285 lines
10 KiB
Python
285 lines
10 KiB
Python
import os
|
|
from dataclasses import dataclass
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
from coqpit import Coqpit
|
|
from encodec import EncodecModel
|
|
from transformers import BertTokenizer
|
|
|
|
from TTS.tts.layers.bark.inference_funcs import (
|
|
codec_decode,
|
|
generate_coarse,
|
|
generate_fine,
|
|
generate_text_semantic,
|
|
generate_voice,
|
|
load_voice,
|
|
)
|
|
from TTS.tts.layers.bark.load_model import load_model
|
|
from TTS.tts.layers.bark.model import GPT
|
|
from TTS.tts.layers.bark.model_fine import FineGPT
|
|
from TTS.tts.models.base_tts import BaseTTS
|
|
|
|
|
|
@dataclass
|
|
class BarkAudioConfig(Coqpit):
|
|
sample_rate: int = 24000
|
|
output_sample_rate: int = 24000
|
|
|
|
|
|
class Bark(BaseTTS):
|
|
def __init__(
|
|
self,
|
|
config: Coqpit,
|
|
tokenizer: BertTokenizer = BertTokenizer.from_pretrained("bert-base-multilingual-cased"),
|
|
) -> None:
|
|
super().__init__(config=config, ap=None, tokenizer=None, speaker_manager=None, language_manager=None)
|
|
self.config.num_chars = len(tokenizer)
|
|
self.tokenizer = tokenizer
|
|
self.semantic_model = GPT(config.semantic_config)
|
|
self.coarse_model = GPT(config.coarse_config)
|
|
self.fine_model = FineGPT(config.fine_config)
|
|
self.encodec = EncodecModel.encodec_model_24khz()
|
|
self.encodec.set_target_bandwidth(6.0)
|
|
|
|
@property
|
|
def device(self):
|
|
return next(self.parameters()).device
|
|
|
|
def load_bark_models(self):
|
|
self.semantic_model, self.config = load_model(
|
|
ckpt_path=self.config.LOCAL_MODEL_PATHS["text"], device=self.device, config=self.config, model_type="text"
|
|
)
|
|
self.coarse_model, self.config = load_model(
|
|
ckpt_path=self.config.LOCAL_MODEL_PATHS["coarse"],
|
|
device=self.device,
|
|
config=self.config,
|
|
model_type="coarse",
|
|
)
|
|
self.fine_model, self.config = load_model(
|
|
ckpt_path=self.config.LOCAL_MODEL_PATHS["fine"], device=self.device, config=self.config, model_type="fine"
|
|
)
|
|
|
|
def train_step(
|
|
self,
|
|
):
|
|
pass
|
|
|
|
def text_to_semantic(
|
|
self,
|
|
text: str,
|
|
history_prompt: Optional[str] = None,
|
|
temp: float = 0.7,
|
|
base=None,
|
|
allow_early_stop=True,
|
|
**kwargs,
|
|
):
|
|
"""Generate semantic array from text.
|
|
|
|
Args:
|
|
text: text to be turned into audio
|
|
history_prompt: history choice for audio cloning
|
|
temp: generation temperature (1.0 more diverse, 0.0 more conservative)
|
|
|
|
Returns:
|
|
numpy semantic array to be fed into `semantic_to_waveform`
|
|
"""
|
|
x_semantic = generate_text_semantic(
|
|
text,
|
|
self,
|
|
history_prompt=history_prompt,
|
|
temp=temp,
|
|
base=base,
|
|
allow_early_stop=allow_early_stop,
|
|
**kwargs,
|
|
)
|
|
return x_semantic
|
|
|
|
def semantic_to_waveform(
|
|
self,
|
|
semantic_tokens: np.ndarray,
|
|
history_prompt: Optional[str] = None,
|
|
temp: float = 0.7,
|
|
base=None,
|
|
):
|
|
"""Generate audio array from semantic input.
