ai-content-maker/.venv/Lib/site-packages/einops/_backends.py

716 lines
21 KiB
Python

"""
Backends in `einops` are organized to meet the following requirements
- backends are not imported unless those are actually needed, because
- backends may not be installed
- importing all available backends will drive to significant memory footprint
- backends may be present but installed with errors (but never used),
importing may drive to crashes
- backend should be either symbolic or imperative
- this determines which methods (from_numpy/to_numpy or create_symbol/eval_symbol) should be defined
- if backend can't provide symbols for shape dimensions, UnknownSize objects are used
"""
import sys
__author__ = "Alex Rogozhnikov"
_loaded_backends: dict = {}
_type2backend: dict = {}
_debug_importing = False
def get_backend(tensor) -> "AbstractBackend":
"""
Takes a correct backend (e.g. numpy backend if tensor is numpy.ndarray) for a tensor.
If needed, imports package and creates backend
"""
_type = type(tensor)
_result = _type2backend.get(_type, None)
if _result is not None:
return _result
for framework_name, backend in list(_loaded_backends.items()):
if backend.is_appropriate_type(tensor):
_type2backend[_type] = backend
return backend
# Find backend subclasses recursively
backend_subclasses = []
backends = AbstractBackend.__subclasses__()
while backends:
backend = backends.pop()
backends += backend.__subclasses__()
backend_subclasses.append(backend)
for BackendSubclass in backend_subclasses:
if _debug_importing:
print("Testing for subclass of ", BackendSubclass)
if BackendSubclass.framework_name not in _loaded_backends:
# check that module was already imported. Otherwise it can't be imported
if BackendSubclass.framework_name in sys.modules:
if _debug_importing:
print("Imported backend for ", BackendSubclass.framework_name)
backend = BackendSubclass()
_loaded_backends[backend.framework_name] = backend
if backend.is_appropriate_type(tensor):
_type2backend[_type] = backend
return backend
raise RuntimeError("Tensor type unknown to einops {}".format(type(tensor)))
class AbstractBackend:
"""Base backend class, major part of methods are only for debugging purposes."""
framework_name: str
def is_appropriate_type(self, tensor):
"""helper method should recognize tensors it can handle"""
raise NotImplementedError()
def from_numpy(self, x):
raise NotImplementedError("framework doesn't support imperative execution")
def to_numpy(self, x):
raise NotImplementedError("framework doesn't support imperative execution")
def create_symbol(self, shape):
raise NotImplementedError("framework doesn't support symbolic computations")
def eval_symbol(self, symbol, input_dict):
raise NotImplementedError("framework doesn't support symbolic computations")
def arange(self, start, stop):
# supplementary method used only in testing, so should implement CPU version
raise NotImplementedError("framework doesn't implement arange")
def shape(self, x):
"""shape should return a tuple with integers or "shape symbols" (which will evaluate to actual size)"""
return x.shape
def reshape(self, x, shape):
return x.reshape(shape)
def transpose(self, x, axes):
return x.transpose(axes)
def reduce(self, x, operation, axes):
return getattr(x, operation)(axis=axes)
def stack_on_zeroth_dimension(self, tensors: list):
raise NotImplementedError()
def add_axis(self, x, new_position):
raise NotImplementedError()
def add_axes(self, x, n_axes, pos2len):
repeats = [1] * n_axes
for axis_position, axis_length in pos2len.items():
x = self.add_axis(x, axis_position)
repeats[axis_position] = axis_length
return self.tile(x, tuple(repeats))
def tile(self, x, repeats):
"""repeats - same lengths as x.shape"""
raise NotImplementedError()
def concat(self, tensors, axis: int):
"""concatenates tensors along axis.
Assume identical across tensors: devices, dtypes and shapes except selected axis."""
raise NotImplementedError()
def is_float_type(self, x):
