(self, def_node, rhs, env):
if def_node.decorators:
for decorator in def_node.decorators[::-1]:
rhs = ExprNodes.SimpleCallNode(
decorator.pos,
function = decorator.decorator,
args = [rhs])
def_node.decorators = None
assmt = Nodes.SingleAssignmentNode(
def_node.pos,
lhs=ExprNodes.NameNode(def_node.pos, name=def_node.name),
rhs=rhs)
assmt.analyse_declarations(env)
return assmt
def visit_func_outer_attrs(self, node):
# any names in the outer attrs should not be looked up in the function "seen_vars_stack"
stack = self.seen_vars_stack.pop()
super(AnalyseDeclarationsTransform, self).visit_func_outer_attrs(node)
self.seen_vars_stack.append(stack)
def visit_ScopedExprNode(self, node):
env = self.current_env()
node.analyse_declarations(env)
# the node may or may not have a local scope
if node.expr_scope:
self.seen_vars_stack.append(set(self.seen_vars_stack[-1]))
self.enter_scope(node, node.expr_scope)
node.analyse_scoped_declarations(node.expr_scope)
self.visitchildren(node)
self.exit_scope()
self.seen_vars_stack.pop()
else:
node.analyse_scoped_declarations(env)
self.visitchildren(node)
return node
def visit_TempResultFromStatNode(self, node):
self.visitchildren(node)
node.analyse_declarations(self.current_env())
return node
def visit_CppClassNode(self, node):
if node.visibility == 'extern':
return None
else:
return self.visit_ClassDefNode(node)
def visit_CStructOrUnionDefNode(self, node):
# Create a wrapper node if needed.
# We want to use the struct type information (so it can't happen
# before this phase) but also create new objects to be declared
# (so it can't happen later).
# Note that we don't return the original node, as it is
# never used after this phase.
if True: # private (default)
return None
self_value = ExprNodes.AttributeNode(
pos = node.pos,
obj = ExprNodes.NameNode(pos=node.pos, name=u"self"),
attribute = EncodedString(u"value"))
var_entries = node.entry.type.scope.var_entries
attributes = []
for entry in var_entries:
attributes.append(ExprNodes.AttributeNode(pos = entry.pos,
obj = self_value,
attribute = entry.name))
# __init__ assignments
init_assignments = []
for entry, attr in zip(var_entries, attributes):
# TODO: branch on visibility
init_assignments.append(self.init_assignment.substitute({
u"VALUE": ExprNodes.NameNode(entry.pos, name = entry.name),
u"ATTR": attr,
}, pos = entry.pos))
# create the class
str_format = u"%s(%s)" % (node.entry.type.name, ("%s, " * len(attributes))[:-2])
wrapper_class = self.struct_or_union_wrapper.substitute({
u"INIT_ASSIGNMENTS": Nodes.StatListNode(node.pos, stats = init_assignments),
u"IS_UNION": ExprNodes.BoolNode(node.pos, value = not node.entry.type.is_struct),
u"MEMBER_TUPLE": ExprNodes.TupleNode(node.pos, args=attributes),
u"STR_FORMAT": ExprNodes.StringNode(node.pos, value = EncodedString(str_format)),
u"REPR_FORMAT": ExprNodes.StringNode(node.pos, value = EncodedString(str_format.replace("%s", "%r"))),
}, pos = node.pos).stats[0]
wrapper_class.class_name = node.name
wrapper_class.shadow = True
class_body = wrapper_class.body.stats
# fix value type
assert isinstance(class_body[0].base_type, Nodes.CSimpleBaseTypeNode)
class_body[0].base_type.name = node.name
# fix __init__ arguments
init_method = class_body[1]
assert isinstance(init_method, Nodes.DefNode) and init_method.name == '__init__'
arg_template = init_method.args[1]
if not node.entry.type.is_struct:
arg_template.kw_only = True
del init_method.args[1]
for entry, attr in zip(var_entries, attributes):
arg = copy.deepcopy(arg_template)
arg.declarator.name = entry.name
init_method.args.append(arg)
# setters/getters
for entry, attr in zip(var_entries, attributes):
# TODO: branch on visibility
if entry.type.is_pyobject:
template = self.basic_pyobject_property
else:
template = self.basic_property
property = template.substitute({
u"ATTR": attr,
}, pos = entry.pos).stats[0]
property.name = entry.name
wrapper_class.body.stats.append(property)
wrapper_class.analyse_declarations(self.current_env())
return self.visit_CClassDefNode(wrapper_class)
# Some nodes are no longer needed after declaration
# analysis and can be dropped. The analysis was performed
# on these nodes in a separate recursive process from the
# enclosing function or module, so we can simply drop them.
def visit_CDeclaratorNode(self, node):
# necessary to ensure that all CNameDeclaratorNodes are visited.
self.visitchildren(node)
return node
def visit_CTypeDefNode(self, node):
return node
def visit_CBaseTypeNode(self, node):
return None
def visit_CEnumDefNode(self, node):
if node.visibility == 'public':
return node
else:
return None
def visit_CNameDeclaratorNode(self, node):
if node.name in self.seen_vars_stack[-1]:
entry = self.current_env().lookup(node.name)
if (entry is None or entry.visibility != 'extern'
and not entry.scope.is_c_class_scope):
error(node.pos, "cdef variable '%s' declared after it is used" % node.name)
self.visitchildren(node)
return node
def visit_CVarDefNode(self, node):
# to ensure all CNameDeclaratorNodes are visited.
self.visitchildren(node)
return None
def visit_CnameDecoratorNode(self, node):
child_node = self.visitchild(node, 'node')
if not child_node:
return None
if type(child_node) is list: # Assignment synthesized
node.node = child_node[0]
return [node] + child_node[1:]
return node
def create_Property(self, entry):
if entry.visibility == 'public':
if entry.type.is_pyobject:
template = self.basic_pyobject_property
else:
template = self.basic_property
elif entry.visibility == 'readonly':
template = self.basic_property_ro
property = template.substitute({
u"ATTR": ExprNodes.AttributeNode(pos=entry.pos,
obj=ExprNodes.NameNode(pos=entry.pos, name="self"),
attribute=entry.name),
}, pos=entry.pos).stats[0]
property.name = entry.name
property.doc = entry.doc
return property
def visit_AssignmentExpressionNode(self, node):
self.visitchildren(node)
node.analyse_declarations(self.current_env())
return node
def _calculate_pickle_checksums(member_names):
# Cython 0.x used MD5 for the checksum, which a few Python installations remove for security reasons.
# SHA-256 should be ok for years to come, but early Cython 3.0 alpha releases used SHA-1,
# which may not be.
member_names_string = ' '.join(member_names).encode('utf-8')
hash_kwargs = {'usedforsecurity': False} if sys.version_info >= (3, 9) else {}
checksums = []
for algo_name in ['sha256', 'sha1', 'md5']:
try:
mkchecksum = getattr(hashlib, algo_name)
checksum = mkchecksum(member_names_string, **hash_kwargs).hexdigest()
except (AttributeError, ValueError):
# The algorithm (i.e. MD5) might not be there at all, or might be blocked at runtime.
continue
checksums.append('0x' + checksum[:7])
return checksums
class CalculateQualifiedNamesTransform(EnvTransform):
"""
Calculate and store the '__qualname__' and the global
module name on some nodes.
