ai-content-maker/.venv/Lib/site-packages/charset_normalizer/models.py

341 lines
11 KiB
Python

from encodings.aliases import aliases
from hashlib import sha256
from json import dumps
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
from .constant import TOO_BIG_SEQUENCE
from .utils import iana_name, is_multi_byte_encoding, unicode_range
class CharsetMatch:
def __init__(
self,
payload: bytes,
guessed_encoding: str,
mean_mess_ratio: float,
has_sig_or_bom: bool,
languages: "CoherenceMatches",
decoded_payload: Optional[str] = None,
):
self._payload: bytes = payload
self._encoding: str = guessed_encoding
self._mean_mess_ratio: float = mean_mess_ratio
self._languages: CoherenceMatches = languages
self._has_sig_or_bom: bool = has_sig_or_bom
self._unicode_ranges: Optional[List[str]] = None
self._leaves: List[CharsetMatch] = []
self._mean_coherence_ratio: float = 0.0
self._output_payload: Optional[bytes] = None
self._output_encoding: Optional[str] = None
self._string: Optional[str] = decoded_payload
def __eq__(self, other: object) -> bool:
if not isinstance(other, CharsetMatch):
raise TypeError(
"__eq__ cannot be invoked on {} and {}.".format(
str(other.__class__), str(self.__class__)
)
)
return self.encoding == other.encoding and self.fingerprint == other.fingerprint
def __lt__(self, other: object) -> bool:
"""
Implemented to make sorted available upon CharsetMatches items.
"""
if not isinstance(other, CharsetMatch):
raise ValueError
chaos_difference: float = abs(self.chaos - other.chaos)
coherence_difference: float = abs(self.coherence - other.coherence)
# Below 1% difference --> Use Coherence
if chaos_difference < 0.01 and coherence_difference > 0.02:
return self.coherence > other.coherence
elif chaos_difference < 0.01 and coherence_difference <= 0.02:
# When having a difficult decision, use the result that decoded as many multi-byte as possible.
# preserve RAM usage!
if len(self._payload) >= TOO_BIG_SEQUENCE:
return self.chaos < other.chaos
return self.multi_byte_usage > other.multi_byte_usage
return self.chaos < other.chaos
@property
def multi_byte_usage(self) -> float:
return 1.0 - (len(str(self)) / len(self.raw))
def __str__(self) -> str:
# Lazy Str Loading
if self._string is None:
self._string = str(self._payload, self._encoding, "strict")
return self._string
def __repr__(self) -> str:
return "<CharsetMatch '{}' bytes({})>".format(self.encoding, self.fingerprint)
def add_submatch(self, other: "CharsetMatch") -> None:
if not isinstance(other, CharsetMatch) or other == self:
raise ValueError(
"Unable to add instance <{}> as a submatch of a CharsetMatch".format(
other.__class__
)
)
other._string = None # Unload RAM usage; dirty trick.
self._leaves.append(other)
@property
def encoding(self) -> str:
return self._encoding
@property
def encoding_aliases(self) -> List[str]:
"""
Encoding name are known by many name, using this could help when searching for IBM855 when it's listed as CP855.
"""
also_known_as: List[str] = []
for u, p in aliases.items():
if self.encoding == u:
also_known_as.append(p)
elif self.encoding == p:
also_known_as.append(u)
return also_known_as
@property
def bom(self) -> bool:
return self._has_sig_or_bom
@property
def byte_order_mark(self) -> bool:
return self._has_sig_or_bom
@property
def languages(self) -> List[str]:
"""
Return the complete list of possible languages found in decoded sequence.
Usually not really useful. Returned list may be empty even if 'language' property return something != 'Unknown'.
"""
return [e[0] for e in self._languages]
@property
def language(self) -> str:
"""
Most probable language found in decoded sequence. If none were detected or inferred, the property will return
"Unknown".
"""
if not self._languages:
# Trying to infer the language based on the given encoding
# Its either English or we should not pronounce ourselves in certain cases.
if "ascii" in self.could_be_from_charset:
return "English"
# doing it there to avoid circular import
from charset_normalizer.cd import encoding_languages, mb_encoding_languages
languages = (
mb_encoding_languages(self.encoding)
if is_multi_byte_encoding(self.encoding)
else encoding_languages(self.encoding)
)
if len(languages) == 0 or "Latin Based" in languages:
return "Unknown"
return languages[0]
return self._languages[0][0]
@property
def chaos(self) -> float:
return self._mean_mess_ratio
@property
def coherence(self) -> float:
if not self._languages:
return 0.0
return self._languages[0][1]
@property
def percent_chaos(self) -> float:
return round(self.chaos * 100, ndigits=3)
@property
def percent_coherence(self) -> float:
return round(self.coherence * 100, ndigits=3)
@property
def raw(self) -> bytes:
"""
Original untouched bytes.