# some backends (torch) can't compute average for non-floating types.
# Decided to drop average for all backends if type is not floating
raise NotImplementedError()
def layers(self):
raise NotImplementedError("backend does not provide layers")
def __repr__(self):
return "<einops backend for {}>".format(self.framework_name)
def einsum(self, pattern, *x):
raise NotImplementedError("backend does not support einsum")
class UnknownSize:
"""pseudo-symbol for symbolic frameworks which do not provide symbols for shape elements"""
def __floordiv__(self, other):
return self
def __eq__(self, other):
return True # we don't know actual size
def __mul__(self, other):
return self
def __rmul__(self, other):
return self
def __hash__(self):
return hash(None)
class NumpyBackend(AbstractBackend):
framework_name = "numpy"
def __init__(self):
import numpy
self.np = numpy
def is_appropriate_type(self, tensor):
return isinstance(tensor, self.np.ndarray)
def from_numpy(self, x):
return x
def to_numpy(self, x):
return x
def arange(self, start, stop):
return self.np.arange(start, stop)
def stack_on_zeroth_dimension(self, tensors: list):
return self.np.stack(tensors)
def tile(self, x, repeats):
return self.np.tile(x, repeats)
def concat(self, tensors, axis: int):
return self.np.concatenate(tensors, axis=axis)
def is_float_type(self, x):
return x.dtype in ("float16", "float32", "float64", "float128", "bfloat16")
def add_axis(self, x, new_position):
return self.np.expand_dims(x, new_position)
def einsum(self, pattern, *x):
return self.np.einsum(pattern, *x)
class JaxBackend(NumpyBackend):
framework_name = "jax"
def __init__(self):
super(JaxBackend, self).__init__()
self.onp = self.np
import jax.numpy
self.np = jax.numpy
def from_numpy(self, x):
return self.np.asarray(x)
def to_numpy(self, x):
return self.onp.asarray(x)
class TorchBackend(AbstractBackend):
framework_name = "torch"
def __init__(self):
import torch
self.torch = torch
# importing would register operations in torch._dynamo for torch.compile
from . import _torch_specific # noqa
def is_appropriate_type(self, tensor):
return isinstance(tensor, self.torch.Tensor)
def from_numpy(self, x):
variable = self.torch.from_numpy(x)
if self.is_float_type(variable):
# attach grad only to floating types
variable.requires_grad = True
return variable
def to_numpy(self, x):
return x.detach().cpu().numpy()
def arange(self, start, stop):
return self.torch.arange(start, stop, dtype=self.torch.int64)
def reduce(self, x, operation, reduced_axes):
if operation == "min":
return x.amin(dim=reduced_axes)
elif operation == "max":
return x.amax(dim=reduced_axes)
elif operation == "sum":
return x.sum(dim=reduced_axes)
elif operation == "mean":
return x.mean(dim=reduced_axes)
elif operation in ("any", "all", "prod"):
# pytorch supports reducing only one operation at a time
for i in list(sorted(reduced_axes))[::-1]:
x = getattr(x, operation)(dim=i)
return x
else:
raise NotImplementedError("Unknown reduction ", operation)
def transpose(self, x, axes):
return x.permute(axes)
def stack_on_zeroth_dimension(self, tensors: list):
return self.torch.stack(tensors)
def add_axes(self, x, n_axes, pos2len):
repeats = [-1] * n_axes
for axis_position, axis_length in pos2len.items():
x = self.add_axis(x, axis_position)
repeats[axis_position] = axis_length
return x.expand(repeats)
def tile(self, x, repeats):
return x.repeat(repeats)
def concat(self, tensors, axis: int):
return self.torch.cat(tensors, dim=axis)
def add_axis(self, x, new_position):
return self.torch.unsqueeze(x, new_position)
def is_float_type(self, x):
return x.dtype in [self.torch.float16, self.torch.float32, self.torch.float64, self.torch.bfloat16]
def layers(self):
from .layers import torch
return torch
def einsum(self, pattern, *x):
return self.torch.einsum(pattern, *x)
class CupyBackend(AbstractBackend):
framework_name = "cupy"
def __init__(self):
import cupy
self.cupy = cupy
def is_appropriate_type(self, tensor):
return isinstance(tensor, self.cupy.ndarray)
def from_numpy(self, x):
return self.cupy.asarray(x)
def to_numpy(self, x):
return self.cupy.asnumpy(x)
def arange(self, start, stop):
return self.cupy.arange(start, stop)
def stack_on_zeroth_dimension(self, tensors: list):
return self.cupy.stack(tensors)
def tile(self, x, repeats):
return self.cupy.tile(x, repeats)
def concat(self, tensors, axis: int):
return self.cupy.concatenate(tensors, axis=axis)
def add_axis(self, x, new_position):
return self.cupy.expand_dims(x, new_position)
def is_float_type(self, x):
return x.dtype in ("float16", "float32", "float64", "float128", "bfloat16")