"""
needs_qualname_assignment = False
needs_module_assignment = False
def visit_ModuleNode(self, node):
self.module_name = self.global_scope().qualified_name
self.qualified_name = []
_super = super(CalculateQualifiedNamesTransform, self)
self._super_visit_FuncDefNode = _super.visit_FuncDefNode
self._super_visit_ClassDefNode = _super.visit_ClassDefNode
self.visitchildren(node)
return node
def _set_qualname(self, node, name=None):
if name:
qualname = self.qualified_name[:]
qualname.append(name)
else:
qualname = self.qualified_name
node.qualname = EncodedString('.'.join(qualname))
node.module_name = self.module_name
def _append_entry(self, entry):
if entry.is_pyglobal and not entry.is_pyclass_attr:
self.qualified_name = [entry.name]
else:
self.qualified_name.append(entry.name)
def visit_ClassNode(self, node):
self._set_qualname(node, node.name)
self.visitchildren(node)
return node
def visit_PyClassNamespaceNode(self, node):
# class name was already added by parent node
self._set_qualname(node)
self.visitchildren(node)
return node
def visit_PyCFunctionNode(self, node):
orig_qualified_name = self.qualified_name[:]
if node.def_node.is_wrapper and self.qualified_name and self.qualified_name[-1] == '<locals>':
self.qualified_name.pop()
self._set_qualname(node)
else:
self._set_qualname(node, node.def_node.name)
self.visitchildren(node)
self.qualified_name = orig_qualified_name
return node
def visit_DefNode(self, node):
if node.is_wrapper and self.qualified_name:
assert self.qualified_name[-1] == '<locals>', self.qualified_name
orig_qualified_name = self.qualified_name[:]
self.qualified_name.pop()
self._set_qualname(node)
self._super_visit_FuncDefNode(node)
self.qualified_name = orig_qualified_name
else:
self._set_qualname(node, node.name)
self.visit_FuncDefNode(node)
return node
def visit_FuncDefNode(self, node):
orig_qualified_name = self.qualified_name[:]
if getattr(node, 'name', None) == '<lambda>':
self.qualified_name.append('<lambda>')
else:
self._append_entry(node.entry)
self.qualified_name.append('<locals>')
self._super_visit_FuncDefNode(node)
self.qualified_name = orig_qualified_name
return node
def generate_assignment(self, node, name, value):
entry = node.scope.lookup_here(name)
lhs = ExprNodes.NameNode(
node.pos,
name = EncodedString(name),
entry=entry)
rhs = ExprNodes.StringNode(
node.pos,
value=value.as_utf8_string(),
unicode_value=value)
node.body.stats.insert(0, Nodes.SingleAssignmentNode(
node.pos,
lhs=lhs,
rhs=rhs,
).analyse_expressions(self.current_env()))
def visit_ClassDefNode(self, node):
orig_needs_qualname_assignment = self.needs_qualname_assignment
self.needs_qualname_assignment = False
orig_needs_module_assignment = self.needs_module_assignment
self.needs_module_assignment = False
orig_qualified_name = self.qualified_name[:]
entry = (getattr(node, 'entry', None) or # PyClass
self.current_env().lookup_here(node.target.name)) # CClass
self._append_entry(entry)
self._super_visit_ClassDefNode(node)
if self.needs_qualname_assignment:
self.generate_assignment(node, "__qualname__",
EncodedString(".".join(self.qualified_name)))
if self.needs_module_assignment:
self.generate_assignment(node, "__module__",
EncodedString(self.module_name))
self.qualified_name = orig_qualified_name
self.needs_qualname_assignment = orig_needs_qualname_assignment
self.needs_module_assignment = orig_needs_module_assignment
return node
def visit_NameNode(self, node):
scope = self.current_env()
if scope.is_c_class_scope:
# unlike for a PyClass scope, these attributes aren't defined in the
# dictionary when the class definition is executed, therefore we ask
# the compiler to generate an assignment to them at the start of the
# body.
# NOTE: this doesn't put them in locals()
if node.name == "__qualname__":
self.needs_qualname_assignment = True
elif node.name == "__module__":
self.needs_module_assignment = True
return node
class AnalyseExpressionsTransform(CythonTransform):
def visit_ModuleNode(self, node):
node.scope.infer_types()
node.body = node.body.analyse_expressions(node.scope)
self.visitchildren(node)
return node
def visit_FuncDefNode(self, node):
node.local_scope.infer_types()
node.body = node.body.analyse_expressions(node.local_scope)
self.visitchildren(node)
return node
def visit_ScopedExprNode(self, node):
if node.has_local_scope:
node.expr_scope.infer_types()
node = node.analyse_scoped_expressions(node.expr_scope)
self.visitchildren(node)
return node
def visit_IndexNode(self, node):
"""
Replace index nodes used to specialize cdef functions with fused
argument types with the Attribute- or NameNode referring to the
function. We then need to copy over the specialization properties to
the attribute or name node.
Because the indexing might be a Python indexing operation on a fused
function, or (usually) a Cython indexing operation, we need to
re-analyse the types.
"""
self.visit_Node(node)
if node.is_fused_index and not node.type.is_error:
node = node.base
return node
class FindInvalidUseOfFusedTypes(CythonTransform):
def visit_FuncDefNode(self, node):
# Errors related to use in functions with fused args will already
# have been detected
if not node.has_fused_arguments:
if not node.is_generator_body and node.return_type.is_fused:
error(node.pos, "Return type is not specified as argument type")
else:
self.visitchildren(node)
return node
def visit_ExprNode(self, node):
if node.type and node.type.is_fused:
error(node.pos, "Invalid use of fused types, type cannot be specialized")
else:
self.visitchildren(node)
return node
class ExpandInplaceOperators(EnvTransform):
def visit_InPlaceAssignmentNode(self, node):
lhs = node.lhs
rhs = node.rhs
if lhs.type.is_cpp_class:
# No getting around this exact operator here.
return node
if isinstance(lhs, ExprNodes.BufferIndexNode):
# There is code to handle this case in InPlaceAssignmentNode
return node
env = self.current_env()
def side_effect_free_reference(node, setting=False):
if node.is_name:
return node, []
elif node.type.is_pyobject and not setting:
node = LetRefNode(node)
return node, [node]
elif node.is_subscript:
base, temps = side_effect_free_reference(node.base)
index = LetRefNode(node.index)
return ExprNodes.IndexNode(node.pos, base=base, index=index), temps + [index]
elif node.is_attribute:
obj, temps = side_effect_free_reference(node.obj)
return ExprNodes.AttributeNode(node.pos, obj=obj, attribute=node.attribute), temps
elif isinstance(node, ExprNodes.BufferIndexNode):
raise ValueError("Don't allow things like attributes of buffer indexing operations")
else:
node = LetRefNode(node)
return node, [node]
try:
lhs, let_ref_nodes = side_effect_free_reference(lhs, setting=True)
except ValueError:
return node
dup = lhs.__class__(**lhs.__dict__)
binop = ExprNodes.binop_node(node.pos,
operator = node.operator,
operand1 = dup,
operand2 = rhs,
inplace=True)
# Manually analyse types for new node.
lhs = lhs.analyse_target_types(env)
dup.analyse_types(env) # FIXME: no need to reanalyse the copy, right?