"""
return self._payload
@property
def submatch(self) -> List["CharsetMatch"]:
return self._leaves
@property
def has_submatch(self) -> bool:
return len(self._leaves) > 0
@property
def alphabets(self) -> List[str]:
if self._unicode_ranges is not None:
return self._unicode_ranges
# list detected ranges
detected_ranges: List[Optional[str]] = [
unicode_range(char) for char in str(self)
]
# filter and sort
self._unicode_ranges = sorted(list({r for r in detected_ranges if r}))
return self._unicode_ranges
@property
def could_be_from_charset(self) -> List[str]:
"""
The complete list of encoding that output the exact SAME str result and therefore could be the originating
encoding.
This list does include the encoding available in property 'encoding'.
"""
return [self._encoding] + [m.encoding for m in self._leaves]
def output(self, encoding: str = "utf_8") -> bytes:
"""
Method to get re-encoded bytes payload using given target encoding. Default to UTF-8.
Any errors will be simply ignored by the encoder NOT replaced.
"""
if self._output_encoding is None or self._output_encoding != encoding:
self._output_encoding = encoding
self._output_payload = str(self).encode(encoding, "replace")
return self._output_payload # type: ignore
@property
def fingerprint(self) -> str:
"""
Retrieve the unique SHA256 computed using the transformed (re-encoded) payload. Not the original one.
"""
return sha256(self.output()).hexdigest()
class CharsetMatches:
"""
Container with every CharsetMatch items ordered by default from most probable to the less one.
Act like a list(iterable) but does not implements all related methods.
"""
def __init__(self, results: Optional[List[CharsetMatch]] = None):
self._results: List[CharsetMatch] = sorted(results) if results else []
def __iter__(self) -> Iterator[CharsetMatch]:
yield from self._results
def __getitem__(self, item: Union[int, str]) -> CharsetMatch:
"""
Retrieve a single item either by its position or encoding name (alias may be used here).
Raise KeyError upon invalid index or encoding not present in results.
"""
if isinstance(item, int):
return self._results[item]
if isinstance(item, str):
item = iana_name(item, False)
for result in self._results:
if item in result.could_be_from_charset:
return result
raise KeyError
def __len__(self) -> int:
return len(self._results)
def __bool__(self) -> bool:
return len(self._results) > 0
def append(self, item: CharsetMatch) -> None:
"""
Insert a single match. Will be inserted accordingly to preserve sort.
Can be inserted as a submatch.
"""
if not isinstance(item, CharsetMatch):
raise ValueError(
"Cannot append instance '{}' to CharsetMatches".format(
str(item.__class__)
)
)
# We should disable the submatch factoring when the input file is too heavy (conserve RAM usage)
if len(item.raw) <= TOO_BIG_SEQUENCE:
for match in self._results:
if match.fingerprint == item.fingerprint and match.chaos == item.chaos:
match.add_submatch(item)
return
self._results.append(item)
self._results = sorted(self._results)
def best(self) -> Optional["CharsetMatch"]:
"""
Simply return the first match. Strict equivalent to matches[0].
"""
if not self._results:
return None
return self._results[0]
def first(self) -> Optional["CharsetMatch"]:
"""
Redundant method, call the method best(). Kept for BC reasons.
"""
return self.best()
CoherenceMatch = Tuple[str, float]
CoherenceMatches = List[CoherenceMatch]
class CliDetectionResult:
def __init__(
self,
path: str,
encoding: Optional[str],
encoding_aliases: List[str],
alternative_encodings: List[str],
language: str,
alphabets: List[str],
has_sig_or_bom: bool,
chaos: float,
coherence: float,
unicode_path: Optional[str],
is_preferred: bool,
):
self.path: str = path
self.unicode_path: Optional[str] = unicode_path
self.encoding: Optional[str] = encoding
self.encoding_aliases: List[str] = encoding_aliases
self.alternative_encodings: List[str] = alternative_encodings
self.language: str = language
self.alphabets: List[str] = alphabets
self.has_sig_or_bom: bool = has_sig_or_bom
self.chaos: float = chaos
self.coherence: float = coherence
self.is_preferred: bool = is_preferred
@property
def __dict__(self) -> Dict[str, Any]: # type: ignore
return {
"path": self.path,
"encoding": self.encoding,
"encoding_aliases": self.encoding_aliases,
"alternative_encodings": self.alternative_encodings,
"language": self.language,
"alphabets": self.alphabets,
"has_sig_or_bom": self.has_sig_or_bom,
"chaos": self.chaos,
"coherence": self.coherence,
"unicode_path": self.unicode_path,
"is_preferred": self.is_preferred,
}
def to_json(self) -> str:
return dumps(self.__dict__, ensure_ascii=True, indent=4)