def einsum(self, pattern, *x):
return self.cupy.einsum(pattern, *x)
class ChainerBackend(AbstractBackend):
framework_name = "chainer"
def __init__(self):
import chainer
import numpy
self.numpy = numpy
self.chainer = chainer
def is_appropriate_type(self, tensor):
return isinstance(tensor, self.chainer.Variable)
def from_numpy(self, x):
return self.chainer.Variable(x.astype("float32"))
def to_numpy(self, x):
if isinstance(x, self.chainer.Variable):
x = x.data
return x
def arange(self, start, stop):
return self.numpy.arange(start, stop)
def reduce(self, x, operation, axes):
return getattr(self.chainer.functions, operation)(x, axis=axes)
def stack_on_zeroth_dimension(self, tensors: list):
return self.chainer.functions.stack(tensors)
def tile(self, x, repeats):
return self.chainer.functions.tile(x, repeats)
def concat(self, tensors, axis: int):
return self.chainer.functions.concat(tensors, axis=axis)
def add_axis(self, x, new_position):
return self.chainer.functions.expand_dims(x, new_position)
def is_float_type(self, x):
return x.dtype in ("float16", "float32", "float64", "float128", "bfloat16")
def layers(self):
from .layers import chainer
return chainer
def einsum(self, pattern, *x):
return self.chainer.functions.einsum(pattern, *x)
class HashableTuple:
"""Overcomes non-hashability of symbolic elements"""
def __init__(self, elements: tuple):
self.elements = elements
def __iter__(self):
for x in self.elements:
yield x
def __len__(self):
return len(self.elements)
def __getitem__(self, item):
return self.elements[item]
# default equality and hash is used (True only with itself, hash taken of id)
class TensorflowBackend(AbstractBackend):
framework_name = "tensorflow"
def __init__(self):
import tensorflow
self.tf = tensorflow
def is_appropriate_type(self, tensor):
return isinstance(tensor, (self.tf.Tensor, self.tf.Variable))
def from_numpy(self, x):
assert self.tf.executing_eagerly()
return self.tf.convert_to_tensor(x)
def to_numpy(self, x):
assert self.tf.executing_eagerly()
return x.numpy()
def arange(self, start, stop):
return self.tf.range(start, stop)
def shape(self, x):
if self.tf.executing_eagerly():
return tuple(UnknownSize() if d is None else int(d) for d in x.shape)
else:
static_shape = x.shape.as_list()
tf_shape = self.tf.shape(x)
# use the static shape where known, otherwise use the TF shape components
shape = tuple([s or tf_shape[dim] for dim, s in enumerate(static_shape)])
try:
hash(shape)
return shape
except BaseException:
# unhashable symbols in shape. Wrap tuple to be hashable.
return HashableTuple(shape)
def reduce(self, x, operation, axes):
return getattr(self.tf, "reduce_" + operation)(x, axis=axes)
def reshape(self, x, shape):
return self.tf.reshape(x, shape)
def transpose(self, x, axes):
return self.tf.transpose(x, axes)
def stack_on_zeroth_dimension(self, tensors: list):
return self.tf.stack(tensors)
def tile(self, x, repeats):
return self.tf.tile(x, repeats)
def concat(self, tensors, axis: int):
return self.tf.concat(tensors, axis=axis)
def add_axis(self, x, new_position):
return self.tf.expand_dims(x, new_position)
def is_float_type(self, x):
return x.dtype in ("float16", "float32", "float64", "float128", "bfloat16")
def layers(self):
from .layers import tensorflow
return tensorflow
def einsum(self, pattern, *x):
return self.tf.einsum(pattern, *x)
class TFKerasBackend(AbstractBackend):
framework_name = "tensorflow.keras"
def __init__(self):
import tensorflow as tf
self.tf = tf
self.keras = tf.keras
self.K = tf.keras.backend
def is_appropriate_type(self, tensor):
return self.tf.is_tensor(tensor) and self.K.is_keras_tensor(tensor)
def create_symbol(self, shape):
return self.keras.Input(batch_shape=shape)
def eval_symbol(self, symbol, input_dict):
model = self.keras.models.Model([var for (var, _) in input_dict], symbol)
return model.predict_on_batch([val for (_, val) in input_dict])
def arange(self, start, stop):
return self.K.arange(start, stop)
def shape(self, x):
shape = self.K.shape(x) # tf tensor
return HashableTuple(tuple(shape))
def reduce(self, x, operation, axes):
return getattr(self.K, operation)(x, axis=axes)
def reshape(self, x, shape):
return self.K.reshape(x, shape)
def transpose(self, x, axes):
return self.K.permute_dimensions(x, axes)
def stack_on_zeroth_dimension(self, tensors: list):
return self.K.stack(tensors)
def tile(self, x, repeats):
return self.K.tile(x, repeats)
def concat(self, tensors, axis: int):
return self.K.concatenate(tensors, axis=axis)
def add_axis(self, x, new_position):
return self.K.expand_dims(x, new_position)