|
|
|
|
Args:
|
|
semantic_tokens: semantic token output from `text_to_semantic`
|
|
history_prompt: history choice for audio cloning
|
|
temp: generation temperature (1.0 more diverse, 0.0 more conservative)
|
|
|
|
Returns:
|
|
numpy audio array at sample frequency 24khz
|
|
"""
|
|
x_coarse_gen = generate_coarse(
|
|
semantic_tokens,
|
|
self,
|
|
history_prompt=history_prompt,
|
|
temp=temp,
|
|
base=base,
|
|
)
|
|
x_fine_gen = generate_fine(
|
|
x_coarse_gen,
|
|
self,
|
|
history_prompt=history_prompt,
|
|
temp=0.5,
|
|
base=base,
|
|
)
|
|
audio_arr = codec_decode(x_fine_gen, self)
|
|
return audio_arr, x_coarse_gen, x_fine_gen
|
|
|
|
def generate_audio(
|
|
self,
|
|
text: str,
|
|
history_prompt: Optional[str] = None,
|
|
text_temp: float = 0.7,
|
|
waveform_temp: float = 0.7,
|
|
base=None,
|
|
allow_early_stop=True,
|
|
**kwargs,
|
|
):
|
|
"""Generate audio array from input text.
|
|
|
|
Args:
|
|
text: text to be turned into audio
|
|
history_prompt: history choice for audio cloning
|
|
text_temp: generation temperature (1.0 more diverse, 0.0 more conservative)
|
|
waveform_temp: generation temperature (1.0 more diverse, 0.0 more conservative)
|
|
|
|
Returns:
|
|
numpy audio array at sample frequency 24khz
|
|
"""
|
|
x_semantic = self.text_to_semantic(
|
|
text,
|
|
history_prompt=history_prompt,
|
|
temp=text_temp,
|
|
base=base,
|
|
allow_early_stop=allow_early_stop,
|
|
**kwargs,
|
|
)
|
|
audio_arr, c, f = self.semantic_to_waveform(
|
|
x_semantic, history_prompt=history_prompt, temp=waveform_temp, base=base
|
|
)
|
|
return audio_arr, [x_semantic, c, f]
|
|
|
|
def generate_voice(self, audio, speaker_id, voice_dir):
|
|
"""Generate a voice from the given audio and text.
|
|
|
|
Args:
|
|
audio (str): Path to the audio file.
|
|
speaker_id (str): Speaker name.
|
|
voice_dir (str): Path to the directory to save the generate voice.
|
|
"""
|
|
if voice_dir is not None:
|
|
voice_dirs = [voice_dir]
|
|
try:
|
|
_ = load_voice(speaker_id, voice_dirs)
|
|
except (KeyError, FileNotFoundError):
|
|
output_path = os.path.join(voice_dir, speaker_id + ".npz")
|
|
os.makedirs(voice_dir, exist_ok=True)
|
|
generate_voice(audio, self, output_path)
|
|
|
|
def _set_voice_dirs(self, voice_dirs):
|
|
def_voice_dir = None
|
|
if isinstance(self.config.DEF_SPEAKER_DIR, str):
|
|
os.makedirs(self.config.DEF_SPEAKER_DIR, exist_ok=True)
|
|
if os.path.isdir(self.config.DEF_SPEAKER_DIR):
|
|
def_voice_dir = self.config.DEF_SPEAKER_DIR
|
|
_voice_dirs = [def_voice_dir] if def_voice_dir is not None else []
|
|
if voice_dirs is not None:
|
|
if isinstance(voice_dirs, str):
|
|
voice_dirs = [voice_dirs]
|
|
_voice_dirs = voice_dirs + _voice_dirs
|
|
return _voice_dirs
|
|
|
|
# TODO: remove config from synthesize
|
|
def synthesize(
|
|
self, text, config, speaker_id="random", voice_dirs=None, **kwargs
|
|
): # pylint: disable=unused-argument
|
|
"""Synthesize speech with the given input text.
|
|
|
|
Args:
|
|
text (str): Input text.
|
|
config (BarkConfig): Config with inference parameters.
|
|
speaker_id (str): One of the available speaker names. If `random`, it generates a random speaker.
|
|
speaker_wav (str): Path to the speaker audio file for cloning a new voice. It is cloned and saved in
|
|
`voice_dirs` with the name `speaker_id`. Defaults to None.