binop.analyse_operation(env)
node = Nodes.SingleAssignmentNode(
node.pos,
lhs = lhs,
rhs=binop.coerce_to(lhs.type, env))
# Use LetRefNode to avoid side effects.
let_ref_nodes.reverse()
for t in let_ref_nodes:
node = LetNode(t, node)
return node
def visit_ExprNode(self, node):
# In-place assignments can't happen within an expression.
return node
class AdjustDefByDirectives(CythonTransform, SkipDeclarations):
"""
Adjust function and class definitions by the decorator directives:
@cython.cfunc
@cython.cclass
@cython.ccall
@cython.inline
@cython.nogil
"""
# list of directives that cause conversion to cclass
converts_to_cclass = ('cclass', 'total_ordering', 'dataclasses.dataclass')
def visit_ModuleNode(self, node):
self.directives = node.directives
self.in_py_class = False
self.visitchildren(node)
return node
def visit_CompilerDirectivesNode(self, node):
old_directives = self.directives
self.directives = node.directives
self.visitchildren(node)
self.directives = old_directives
return node
def visit_DefNode(self, node):
modifiers = []
if 'inline' in self.directives:
modifiers.append('inline')
nogil = self.directives.get('nogil')
with_gil = self.directives.get('with_gil')
except_val = self.directives.get('exceptval')
has_explicit_exc_clause = False if except_val is None else True
return_type_node = self.directives.get('returns')
if return_type_node is None and self.directives['annotation_typing']:
return_type_node = node.return_type_annotation
# for Python annotations, prefer safe exception handling by default
if return_type_node is not None and except_val is None:
except_val = (None, True) # except *
elif except_val is None:
# backward compatible default: no exception check, unless there's also a "@returns" declaration
except_val = (None, True if return_type_node else False)
if 'ccall' in self.directives:
if 'cfunc' in self.directives:
error(node.pos, "cfunc and ccall directives cannot be combined")
if with_gil:
error(node.pos, "ccall functions cannot be declared 'with_gil'")
node = node.as_cfunction(
overridable=True, modifiers=modifiers, nogil=nogil,
returns=return_type_node, except_val=except_val, has_explicit_exc_clause=has_explicit_exc_clause)
return self.visit(node)
if 'cfunc' in self.directives:
if self.in_py_class:
error(node.pos, "cfunc directive is not allowed here")
else:
node = node.as_cfunction(
overridable=False, modifiers=modifiers, nogil=nogil, with_gil=with_gil,
returns=return_type_node, except_val=except_val, has_explicit_exc_clause=has_explicit_exc_clause)
return self.visit(node)
if 'inline' in modifiers:
error(node.pos, "Python functions cannot be declared 'inline'")
if nogil:
# TODO: turn this into a "with gil" declaration.
error(node.pos, "Python functions cannot be declared 'nogil'")
if with_gil:
error(node.pos, "Python functions cannot be declared 'with_gil'")
self.visitchildren(node)
return node
def visit_LambdaNode(self, node):
# No directives should modify lambdas or generator expressions (and also nothing in them).
return node
def visit_PyClassDefNode(self, node):
if any(directive in self.directives for directive in self.converts_to_cclass):
node = node.as_cclass()
return self.visit(node)
else:
old_in_pyclass = self.in_py_class
self.in_py_class = True
self.visitchildren(node)
self.in_py_class = old_in_pyclass
return node
def visit_CClassDefNode(self, node):
old_in_pyclass = self.in_py_class
self.in_py_class = False
self.visitchildren(node)
self.in_py_class = old_in_pyclass
return node
class AlignFunctionDefinitions(CythonTransform):
"""
This class takes the signatures from a .pxd file and applies them to
the def methods in a .py file.
"""
def visit_ModuleNode(self, node):
self.scope = node.scope
self.visitchildren(node)
return node
def visit_PyClassDefNode(self, node):
pxd_def = self.scope.lookup(node.name)
if pxd_def:
if pxd_def.is_cclass:
return self.visit_CClassDefNode(node.as_cclass(), pxd_def)
elif not pxd_def.scope or not pxd_def.scope.is_builtin_scope:
error(node.pos, "'%s' redeclared" % node.name)
if pxd_def.pos:
error(pxd_def.pos, "previous declaration here")
return None
return node
def visit_CClassDefNode(self, node, pxd_def=None):
if pxd_def is None:
pxd_def = self.scope.lookup(node.class_name)
if pxd_def:
if not pxd_def.defined_in_pxd:
return node
outer_scope = self.scope
self.scope = pxd_def.type.scope
self.visitchildren(node)
if pxd_def:
self.scope = outer_scope
return node
def visit_DefNode(self, node):
pxd_def = self.scope.lookup(node.name)
if pxd_def and (not pxd_def.scope or not pxd_def.scope.is_builtin_scope):
if not pxd_def.is_cfunction:
error(node.pos, "'%s' redeclared" % node.name)
if pxd_def.pos:
error(pxd_def.pos, "previous declaration here")
return None
node = node.as_cfunction(pxd_def)
