125 lines
4.2 KiB
Python
125 lines
4.2 KiB
Python
import argparse
|
|
import glob
|
|
import multiprocessing
|
|
import os
|
|
import pathlib
|
|
|
|
import torch
|
|
from tqdm import tqdm
|
|
|
|
from TTS.utils.vad import get_vad_model_and_utils, remove_silence
|
|
|
|
torch.set_num_threads(1)
|
|
|
|
|
|
def adjust_path_and_remove_silence(audio_path):
|
|
output_path = audio_path.replace(os.path.join(args.input_dir, ""), os.path.join(args.output_dir, ""))
|
|
# ignore if the file exists
|
|
if os.path.exists(output_path) and not args.force:
|
|
return output_path, False
|
|
|
|
# create all directory structure
|
|
pathlib.Path(output_path).parent.mkdir(parents=True, exist_ok=True)
|
|
# remove the silence and save the audio
|
|
output_path, is_speech = remove_silence(
|
|
model_and_utils,
|
|
audio_path,
|
|
output_path,
|
|
trim_just_beginning_and_end=args.trim_just_beginning_and_end,
|
|
use_cuda=args.use_cuda,
|
|
)
|
|
return output_path, is_speech
|
|
|
|
|
|
def preprocess_audios():
|
|
files = sorted(glob.glob(os.path.join(args.input_dir, args.glob), recursive=True))
|
|
print("> Number of files: ", len(files))
|
|
if not args.force:
|
|
print("> Ignoring files that already exist in the output idrectory.")
|
|
|
|
if args.trim_just_beginning_and_end:
|
|
print("> Trimming just the beginning and the end with nonspeech parts.")
|
|
else:
|
|
print("> Trimming all nonspeech parts.")
|
|
|
|
filtered_files = []
|
|
if files:
|
|
# create threads
|
|
# num_threads = multiprocessing.cpu_count()
|
|
# process_map(adjust_path_and_remove_silence, files, max_workers=num_threads, chunksize=15)
|
|
|
|
if args.num_processes > 1:
|
|
with multiprocessing.Pool(processes=args.num_processes) as pool:
|
|
results = list(
|
|
tqdm(
|
|
pool.imap_unordered(adjust_path_and_remove_silence, files),
|
|
total=len(files),
|
|
desc="Processing audio files",
|
|
)
|
|
)
|
|
for output_path, is_speech in results:
|
|
if not is_speech:
|
|
filtered_files.append(output_path)
|
|
else:
|
|
for f in tqdm(files):
|
|
output_path, is_speech = adjust_path_and_remove_silence(f)
|
|
if not is_speech:
|
|
filtered_files.append(output_path)
|
|
|
|
# write files that do not have speech
|
|
with open(os.path.join(args.output_dir, "filtered_files.txt"), "w", encoding="utf-8") as f:
|
|
for file in filtered_files:
|
|
f.write(str(file) + "\n")
|
|
else:
|
|
print("> No files Found !")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(
|
|
description="python TTS/bin/remove_silence_using_vad.py -i=VCTK-Corpus/ -o=VCTK-Corpus-removed-silence/ -g=wav48_silence_trimmed/*/*_mic1.flac --trim_just_beginning_and_end True"
|
|
)
|
|
parser.add_argument("-i", "--input_dir", type=str, help="Dataset root dir", required=True)
|
|
parser.add_argument("-o", "--output_dir", type=str, help="Output Dataset dir", default="")
|
|
parser.add_argument("-f", "--force", default=False, action="store_true", help="Force the replace of exists files")
|
|
parser.add_argument(
|
|
"-g",
|
|
"--glob",
|
|
type=str,
|
|
default="**/*.wav",
|
|
help="path in glob format for acess wavs from input_dir. ex: wav48/*/*.wav",
|
|
)
|
|
parser.add_argument(
|
|
"-t",
|
|
"--trim_just_beginning_and_end",
|
|
type=bool,
|
|
default=True,
|
|
help="If True this script will trim just the beginning and end nonspeech parts. If False all nonspeech parts will be trim. Default True",
|
|
)
|
|
parser.add_argument(
|
|
"-c",
|
|
"--use_cuda",
|
|
type=bool,
|
|
default=False,
|
|
help="If True use cuda",
|
|
)
|
|
parser.add_argument(
|
|
"--use_onnx",
|
|
type=bool,
|
|
default=False,
|
|
help="If True use onnx",
|
|
)
|
|
parser.add_argument(
|
|
"--num_processes",
|
|
type=int,
|
|
default=1,
|
|
help="Number of processes to use",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
if args.output_dir == "":
|
|
args.output_dir = args.input_dir
|
|
|
|
# load the model and utils
|
|
model_and_utils = get_vad_model_and_utils(use_cuda=args.use_cuda, use_onnx=args.use_onnx)
|
|
preprocess_audios()
|