def is_float_type(self, x):
return "float" in self.K.dtype(x)
def layers(self):
from .layers import keras
return keras
class OneFlowBackend(AbstractBackend):
framework_name = "oneflow"
def __init__(self):
import oneflow as flow
self.flow = flow
def is_appropriate_type(self, tensor):
return isinstance(tensor, self.flow.Tensor)
def from_numpy(self, x):
variable = self.flow.from_numpy(x)
if self.is_float_type(variable):
# attach grad only to floating types
variable.requires_grad = True
return variable
def to_numpy(self, x):
return x.detach().cpu().numpy()
def arange(self, start, stop):
return self.flow.arange(start, stop, dtype=self.flow.int64)
def reduce(self, x, operation, reduced_axes):
for axis in sorted(reduced_axes, reverse=True):
if operation == "min":
x, _ = x.min(dim=axis)
elif operation == "max":
x, _ = x.max(dim=axis)
elif operation in ["sum", "mean", "prod", "any", "all"]:
x = getattr(x, operation)(dim=axis)
else:
raise NotImplementedError("Unknown reduction ", operation)
return x
def transpose(self, x, axes):
return x.permute(axes)
def stack_on_zeroth_dimension(self, tensors: list):
return self.flow.stack(tensors)
def add_axes(self, x, n_axes, pos2len):
repeats = [-1] * n_axes
for axis_position, axis_length in pos2len.items():
x = self.add_axis(x, axis_position)
repeats[axis_position] = axis_length
return x.expand(*repeats)
def tile(self, x, repeats):
return x.repeat(repeats)
def concat(self, tensors, axis: int):
return self.flow.concat(tensors, dim=axis)
def add_axis(self, x, new_position):
return self.flow.unsqueeze(x, new_position)
def is_float_type(self, x):
return x.dtype in [self.flow.float16, self.flow.float32, self.flow.float64]
def layers(self):
from .layers import oneflow
return oneflow
def einsum(self, pattern, *x):
return self.flow.einsum(pattern, *x)
class PaddleBackend(AbstractBackend):
framework_name = "paddle"
def __init__(self):
import paddle
self.paddle = paddle
def is_appropriate_type(self, tensor):
return isinstance(tensor, (self.paddle.Tensor, self.paddle.static.Variable))
def from_numpy(self, x):
tensor = self.paddle.to_tensor(x)
tensor.stop_gradient = False
return tensor
def to_numpy(self, x):
return x.detach().numpy()
def arange(self, start, stop):
return self.paddle.arange(start, stop, dtype=self.paddle.int64)
def reduce(self, x, operation, axes):
if len(axes) == x.ndim:
# currently paddle returns 1d tensor instead of 0d
return super().reduce(x, operation, axes).squeeze(0)
else:
return super().reduce(x, operation, axes)
def transpose(self, x, axes):
return x.transpose(axes)
def add_axes(self, x, n_axes, pos2len):
repeats = [-1] * n_axes
for axis_position, axis_length in pos2len.items():
x = self.add_axis(x, axis_position)
repeats[axis_position] = axis_length
return x.expand(repeats)
def stack_on_zeroth_dimension(self, tensors: list):
return self.paddle.stack(tensors)
def reshape(self, x, shape):
return x.reshape(shape)
def tile(self, x, repeats):
return x.tile(repeats)
def concat(self, tensors, axis: int):
return self.paddle.concat(tensors, axis=axis)
def add_axis(self, x, new_position):
return x.unsqueeze(new_position)
def is_float_type(self, x):
return x.dtype in [self.paddle.float16, self.paddle.float32, self.paddle.float64]
def layers(self):
from .layers import paddle
return paddle
def einsum(self, pattern, *x):
return self.paddle.einsum(pattern, *x)
def shape(self, x):
return tuple(x.shape)
class TinygradBackend(AbstractBackend):
framework_name = "tinygrad"
def __init__(self):
import tinygrad
self.tinygrad = tinygrad
def is_appropriate_type(self, tensor):
return isinstance(tensor, self.tinygrad.Tensor)
def from_numpy(self, x):
return self.tinygrad.Tensor(x)
def to_numpy(self, x):
return x.numpy()
def arange(self, start, stop):
return self.tinygrad.Tensor.arange(start, stop)
def shape(self, x):
return x.shape
def reshape(self, x, shape):
return x.reshape(shape)
def transpose(self, x, axes):
return x.permute(axes)
def reduce(self, x, operation, axes):
for axis in sorted(axes, reverse=True):
x = getattr(x, operation)(axis=axis)
return x
def stack_on_zeroth_dimension(self, tensors: list):
return self.tinygrad.Tensor.stack(tensors)
def add_axis(self, x, new_position):
return x.unsqueeze(new_position)
def tile(self, x, repeats):
return x.repeat(repeats)
def concat(self, tensors, axis: int):
return tensors[0].cat(tensors[1:], axis) if len(tensors) > 1 else tensors[0]
def is_float_type(self, x):
return self.tinygrad.dtypes.is_float(x.dtype)
def einsum(self, pattern, *x):
return self.tinygrad.Tensor.einsum(pattern, *x)