# Enable this when nested cdef functions are allowed.
# self.visitchildren(node)
return node
def visit_ExprNode(self, node):
# ignore lambdas and everything else that appears in expressions
return node
class AutoCpdefFunctionDefinitions(CythonTransform):
def visit_ModuleNode(self, node):
self.directives = node.directives
self.imported_names = set() # hack, see visit_FromImportStatNode()
self.scope = node.scope
self.visitchildren(node)
return node
def visit_DefNode(self, node):
if (self.scope.is_module_scope and self.directives['auto_cpdef']
and node.name not in self.imported_names
and node.is_cdef_func_compatible()):
# FIXME: cpdef-ing should be done in analyse_declarations()
node = node.as_cfunction(scope=self.scope)
return node
def visit_CClassDefNode(self, node, pxd_def=None):
if pxd_def is None:
pxd_def = self.scope.lookup(node.class_name)
if pxd_def:
if not pxd_def.defined_in_pxd:
return node
outer_scope = self.scope
self.scope = pxd_def.type.scope
self.visitchildren(node)
if pxd_def:
self.scope = outer_scope
return node
def visit_FromImportStatNode(self, node):
# hack to prevent conditional import fallback functions from
# being cdpef-ed (global Python variables currently conflict
# with imports)
if self.scope.is_module_scope:
for name, _ in node.items:
self.imported_names.add(name)
return node
def visit_ExprNode(self, node):
# ignore lambdas and everything else that appears in expressions
return node
class RemoveUnreachableCode(CythonTransform):
def visit_StatListNode(self, node):
if not self.current_directives['remove_unreachable']:
return node
self.visitchildren(node)
for idx, stat in enumerate(node.stats, 1):
if stat.is_terminator:
if idx < len(node.stats):
if self.current_directives['warn.unreachable']:
warning(node.stats[idx].pos, "Unreachable code", 2)
node.stats = node.stats[:idx]
node.is_terminator = True
break
return node
def visit_IfClauseNode(self, node):
self.visitchildren(node)
if node.body.is_terminator:
node.is_terminator = True
return node
def visit_IfStatNode(self, node):
self.visitchildren(node)
if node.else_clause and node.else_clause.is_terminator:
for clause in node.if_clauses:
if not clause.is_terminator:
break
else:
node.is_terminator = True
return node
def visit_TryExceptStatNode(self, node):
self.visitchildren(node)
if node.body.is_terminator and node.else_clause:
if self.current_directives['warn.unreachable']:
warning(node.else_clause.pos, "Unreachable code", 2)
node.else_clause = None
return node
def visit_TryFinallyStatNode(self, node):
self.visitchildren(node)
if node.finally_clause.is_terminator:
node.is_terminator = True
return node
class YieldNodeCollector(TreeVisitor):
def __init__(self, excludes=[]):
super(YieldNodeCollector, self).__init__()
self.yields = []
self.returns = []
self.finallys = []
self.excepts = []
self.has_return_value = False
self.has_yield = False
self.has_await = False
self.excludes = excludes
def visit_Node(self, node):
if node not in self.excludes:
self.visitchildren(node)
def visit_YieldExprNode(self, node):
self.yields.append(node)
self.has_yield = True
self.visitchildren(node)
def visit_AwaitExprNode(self, node):
self.yields.append(node)
self.has_await = True
self.visitchildren(node)
def visit_ReturnStatNode(self, node):
self.visitchildren(node)
if node.value:
self.has_return_value = True
self.returns.append(node)
def visit_TryFinallyStatNode(self, node):
self.visitchildren(node)
self.finallys.append(node)
def visit_TryExceptStatNode(self, node):
self.visitchildren(node)
self.excepts.append(node)
def visit_ClassDefNode(self, node):
pass
def visit_FuncDefNode(self, node):
pass
def visit_LambdaNode(self, node):
pass
def visit_GeneratorExpressionNode(self, node):
# node.loop iterator is evaluated outside the generator expression
if isinstance(node.loop, Nodes._ForInStatNode):
# Possibly should handle ForFromStatNode
# but for now do nothing
self.visit(node.loop.iterator)
def visit_CArgDeclNode(self, node):
# do not look into annotations
# FIXME: support (yield) in default arguments (currently crashes)
pass
class MarkClosureVisitor(CythonTransform):
# In addition to marking closures this is also responsible to finding parts of the
# generator iterable and marking them
def visit_ModuleNode(self, node):
self.needs_closure = False
self.excludes = []
self.visitchildren(node)
return node
def visit_FuncDefNode(self, node):
self.needs_closure = False
self.visitchildren(node)
node.needs_closure = self.needs_closure
self.needs_closure = True
collector = YieldNodeCollector(self.excludes)
collector.visitchildren(node)
if node.is_async_def:
coroutine_type = Nodes.AsyncDefNode
if collector.has_yield:
coroutine_type = Nodes.AsyncGenNode
for yield_expr in collector.yields + collector.returns:
yield_expr.in_async_gen = True
elif self.current_directives['iterable_coroutine']:
coroutine_type = Nodes.IterableAsyncDefNode
elif collector.has_await:
found = next(y for y in collector.yields if y.is_await)
error(found.pos, "'await' not allowed in generators (use 'yield')")
return node
elif collector.has_yield:
coroutine_type = Nodes.GeneratorDefNode
else:
return node
for i, yield_expr in enumerate(collector.yields, 1):
yield_expr.label_num = i
for retnode in collector.returns + collector.finallys + collector.excepts:
retnode.in_generator = True
gbody = Nodes.GeneratorBodyDefNode(
pos=node.pos, name=node.name, body=node.body,
is_async_gen_body=node.is_async_def and collector.has_yield)
coroutine = coroutine_type(
pos=node.pos, name=node.name, args=node.args,
star_arg=node.star_arg, starstar_arg=node.starstar_arg,
doc=node.doc, decorators=node.decorators,
gbody=gbody, lambda_name=node.lambda_name,
return_type_annotation=node.return_type_annotation,
is_generator_expression=node.is_generator_expression)
return coroutine
def visit_CFuncDefNode(self, node):
self.needs_closure = False
self.visitchildren(node)
node.needs_closure = self.needs_closure
self.needs_closure = True
if node.needs_closure and node.overridable:
error(node.pos, "closures inside cpdef functions not yet supported")
return node
def visit_LambdaNode(self, node):
self.needs_closure = False
self.visitchildren(node)
node.needs_closure = self.needs_closure
self.needs_closure = True
return node
def visit_ClassDefNode(self, node):
self.visitchildren(node)
self.needs_closure = True
return node
def visit_GeneratorExpressionNode(self, node):
excludes = self.excludes
if isinstance(node.loop, Nodes._ForInStatNode):
self.excludes = [node.loop.iterator]
node = self.visit_LambdaNode(node)
self.excludes = excludes
if not isinstance(node.loop, Nodes._ForInStatNode):
# Possibly should handle ForFromStatNode
# but for now do nothing
return node
itseq = node.loop.iterator.sequence
# literals do not need replacing with an argument
if itseq.is_literal:
return node
_GeneratorExpressionArgumentsMarker(node).visit(itseq)
return node
class CreateClosureClasses(CythonTransform):
# Output closure classes in module scope for all functions
# that really need it.
def __init__(self, context):
super(CreateClosureClasses, self).__init__(context)
self.path = []
self.in_lambda = False
def visit_ModuleNode(self, node):
self.module_scope = node.scope
self.visitchildren(node)
return node
def find_entries_used_in_closures(self, node):
from_closure = []
in_closure = []
for scope in node.local_scope.iter_local_scopes():
for name, entry in scope.entries.items():
if not name:
continue
if entry.from_closure:
from_closure.append((name, entry))
elif entry.in_closure:
in_closure.append((name, entry))
return from_closure, in_closure
def create_class_from_scope(self, node, target_module_scope, inner_node=None):
# move local variables into closure
if node.is_generator:
for scope in node.local_scope.iter_local_scopes():
for entry in scope.entries.values():
if not (entry.from_closure or entry.is_pyglobal or entry.is_cglobal):
entry.in_closure = True
from_closure, in_closure = self.find_entries_used_in_closures(node)
in_closure.sort()
# Now from the beginning
node.needs_closure = False
node.needs_outer_scope = False
func_scope = node.local_scope
cscope = node.entry.scope
while cscope.is_py_class_scope or cscope.is_c_class_scope:
cscope = cscope.outer_scope
if not from_closure and (self.path or inner_node):
if not inner_node:
if not node.py_cfunc_node:
raise InternalError("DefNode does not have assignment node")
inner_node = node.py_cfunc_node
inner_node.needs_closure_code = False
node.needs_outer_scope = False
if node.is_generator:
pass
elif not in_closure and not from_closure:
return
elif not in_closure:
func_scope.is_passthrough = True
func_scope.scope_class = cscope.scope_class
node.needs_outer_scope = True
return
# entry.cname can contain periods (eg. a derived C method of a class).
# We want to use the cname as part of a C struct name, so we replace
# periods with double underscores.
as_name = '%s_%s' % (
target_module_scope.next_id(Naming.closure_class_prefix),
node.entry.cname.replace('.','__'))
as_name = EncodedString(as_name)
entry = target_module_scope.declare_c_class(
name=as_name, pos=node.pos, defining=True,
implementing=True)
entry.type.is_final_type = True
func_scope.scope_class = entry
class_scope = entry.type.scope
class_scope.is_internal = True
class_scope.is_closure_class_scope = True
if node.is_async_def or node.is_generator:
# Generators need their closure intact during cleanup as they resume to handle GeneratorExit
class_scope.directives['no_gc_clear'] = True
if Options.closure_freelist_size:
class_scope.directives['freelist'] = Options.closure_freelist_size
if from_closure:
assert cscope.is_closure_scope
class_scope.declare_var(pos=node.pos,
name=Naming.outer_scope_cname,
cname=Naming.outer_scope_cname,
type=cscope.scope_class.type,
is_cdef=True)
node.needs_outer_scope = True
for name, entry in in_closure:
closure_entry = class_scope.declare_var(
pos=entry.pos,
name=entry.name if not entry.in_subscope else None,
cname=entry.cname,
type=entry.type,
is_cdef=True)
if entry.is_declared_generic:
closure_entry.is_declared_generic = 1
node.needs_closure = True
# Do it here because other classes are already checked
target_module_scope.check_c_class(func_scope.scope_class)
def visit_LambdaNode(self, node):
if not isinstance(node.def_node, Nodes.DefNode):
# fused function, an error has been previously issued
return node
was_in_lambda = self.in_lambda
self.in_lambda = True
self.create_class_from_scope(node.def_node, self.module_scope, node)
self.visitchildren(node)
self.in_lambda = was_in_lambda
return node
def visit_FuncDefNode(self, node):
if self.in_lambda:
self.visitchildren(node)
return node
if node.needs_closure or self.path:
self.create_class_from_scope(node, self.module_scope)
self.path.append(node)
self.visitchildren(node)
self.path.pop()
return node
def visit_GeneratorBodyDefNode(self, node):
self.visitchildren(node)
return node
def visit_CFuncDefNode(self, node):
if not node.overridable:
return self.visit_FuncDefNode(node)
else:
self.visitchildren(node)
return node
def visit_GeneratorExpressionNode(self, node):
node = _HandleGeneratorArguments()(node)
return self.visit_LambdaNode(node)
class InjectGilHandling(VisitorTransform, SkipDeclarations):
"""
Allow certain Python operations inside of nogil blocks by implicitly acquiring the GIL.
Must run before the AnalyseDeclarationsTransform to make sure the GILStatNodes get
set up, parallel sections know that the GIL is acquired inside of them, etc.
"""
nogil = False
# special node handling
def _inject_gil_in_nogil(self, node):
"""Allow the (Python statement) node in nogil sections by wrapping it in a 'with gil' block."""
if self.nogil:
node = Nodes.GILStatNode(node.pos, state='gil', body=node)
return node
visit_RaiseStatNode = _inject_gil_in_nogil
visit_PrintStatNode = _inject_gil_in_nogil # sadly, not the function
# further candidates:
# def visit_ReraiseStatNode(self, node):
# nogil tracking
def visit_GILStatNode(self, node):
was_nogil = self.nogil
self.nogil = (node.state == 'nogil')
self.visitchildren(node)
self.nogil = was_nogil
return node
def visit_CFuncDefNode(self, node):
was_nogil = self.nogil
if isinstance(node.declarator, Nodes.CFuncDeclaratorNode):
self.nogil = node.declarator.nogil and not node.declarator.with_gil
self.visitchildren(node)
self.nogil = was_nogil
return node
def visit_ParallelRangeNode(self, node):
was_nogil = self.nogil
self.nogil = node.nogil
self.visitchildren(node)
self.nogil = was_nogil
return node
def visit_ExprNode(self, node):
# No special GIL handling inside of expressions for now.
return node
visit_Node = VisitorTransform.recurse_to_children
class GilCheck(VisitorTransform):
"""
Call `node.gil_check(env)` on each node to make sure we hold the
GIL when we need it. Raise an error when on Python operations
inside a `nogil` environment.
Additionally, raise exceptions for closely nested with gil or with nogil
statements. The latter would abort Python.
"""
def __call__(self, root):
self.env_stack = [root.scope]
self.nogil = False
# True for 'cdef func() nogil:' functions, as the GIL may be held while
# calling this function (thus contained 'nogil' blocks may be valid).
self.nogil_declarator_only = False
self.current_gilstat_node_knows_gil_state = False
return super(GilCheck, self).__call__(root)
def _visit_scoped_children(self, node, gil_state):
was_nogil = self.nogil
outer_attrs = node.outer_attrs
if outer_attrs and len(self.env_stack) > 1:
self.nogil = self.env_stack[-2].nogil
self.visitchildren(node, outer_attrs)
self.nogil = gil_state
self.visitchildren(node, attrs=None, exclude=outer_attrs)
self.nogil = was_nogil
def visit_FuncDefNode(self, node):
self.env_stack.append(node.local_scope)
inner_nogil = node.local_scope.nogil
nogil_declarator_only = self.nogil_declarator_only
if inner_nogil:
self.nogil_declarator_only = True
if inner_nogil and node.nogil_check:
node.nogil_check(node.local_scope)
self._visit_scoped_children(node, inner_nogil)
# FuncDefNodes can be nested, because a cpdef function contains a def function
# inside it. Therefore restore to previous state
self.nogil_declarator_only = nogil_declarator_only
self.env_stack.pop()
return node
def visit_GILStatNode(self, node):
if node.condition is not None:
error(node.condition.pos,
"Non-constant condition in a "
"`with %s(<condition>)` statement" % node.state)
return node
if self.nogil and node.nogil_check:
node.nogil_check()
was_nogil = self.nogil
is_nogil = (node.state == 'nogil')
if was_nogil == is_nogil and not self.nogil_declarator_only:
if not was_nogil:
error(node.pos, "Trying to acquire the GIL while it is "
"already held.")
