ai-content-maker/.venv/Lib/site-packages/dateparser/languages/locale.py

556 lines
23 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from itertools import chain
import regex as re
from collections import OrderedDict
from dateutil import parser
from dateparser.timezone_parser import pop_tz_offset_from_string, word_is_tz
from dateparser.utils import normalize_unicode, combine_dicts
from .dictionary import Dictionary, NormalizedDictionary, ALWAYS_KEEP_TOKENS
NUMERAL_PATTERN = re.compile(r'(\d+)', re.U)
class Locale:
"""
Class that deals with applicability and translation from a locale.
:param shortname:
A locale code, e.g. 'fr-PF', 'qu-EC', 'af-NA'.
:type shortname: str
:param language_info:
Language info (translation data) of the language the locale belongs to.
:type language_info: dict
:return: A Locale instance
"""
_dictionary = None
_normalized_dictionary = None
_simplifications = None
_normalized_simplifications = None
_splitters = None
_wordchars = None
_relative_translations = None
_normalized_relative_translations = None
_abbreviations = None
_split_dictionary = None
_wordchars_for_detection = None
def __init__(self, shortname, language_info):
self.shortname = shortname
locale_specific_info = language_info.get("locale_specific", {}).get(shortname, {})
self.info = combine_dicts(language_info, locale_specific_info)
self.info.pop("locale_specific", None)
def is_applicable(self, date_string, strip_timezone=False, settings=None):
"""
Check if the locale is applicable to translate date string.
:param date_string:
A string representing date and/or time in a recognizably valid format.
:type date_string: str
:param strip_timezone:
If True, timezone is stripped from date string.
:type strip_timezone: bool
:return: boolean value representing if the locale is applicable for the date string or not.
"""
if strip_timezone:
date_string, _ = pop_tz_offset_from_string(date_string, as_offset=False)
date_string = self._translate_numerals(date_string)
if settings.NORMALIZE:
date_string = normalize_unicode(date_string)
date_string = self._simplify(date_string, settings=settings)
dictionary = self._get_dictionary(settings)
date_tokens = dictionary.split(date_string)
return dictionary.are_tokens_valid(date_tokens)
def count_applicability(self, text, strip_timezone=False, settings=None):
if strip_timezone:
text, _ = pop_tz_offset_from_string(text, as_offset=False)
text = self._simplify(text, settings=settings)
sentences = self._sentence_split(text, settings=settings)
tokens = []
for sent in sentences:
tokens.extend(self._split(sent, keep_formatting=False, settings=settings))
return self._count_words_present_in_the_dictionary(tokens, settings)
def _count_words_present_in_the_dictionary(self, words, settings=None):
dictionary = self.clean_dictionary(self._get_split_dictionary(settings=settings))
dict_cnt = 0
skip_cnt = 0
for word in set(words):
if word in dictionary:
if dictionary[word]:
dict_cnt += 1
else:
skip_cnt += 1
elif word.isdigit():
skip_cnt += 1
return [dict_cnt, skip_cnt]
@staticmethod
def clean_dictionary(dictionary, threshold=2):
del_keys = []
for key in dictionary:
if len(key) < threshold:
del_keys.append(key)
for del_key in del_keys:
del dictionary[del_key]
return dictionary
def translate(self, date_string, keep_formatting=False, settings=None):
"""
Translate the date string to its English equivalent.
:param date_string:
A string representing date and/or time in a recognizably valid format.
:type date_string: str
:param keep_formatting:
If True, retain formatting of the date string after translation.
:type keep_formatting: bool
:return: translated date string.