|
|
voice_dirs (List[str]): List of paths that host reference audio files for speakers. Defaults to None.
|
|
**kwargs: Model specific inference settings used by `generate_audio()` and `TTS.tts.layers.bark.inference_funcs.generate_text_semantic().
|
|
|
|
Returns:
|
|
A dictionary of the output values with `wav` as output waveform, `deterministic_seed` as seed used at inference,
|
|
`text_input` as text token IDs after tokenizer, `voice_samples` as samples used for cloning, `conditioning_latents`
|
|
as latents used at inference.
|
|
|
|
"""
|
|
speaker_id = "random" if speaker_id is None else speaker_id
|
|
voice_dirs = self._set_voice_dirs(voice_dirs)
|
|
history_prompt = load_voice(self, speaker_id, voice_dirs)
|
|
outputs = self.generate_audio(text, history_prompt=history_prompt, **kwargs)
|
|
return_dict = {
|
|
"wav": outputs[0],
|
|
"text_inputs": text,
|
|
}
|
|
|
|
return return_dict
|
|
|
|
def eval_step(self):
|
|
...
|
|
|
|
def forward(self):
|
|
...
|
|
|
|
def inference(self):
|
|
...
|
|
|
|
@staticmethod
|
|
def init_from_config(config: "BarkConfig", **kwargs): # pylint: disable=unused-argument
|
|
return Bark(config)
|
|
|
|
# pylint: disable=unused-argument, redefined-builtin
|
|
def load_checkpoint(
|
|
self,
|
|
config,
|
|
checkpoint_dir,
|
|
text_model_path=None,
|
|
coarse_model_path=None,
|
|
fine_model_path=None,
|
|
hubert_model_path=None,
|
|
hubert_tokenizer_path=None,
|
|
eval=False,
|
|
strict=True,
|
|
**kwargs,
|
|
):
|
|
"""Load a model checkpoints from a directory. This model is with multiple checkpoint files and it
|
|
expects to have all the files to be under the given `checkpoint_dir` with the rigth names.
|
|
If eval is True, set the model to eval mode.
|
|
|
|
Args:
|
|
config (TortoiseConfig): The model config.
|
|
checkpoint_dir (str): The directory where the checkpoints are stored.
|
|
ar_checkpoint_path (str, optional): The path to the autoregressive checkpoint. Defaults to None.
|
|
diff_checkpoint_path (str, optional): The path to the diffusion checkpoint. Defaults to None.
|
|
clvp_checkpoint_path (str, optional): The path to the CLVP checkpoint. Defaults to None.
|
|
vocoder_checkpoint_path (str, optional): The path to the vocoder checkpoint. Defaults to None.
|
|
eval (bool, optional): Whether to set the model to eval mode. Defaults to False.
|
|
strict (bool, optional): Whether to load the model strictly. Defaults to True.
|
|
"""
|
|
text_model_path = text_model_path or os.path.join(checkpoint_dir, "text_2.pt")
|
|
coarse_model_path = coarse_model_path or os.path.join(checkpoint_dir, "coarse_2.pt")
|
|
fine_model_path = fine_model_path or os.path.join(checkpoint_dir, "fine_2.pt")
|
|
hubert_model_path = hubert_model_path or os.path.join(checkpoint_dir, "hubert.pt")
|
|
hubert_tokenizer_path = hubert_tokenizer_path or os.path.join(checkpoint_dir, "tokenizer.pth")
|
|
|
|
self.config.LOCAL_MODEL_PATHS["text"] = text_model_path
|
|
self.config.LOCAL_MODEL_PATHS["coarse"] = coarse_model_path
|
|
self.config.LOCAL_MODEL_PATHS["fine"] = fine_model_path
|
|
self.config.LOCAL_MODEL_PATHS["hubert"] = hubert_model_path
|
|
self.config.LOCAL_MODEL_PATHS["hubert_tokenizer"] = hubert_tokenizer_path
|
|
|
|
self.load_bark_models()
|
|
|
|
if eval:
|
|
self.eval()
|