else:
error(node.pos, "Trying to release the GIL while it was "
"previously released.")
if self.nogil_declarator_only:
node.scope_gil_state_known = False
if isinstance(node.finally_clause, Nodes.StatListNode):
# The finally clause of the GILStatNode is a GILExitNode,
# which is wrapped in a StatListNode. Just unpack that.
node.finally_clause, = node.finally_clause.stats
nogil_declarator_only = self.nogil_declarator_only
self.nogil_declarator_only = False
current_gilstat_node_knows_gil_state = self.current_gilstat_node_knows_gil_state
self.current_gilstat_node_knows_gil_state = node.scope_gil_state_known
self._visit_scoped_children(node, is_nogil)
self.nogil_declarator_only = nogil_declarator_only
self.current_gilstat_node_knows_gil_state = current_gilstat_node_knows_gil_state
return node
def visit_ParallelRangeNode(self, node):
if node.nogil or self.nogil_declarator_only:
node_was_nogil, node.nogil = node.nogil, False
node = Nodes.GILStatNode(node.pos, state='nogil', body=node)
if not node_was_nogil and self.nogil_declarator_only:
# We're in a "nogil" function, but that doesn't prove we
# didn't have the gil
node.scope_gil_state_known = False
return self.visit_GILStatNode(node)
if not self.nogil:
error(node.pos, "prange() can only be used without the GIL")
# Forget about any GIL-related errors that may occur in the body
return None
node.nogil_check(self.env_stack[-1])
self.visitchildren(node)
return node
def visit_ParallelWithBlockNode(self, node):
if not self.nogil:
error(node.pos, "The parallel section may only be used without "
"the GIL")
return None
if self.nogil_declarator_only:
# We're in a "nogil" function but that doesn't prove we didn't
# have the gil, so release it
node = Nodes.GILStatNode(node.pos, state='nogil', body=node)
node.scope_gil_state_known = False
return self.visit_GILStatNode(node)
if node.nogil_check:
# It does not currently implement this, but test for it anyway to
# avoid potential future surprises
node.nogil_check(self.env_stack[-1])
self.visitchildren(node)
return node
def visit_TryFinallyStatNode(self, node):
"""
Take care of try/finally statements in nogil code sections.
"""
if not self.nogil or isinstance(node, Nodes.GILStatNode):
return self.visit_Node(node)
node.nogil_check = None
node.is_try_finally_in_nogil = True
self.visitchildren(node)
return node
def visit_GILExitNode(self, node):
if not self.current_gilstat_node_knows_gil_state:
node.scope_gil_state_known = False
self.visitchildren(node)
return node
def visit_Node(self, node):
if self.env_stack and self.nogil and node.nogil_check:
node.nogil_check(self.env_stack[-1])
if node.outer_attrs:
self._visit_scoped_children(node, self.nogil)
else:
self.visitchildren(node)
if self.nogil:
node.in_nogil_context = True
return node
class CoerceCppTemps(EnvTransform, SkipDeclarations):
"""
For temporary expression that are implemented using std::optional it's necessary the temps are
assigned using `__pyx_t_x = value;` but accessed using `something = (*__pyx_t_x)`. This transform
inserts a coercion node to take care of this, and runs absolutely last (once nothing else can be
inserted into the tree)
TODO: a possible alternative would be to split ExprNode.result() into ExprNode.rhs_rhs() and ExprNode.lhs_rhs()???
"""
def visit_ModuleNode(self, node):
if self.current_env().cpp:
# skipping this makes it essentially free for C files
self.visitchildren(node)
return node
def visit_ExprNode(self, node):
self.visitchildren(node)
if (self.current_env().directives['cpp_locals'] and
node.is_temp and node.type.is_cpp_class and
# Fake references are not replaced with "std::optional()".
not node.type.is_fake_reference):
node = ExprNodes.CppOptionalTempCoercion(node)
return node
class TransformBuiltinMethods(EnvTransform):
"""
Replace Cython's own cython.* builtins by the corresponding tree nodes.
"""
def visit_SingleAssignmentNode(self, node):
if node.declaration_only:
return None
else:
self.visitchildren(node)
return node
def visit_AttributeNode(self, node):
self.visitchildren(node)
return self.visit_cython_attribute(node)
def visit_NameNode(self, node):
return self.visit_cython_attribute(node)
def visit_cython_attribute(self, node):
attribute = node.as_cython_attribute()
if attribute:
if attribute == u'__version__':
from .. import __version__ as version
node = ExprNodes.StringNode(node.pos, value=EncodedString(version))
elif attribute == u'NULL':
node = ExprNodes.NullNode(node.pos)
elif attribute in (u'set', u'frozenset', u'staticmethod'):
node = ExprNodes.NameNode(node.pos, name=EncodedString(attribute),
entry=self.current_env().builtin_scope().lookup_here(attribute))
elif PyrexTypes.parse_basic_type(attribute):
pass
elif self.context.cython_scope.lookup_qualified_name(attribute):
pass
else:
error(node.pos, u"'%s' not a valid cython attribute or is being used incorrectly" % attribute)
return node
def visit_ExecStatNode(self, node):
lenv = self.current_env()
self.visitchildren(node)
if len(node.args) == 1:
node.args.append(ExprNodes.GlobalsExprNode(node.pos))
if not lenv.is_module_scope:
node.args.append(
ExprNodes.LocalsExprNode(
node.pos, self.current_scope_node(), lenv))
return node
def _inject_locals(self, node, func_name):
# locals()/dir()/vars() builtins
lenv = self.current_env()
entry = lenv.lookup_here(func_name)
if entry:
# not the builtin
return node
pos = node.pos
if func_name in ('locals', 'vars'):
if func_name == 'locals' and len(node.args) > 0:
error(self.pos, "Builtin 'locals()' called with wrong number of args, expected 0, got %d"
% len(node.args))
return node
elif func_name == 'vars':
if len(node.args) > 1:
error(self.pos, "Builtin 'vars()' called with wrong number of args, expected 0-1, got %d"
% len(node.args))
if len(node.args) > 0:
return node # nothing to do
return ExprNodes.LocalsExprNode(pos, self.current_scope_node(), lenv)
else: # dir()
if len(node.args) > 1:
error(self.pos, "Builtin 'dir()' called with wrong number of args, expected 0-1, got %d"
% len(node.args))
if len(node.args) > 0:
# optimised in Builtin.py
return node
if lenv.is_py_class_scope or lenv.is_module_scope:
if lenv.is_py_class_scope:
pyclass = self.current_scope_node()
locals_dict = ExprNodes.CloneNode(pyclass.dict)
else:
locals_dict = ExprNodes.GlobalsExprNode(pos)
return ExprNodes.SortedDictKeysNode(locals_dict)
local_names = sorted(var.name for var in lenv.entries.values() if var.name)
items = [ExprNodes.IdentifierStringNode(pos, value=var)
for var in local_names]
return ExprNodes.ListNode(pos, args=items)
def visit_PrimaryCmpNode(self, node):
# special case: for in/not-in test, we do not need to sort locals()
self.visitchildren(node)
if node.operator in 'not_in': # in/not_in
if isinstance(node.operand2, ExprNodes.SortedDictKeysNode):
arg = node.operand2.arg
if isinstance(arg, ExprNodes.NoneCheckNode):
arg = arg.arg
node.operand2 = arg
return node
def visit_CascadedCmpNode(self, node):
return self.visit_PrimaryCmpNode(node)
def _inject_eval(self, node, func_name):
lenv = self.current_env()
entry = lenv.lookup(func_name)
if len(node.args) != 1 or (entry and not entry.is_builtin):
return node
# Inject globals and locals
node.args.append(ExprNodes.GlobalsExprNode(node.pos))
if not lenv.is_module_scope:
node.args.append(
ExprNodes.LocalsExprNode(
node.pos, self.current_scope_node(), lenv))
return node
def _inject_super(self, node, func_name):
lenv = self.current_env()
entry = lenv.lookup_here(func_name)
if entry or node.args:
return node
# Inject no-args super
def_node = self.current_scope_node()
if not isinstance(def_node, Nodes.DefNode) or not def_node.args or len(self.env_stack) < 2:
return node
class_node, class_scope = self.env_stack[-2]
if class_scope.is_py_class_scope:
def_node.requires_classobj = True
class_node.class_cell.is_active = True
node.args = [
ExprNodes.ClassCellNode(
node.pos, is_generator=def_node.is_generator),
ExprNodes.NameNode(node.pos, name=def_node.args[0].name)
]
elif class_scope.is_c_class_scope:
node.args = [
ExprNodes.NameNode(
node.pos, name=class_node.scope.name,
entry=class_node.entry),
ExprNodes.NameNode(node.pos, name=def_node.args[0].name)
]
return node
def visit_SimpleCallNode(self, node):
# cython.foo
function = node.function.as_cython_attribute()
if function:
if function in InterpretCompilerDirectives.unop_method_nodes:
if len(node.args) != 1:
error(node.function.pos, u"%s() takes exactly one argument" % function)
else:
node = InterpretCompilerDirectives.unop_method_nodes[function](
node.function.pos, operand=node.args[0])
elif function in InterpretCompilerDirectives.binop_method_nodes:
if len(node.args) != 2:
error(node.function.pos, u"%s() takes exactly two arguments" % function)
else:
node = InterpretCompilerDirectives.binop_method_nodes[function](
node.function.pos, operand1=node.args[0], operand2=node.args[1])
elif function == u'cast':
if len(node.args) != 2:
error(node.function.pos,
u"cast() takes exactly two arguments and an optional typecheck keyword")
else:
type = node.args[0].analyse_as_type(self.current_env())
if type:
node = ExprNodes.TypecastNode(
node.function.pos, type=type, operand=node.args[1], typecheck=False)
else:
error(node.args[0].pos, "Not a type")
elif function == u'sizeof':
if len(node.args) != 1:
error(node.function.pos, u"sizeof() takes exactly one argument")
else:
type = node.args[0].analyse_as_type(self.current_env())
if type:
node = ExprNodes.SizeofTypeNode(node.function.pos, arg_type=type)
else:
node = ExprNodes.SizeofVarNode(node.function.pos, operand=node.args[0])
elif function == 'cmod':
if len(node.args) != 2:
error(node.function.pos, u"cmod() takes exactly two arguments")
else:
node = ExprNodes.binop_node(node.function.pos, '%', node.args[0], node.args[1])
node.cdivision = True
elif function == 'cdiv':
if len(node.args) != 2:
error(node.function.pos, u"cdiv() takes exactly two arguments")
else:
node = ExprNodes.binop_node(node.function.pos, '/', node.args[0], node.args[1])
node.cdivision = True
elif function == u'set':
node.function = ExprNodes.NameNode(node.pos, name=EncodedString('set'))
elif function == u'staticmethod':
node.function = ExprNodes.NameNode(node.pos, name=EncodedString('staticmethod'))
elif self.context.cython_scope.lookup_qualified_name(function):
pass
else:
error(node.function.pos,
u"'%s' not a valid cython language construct" % function)
self.visitchildren(node)
if isinstance(node, ExprNodes.SimpleCallNode) and node.function.is_name:
func_name = node.function.name
if func_name in ('dir', 'locals', 'vars'):
return self._inject_locals(node, func_name)
if func_name == 'eval':
return self._inject_eval(node, func_name)
if func_name == 'super':
return self._inject_super(node, func_name)
return node
def visit_GeneralCallNode(self, node):
function = node.function.as_cython_attribute()
if function == u'cast':
# NOTE: assuming simple tuple/dict nodes for positional_args and keyword_args
args = node.positional_args.args
kwargs = node.keyword_args.compile_time_value(None)
if (len(args) != 2 or len(kwargs) > 1 or
(len(kwargs) == 1 and 'typecheck' not in kwargs)):
error(node.function.pos,
u"cast() takes exactly two arguments and an optional typecheck keyword")
else:
type = args[0].analyse_as_type(self.current_env())
if type:
typecheck = kwargs.get('typecheck', False)
node = ExprNodes.TypecastNode(
node.function.pos, type=type, operand=args[1], typecheck=typecheck)
else:
error(args[0].pos, "Not a type")
self.visitchildren(node)
return node
class ReplaceFusedTypeChecks(VisitorTransform):
"""
This is not a transform in the pipeline. It is invoked on the specific
versions of a cdef function with fused argument types. It filters out any
type branches that don't match. e.g.
if fused_t is mytype:
...
elif fused_t in other_fused_type:
...
"""
def __init__(self, local_scope):
super(ReplaceFusedTypeChecks, self).__init__()
self.local_scope = local_scope
# defer the import until now to avoid circular import time dependencies
from .Optimize import ConstantFolding
self.transform = ConstantFolding(reevaluate=True)
def visit_IfStatNode(self, node):
"""
Filters out any if clauses with false compile time type check
expression.
"""
self.visitchildren(node)
return self.transform(node)
def visit_GILStatNode(self, node):
"""
Fold constant condition of GILStatNode.