"""
date_string = self._translate_numerals(date_string)
if settings.NORMALIZE:
date_string = normalize_unicode(date_string)
date_string = self._simplify(date_string, settings=settings)
dictionary = self._get_dictionary(settings)
date_string_tokens = dictionary.split(date_string, keep_formatting)
relative_translations = self._get_relative_translations(settings=settings)
for i, word in enumerate(date_string_tokens):
word = word.lower()
for pattern, replacement in relative_translations.items():
if pattern.match(word):
date_string_tokens[i] = pattern.sub(replacement, word)
break
else:
if word in dictionary:
fallback = word if keep_formatting and not word.isalpha() else ''
date_string_tokens[i] = dictionary[word] or fallback
if "in" in date_string_tokens:
date_string_tokens = self._clear_future_words(date_string_tokens)
return self._join(list(filter(bool, date_string_tokens)),
separator="" if keep_formatting else " ", settings=settings)
def _translate_numerals(self, date_string):
date_string_tokens = NUMERAL_PATTERN.split(date_string)
for i, token in enumerate(date_string_tokens):
if token.isdecimal():
date_string_tokens[i] = str(int(token)).zfill(len(token))
return ''.join(date_string_tokens)
def _get_relative_translations(self, settings=None):
if settings.NORMALIZE:
if self._normalized_relative_translations is None:
self._normalized_relative_translations = (
self._generate_relative_translations(normalize=True))
return self._normalized_relative_translations
else:
if self._relative_translations is None:
self._relative_translations = self._generate_relative_translations(normalize=False)
return self._relative_translations
def _generate_relative_translations(self, normalize=False):
relative_translations = self.info.get('relative-type-regex', {})
relative_dictionary = OrderedDict()
for key, value in relative_translations.items():
if normalize:
value = list(map(normalize_unicode, value))
pattern = '|'.join(sorted(value, key=len, reverse=True))
pattern = pattern.replace(r'(\d+', r'(?P<n>\d+')
pattern = re.compile(r'^(?:{})$'.format(pattern), re.UNICODE | re.IGNORECASE)
relative_dictionary[pattern] = key
return relative_dictionary
def translate_search(self, search_string, settings=None):
dashes = ['-', '——', '', '']
word_joint_unsupported_languages = ["zh", "ja"]
sentences = self._sentence_split(search_string, settings=settings)
dictionary = self._get_dictionary(settings=settings)
translated = []
original = []
for sentence in sentences:
original_tokens, simplified_tokens = self._simplify_split_align(sentence, settings=settings)
translated_chunk = []
original_chunk = []
last_token_index = len(simplified_tokens) - 1
skip_next_token = False
for i, word in enumerate(simplified_tokens):
next_word = simplified_tokens[i + 1] if i < last_token_index else ""
current_and_next_joined = self._join_chunk([word, next_word], settings=settings)
if skip_next_token:
skip_next_token = False
continue
if word == '' or word == ' ':
translated_chunk.append(word)
original_chunk.append(original_tokens[i])
elif (
current_and_next_joined in dictionary
and word not in dashes
and self.shortname not in word_joint_unsupported_languages
):
translated_chunk.append(dictionary[current_and_next_joined])
original_chunk.append(
self._join_chunk([original_tokens[i], original_tokens[i + 1]], settings=settings)
)
skip_next_token = True
elif word in dictionary and word not in dashes:
translated_chunk.append(dictionary[word])
original_chunk.append(original_tokens[i])
elif word.strip('()\"\'{}[],.،') in dictionary and word not in dashes:
punct = word[len(word.strip('()\"\'{}[],.،')):]
if punct and dictionary[word.strip('()\"\'{}[],.،')]:
translated_chunk.append(dictionary[word.strip('()\"\'{}[],.،')] + punct)
else:
translated_chunk.append(dictionary[word.strip('()\"\'{}[],.،')])
original_chunk.append(original_tokens[i])
elif self._token_with_digits_is_ok(word):
translated_chunk.append(word)
original_chunk.append(original_tokens[i])
# Use original token because word_is_tz is case sensitive
elif translated_chunk and word_is_tz(original_tokens[i]):
translated_chunk.append(word)
original_chunk.append(original_tokens[i])
else:
if translated_chunk:
translated.append(translated_chunk)
translated_chunk = []
original.append(original_chunk)
original_chunk = []
if translated_chunk:
translated.append(translated_chunk)
original.append(original_chunk)
for i in range(len(translated)):
if "in" in translated[i]:
translated[i] = self._clear_future_words(translated[i])
translated[i] = self._join_chunk(list(filter(bool, translated[i])), settings=settings)
original[i] = self._join_chunk(list(filter(bool, original[i])), settings=settings)
return translated, original
def _get_abbreviations(self, settings):
dictionary = self._get_dictionary(settings=settings)
abbreviations = []
if self._abbreviations is None:
for item in dictionary:
if item.endswith('.') and len(item) > 1:
abbreviations.append(item)
self._abbreviations = abbreviations
return self._abbreviations
def _sentence_split(self, string, settings):
abbreviations = self._get_abbreviations(settings=settings)
digit_abbreviations = ['[0-9]'] # numeric date with full stop
abbreviation_string = ''
for abbreviation in abbreviations:
abbreviation_string += '(?<! ' + abbreviation[:-1] + ')' # negative lookbehind
if self.shortname in ['fi', 'cs', 'hu', 'de', 'da']:
for digit_abbreviation in digit_abbreviations:
abbreviation_string += '(?<!' + digit_abbreviation + ')' # negative lookbehind
splitters_dict = {1: r'[\.!?;…\r\n]+(?:\s|$)*', # most European, Tagalog, Hebrew, Georgian,
# Indonesian, Vietnamese
2: r'[\.!?;…\r\n]+(\s*[¡¿]*|$)|[¡¿]+', # Spanish
3: r'[|!?;\r\n]+(?:\s|$)+', # Hindi and Bangla
4: r'[。…‥\.!?;\r\n]+(?:\s|$)+', # Japanese and Chinese
5: r'[\r\n]+', # Thai
6: r'[\r\n؟!\.…]+(?:\s|$)+'} # Arabic and Farsi
if 'sentence_splitter_group' not in self.info:
split_reg = abbreviation_string + splitters_dict[1]
sentences = re.split(split_reg, string)
else:
split_reg = abbreviation_string + splitters_dict[self.info['sentence_splitter_group']]
sentences = re.split(split_reg, string)
sentences = filter(None, sentences)
return sentences
def _simplify_split_align(self, original, settings):