"""
self.visitchildren(node)
return self.transform(node)
def visit_PrimaryCmpNode(self, node):
with Errors.local_errors(ignore=True):
type1 = node.operand1.analyse_as_type(self.local_scope)
type2 = node.operand2.analyse_as_type(self.local_scope)
if type1 and type2:
false_node = ExprNodes.BoolNode(node.pos, value=False)
true_node = ExprNodes.BoolNode(node.pos, value=True)
type1 = self.specialize_type(type1, node.operand1.pos)
op = node.operator
if op in ('is', 'is_not', '==', '!='):
type2 = self.specialize_type(type2, node.operand2.pos)
is_same = type1.same_as(type2)
eq = op in ('is', '==')
if (is_same and eq) or (not is_same and not eq):
return true_node
elif op in ('in', 'not_in'):
# We have to do an instance check directly, as operand2
# needs to be a fused type and not a type with a subtype
# that is fused. First unpack the typedef
if isinstance(type2, PyrexTypes.CTypedefType):
type2 = type2.typedef_base_type
if type1.is_fused:
error(node.operand1.pos, "Type is fused")
elif not type2.is_fused:
error(node.operand2.pos,
"Can only use 'in' or 'not in' on a fused type")
else:
types = PyrexTypes.get_specialized_types(type2)
for specialized_type in types:
if type1.same_as(specialized_type):
if op == 'in':
return true_node
else:
return false_node
if op == 'not_in':
return true_node
return false_node
return node
def specialize_type(self, type, pos):
try:
return type.specialize(self.local_scope.fused_to_specific)
except KeyError:
error(pos, "Type is not specific")
return type
def visit_Node(self, node):
self.visitchildren(node)
return node
class DebugTransform(CythonTransform):
"""
Write debug information for this Cython module.
"""
def __init__(self, context, options, result):
super(DebugTransform, self).__init__(context)
self.visited = set()
# our treebuilder and debug output writer
# (see Cython.Debugger.debug_output.CythonDebugWriter)
self.tb = self.context.gdb_debug_outputwriter
#self.c_output_file = options.output_file
self.c_output_file = result.c_file
# Closure support, basically treat nested functions as if the AST were
# never nested
self.nested_funcdefs = []
# tells visit_NameNode whether it should register step-into functions
self.register_stepinto = False
def visit_ModuleNode(self, node):
self.tb.module_name = node.full_module_name
attrs = dict(
module_name=node.full_module_name,
filename=node.pos[0].filename,
c_filename=self.c_output_file)
self.tb.start('Module', attrs)
# serialize functions
self.tb.start('Functions')
# First, serialize functions normally...
self.visitchildren(node)
# ... then, serialize nested functions
for nested_funcdef in self.nested_funcdefs:
self.visit_FuncDefNode(nested_funcdef)
self.register_stepinto = True
self.serialize_modulenode_as_function(node)
self.register_stepinto = False
self.tb.end('Functions')
# 2.3 compatibility. Serialize global variables
self.tb.start('Globals')
entries = {}
for k, v in node.scope.entries.items():
if (v.qualified_name not in self.visited and not
v.name.startswith('__pyx_') and not
v.type.is_cfunction and not
v.type.is_extension_type):
entries[k]= v
self.serialize_local_variables(entries)
self.tb.end('Globals')
# self.tb.end('Module') # end Module after the line number mapping in
# Cython.Compiler.ModuleNode.ModuleNode._serialize_lineno_map
return node
def visit_FuncDefNode(self, node):
self.visited.add(node.local_scope.qualified_name)
if getattr(node, 'is_wrapper', False):
return node
if self.register_stepinto:
self.nested_funcdefs.append(node)
return node
# node.entry.visibility = 'extern'
if node.py_func is None:
pf_cname = ''
else:
pf_cname = node.py_func.entry.func_cname
# For functions defined using def, cname will be pyfunc_cname=__pyx_pf_*
# For functions defined using cpdef or cdef, cname will be func_cname=__pyx_f_*
# In all cases, cname will be the name of the function containing the actual code
cname = node.entry.pyfunc_cname or node.entry.func_cname
attrs = dict(
name=node.entry.name or getattr(node, 'name', '<unknown>'),
cname=cname,
pf_cname=pf_cname,
qualified_name=node.local_scope.qualified_name,
lineno=str(node.pos[1]))
self.tb.start('Function', attrs=attrs)
self.tb.start('Locals')
self.serialize_local_variables(node.local_scope.entries)
self.tb.end('Locals')
self.tb.start('Arguments')
for arg in node.local_scope.arg_entries:
self.tb.start(arg.name)
self.tb.end(arg.name)
self.tb.end('Arguments')
self.tb.start('StepIntoFunctions')
self.register_stepinto = True
self.visitchildren(node)
self.register_stepinto = False
self.tb.end('StepIntoFunctions')
self.tb.end('Function')
return node
def visit_NameNode(self, node):
if (self.register_stepinto and
node.type is not None and
node.type.is_cfunction and
getattr(node, 'is_called', False) and
node.entry.func_cname is not None):
# don't check node.entry.in_cinclude, as 'cdef extern: ...'
# declared functions are not 'in_cinclude'.
# This means we will list called 'cdef' functions as
# "step into functions", but this is not an issue as they will be
# recognized as Cython functions anyway.
attrs = dict(name=node.entry.func_cname)
self.tb.start('StepIntoFunction', attrs=attrs)
self.tb.end('StepIntoFunction')
self.visitchildren(node)
return node
def serialize_modulenode_as_function(self, node):
"""
Serialize the module-level code as a function so the debugger will know
it's a "relevant frame" and it will know where to set the breakpoint
for 'break modulename'.
"""
self._serialize_modulenode_as_function(node, dict(
name=node.full_module_name.rpartition('.')[-1],
cname=node.module_init_func_cname(),
pf_cname='',
# Ignore the qualified_name, breakpoints should be set using
# `cy break modulename:lineno` for module-level breakpoints.
qualified_name='',
lineno='1',
is_initmodule_function="True",
))
def _serialize_modulenode_as_function(self, node, attrs):
self.tb.start('Function', attrs=attrs)
self.tb.start('Locals')
self.serialize_local_variables(node.scope.entries)
self.tb.end('Locals')
self.tb.start('Arguments')
self.tb.end('Arguments')
self.tb.start('StepIntoFunctions')
self.register_stepinto = True
self.visitchildren(node)
self.register_stepinto = False
self.tb.end('StepIntoFunctions')
self.tb.end('Function')
def serialize_local_variables(self, entries):
for entry in entries.values():
if not entry.cname:
# not a local variable
continue
if entry.type.is_pyobject:
vartype = 'PythonObject'
else:
vartype = 'CObject'
if entry.from_closure:
# We're dealing with a closure where a variable from an outer
# scope is accessed, get it from the scope object.
cname = '%s->%s' % (Naming.cur_scope_cname,
entry.outer_entry.cname)
qname = '%s.%s.%s' % (entry.scope.outer_scope.qualified_name,
entry.scope.name,
entry.name)
elif entry.in_closure:
cname = '%s->%s' % (Naming.cur_scope_cname,
entry.cname)
qname = entry.qualified_name
else:
cname = entry.cname
qname = entry.qualified_name
if not entry.pos:
# this happens for variables that are not in the user's code,
# e.g. for the global __builtins__, __doc__, etc. We can just
# set the lineno to 0 for those.
lineno = '0'
else:
lineno = str(entry.pos[1])
attrs = dict(
name=entry.name,
cname=cname,
qualified_name=qname,
type=vartype,
lineno=lineno)
self.tb.start('LocalVar', attrs)
self.tb.end('LocalVar')