# TODO: Switch to new split method.
original_tokens = self._word_split(original, settings=settings)
simplified_tokens = self._word_split(self._simplify(normalize_unicode(original), settings=settings),
settings=settings)
if len(original_tokens) == len(simplified_tokens):
return original_tokens, simplified_tokens
elif len(original_tokens) < len(simplified_tokens):
add_empty = False
for i, token in enumerate(simplified_tokens):
if i < len(original_tokens):
if token == normalize_unicode(original_tokens[i].lower()):
add_empty = False
else:
if not add_empty:
add_empty = True
continue
else:
original_tokens.insert(i, '')
else:
original_tokens.insert(i, '')
else:
add_empty = False
for i, token in enumerate(original_tokens):
if i < len(simplified_tokens):
if normalize_unicode(token.lower()) == simplified_tokens[i]:
add_empty = False
else:
if not add_empty:
add_empty = True
continue
else:
simplified_tokens.insert(i, '')
else:
simplified_tokens.insert(i, '')
while len(original_tokens) != len(simplified_tokens):
if len(original_tokens) > len(simplified_tokens):
original_tokens.remove('')
else:
simplified_tokens.remove('')
return original_tokens, simplified_tokens
def _get_split_dictionary(self, settings):
if self._split_dictionary is None:
settings.NORMALIZE = True
dictionary = self._get_dictionary(settings=settings)
self._split_dictionary = self._split_dict(dictionary)
return self._split_dictionary
def _split_dict(self, dictionary):
newdict = {}
for item in dictionary:
if ' ' in item:
items = item.split()
for i in items:
newdict[i] = dictionary[item]
else:
newdict[item] = dictionary[item]
return newdict
def _word_split(self, string, settings):
if 'no_word_spacing' in self.info:
return self._split(string, keep_formatting=True, settings=settings)
else:
return string.split()
def _split(self, date_string, keep_formatting, settings=None):
tokens = [date_string]
tokens = list(self._split_tokens_with_regex(tokens, r"(\d+)"))
tokens = list(
self._split_tokens_by_known_words(tokens, keep_formatting, settings=settings))
return tokens
def _split_tokens_with_regex(self, tokens, regex):
tokens = tokens[:]
for i, token in enumerate(tokens):
tokens[i] = re.split(regex, token)
return filter(bool, chain.from_iterable(tokens))
def _split_tokens_by_known_words(self, tokens, keep_formatting, settings=None):
dictionary = self._get_dictionary(settings)
for i, token in enumerate(tokens):
tokens[i] = dictionary.split(token, keep_formatting)
return list(chain.from_iterable(tokens))
def _join_chunk(self, chunk, settings):
if 'no_word_spacing' in self.info:
return self._join(chunk, separator="", settings=settings)
else:
return re.sub(r'\s{2,}', ' ', " ".join(chunk))
def _token_with_digits_is_ok(self, token):
if 'no_word_spacing' in self.info:
if re.search(r'[\d\.:\-/]+', token) is not None:
return True
else:
return False
else:
if re.search(r'\d+', token) is not None:
return True
else:
return False
def _simplify(self, date_string, settings=None):
date_string = date_string.lower()
simplifications = self._get_simplifications(settings=settings)
for simplification in simplifications:
pattern, replacement = list(simplification.items())[0]
date_string = pattern.sub(replacement, date_string).lower()
return date_string
def _get_simplifications(self, settings=None):
no_word_spacing = eval(self.info.get('no_word_spacing', 'False'))
if settings.NORMALIZE:
if self._normalized_simplifications is None:
self._normalized_simplifications = []
simplifications = self._generate_simplifications(normalize=True)
for simplification in simplifications:
pattern, replacement = list(simplification.items())[0]
if not no_word_spacing:
pattern = r'(?<=\A|\W|_)%s(?=\Z|\W|_)' % pattern
pattern = re.compile(pattern, flags=re.I | re.U)
self._normalized_simplifications.append({pattern: replacement})
return self._normalized_simplifications
else:
if self._simplifications is None:
self._simplifications = []
simplifications = self._generate_simplifications(normalize=False)
for simplification in simplifications:
pattern, replacement = list(simplification.items())[0]
if not no_word_spacing:
pattern = r'(?<=\A|\W|_)%s(?=\Z|\W|_)' % pattern
pattern = re.compile(pattern, flags=re.I | re.U)
self._simplifications.append({pattern: replacement})
return self._simplifications
def _generate_simplifications(self, normalize=False):
simplifications = []
for simplification in self.info.get('simplifications', []):
c_simplification = {}
key, value = list(simplification.items())[0]
if normalize:
key = normalize_unicode(key)
if isinstance(value, int):
c_simplification[key] = str(value)
else:
c_simplification[key] = normalize_unicode(value) if normalize else value
simplifications.append(c_simplification)
return simplifications
def _clear_future_words(self, words):
freshness_words = {'day', 'week', 'month', 'year', 'hour', 'minute', 'second'}
if set(words).isdisjoint(freshness_words):
words.remove("in")
return words
def _join(self, tokens, separator=" ", settings=None):
if not tokens:
return ""
capturing_splitters = self._get_splitters(settings)['capturing']
joined = tokens[0]
for i in range(1, len(tokens)):
left, right = tokens[i - 1], tokens[i]
if left not in capturing_splitters and right not in capturing_splitters:
joined += separator
joined += right
return joined
def _get_dictionary(self, settings=None):
if not settings.NORMALIZE:
if self._dictionary is None:
self._generate_dictionary()
self._dictionary._settings = settings
return self._dictionary
else:
if self._normalized_dictionary is None:
self._generate_normalized_dictionary()
self._normalized_dictionary._settings = settings
return self._normalized_dictionary
def _get_wordchars(self, settings=None):
if self._wordchars is None:
self._set_wordchars(settings)
return self._wordchars
def _get_splitters(self, settings=None):
if self._splitters is None:
self._set_splitters(settings)
return self._splitters
def _set_splitters(self, settings=None):
splitters = {
# The ones that split string only if they are not surrounded by letters from both sides:
'wordchars': set(),
# The ones that are not filtered out from tokens after split:
'capturing': set(),
}
splitters['capturing'] |= set(ALWAYS_KEEP_TOKENS)
wordchars = self._get_wordchars(settings)
skip = set(self.info.get('skip', [])) | splitters['capturing']
for token in skip:
if not re.match(r'^\W+$', token, re.UNICODE):
continue
if token in wordchars:
splitters['wordchars'].add(token)
self._splitters = splitters
def _set_wordchars(self, settings=None):
wordchars = set()
for word in self._get_dictionary(settings):
if re.match(r'^[\W\d_]+$', word, re.UNICODE):
continue
for char in word:
wordchars.add(char.lower())
self._wordchars = wordchars - {" "} | {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"}
def get_wordchars_for_detection(self, settings):
if self._wordchars_for_detection is None:
wordchars = set()
for word in self._get_dictionary(settings):
if re.match(r'^[\W\d_]+$', word, re.UNICODE):
continue
for char in word:
wordchars.add(char.lower())
self._wordchars_for_detection = wordchars - {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
":", "(", ")", "'", "q", "a", "m", "p", " "}
return self._wordchars_for_detection
def _generate_dictionary(self, settings=None):
self._dictionary = Dictionary(self.info, settings=settings)
def _generate_normalized_dictionary(self, settings=None):
self._normalized_dictionary = NormalizedDictionary(self.info, settings=settings)
def to_parserinfo(self, base_cls=parser.parserinfo):
attributes = {
'JUMP': self.info.get('skip', []),
'PERTAIN': self.info.get('pertain', []),
'WEEKDAYS': [self.info['monday'],
self.info['tuesday'],
self.info['wednesday'],
self.info['thursday'],
self.info['friday'],
self.info['saturday'],
self.info['sunday']],
'MONTHS': [self.info['january'],
self.info['february'],
self.info['march'],
self.info['april'],
self.info['may'],
self.info['june'],
self.info['july'],
self.info['august'],
self.info['september'],
self.info['october'],
self.info['november'],
self.info['december']],
'HMS': [self.info['hour'],
self.info['minute'],
self.info['second']],
}
name = '{language}ParserInfo'.format(language=self.info['name'])
return type(name, bases=[base_cls], dict=attributes)