218 lines
8.1 KiB
Python
218 lines
8.1 KiB
Python
import io
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
from .constants import INFERENCE_ENDPOINT
|
|
from .hf_api import HfApi
|
|
from .utils import build_hf_headers, get_session, is_pillow_available, logging, validate_hf_hub_args
|
|
from .utils._deprecation import _deprecate_method
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
ALL_TASKS = [
|
|
# NLP
|
|
"text-classification",
|
|
"token-classification",
|
|
"table-question-answering",
|
|
"question-answering",
|
|
"zero-shot-classification",
|
|
"translation",
|
|
"summarization",
|
|
"conversational",
|
|
"feature-extraction",
|
|
"text-generation",
|
|
"text2text-generation",
|
|
"fill-mask",
|
|
"sentence-similarity",
|
|
# Audio
|
|
"text-to-speech",
|
|
"automatic-speech-recognition",
|
|
"audio-to-audio",
|
|
"audio-classification",
|
|
"voice-activity-detection",
|
|
# Computer vision
|
|
"image-classification",
|
|
"object-detection",
|
|
"image-segmentation",
|
|
"text-to-image",
|
|
"image-to-image",
|
|
# Others
|
|
"tabular-classification",
|
|
"tabular-regression",
|
|
]
|
|
|
|
|
|
class InferenceApi:
|
|
"""Client to configure requests and make calls to the HuggingFace Inference API.
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from huggingface_hub.inference_api import InferenceApi
|
|
|
|
>>> # Mask-fill example
|
|
>>> inference = InferenceApi("bert-base-uncased")
|
|
>>> inference(inputs="The goal of life is [MASK].")
|
|
[{'sequence': 'the goal of life is life.', 'score': 0.10933292657136917, 'token': 2166, 'token_str': 'life'}]
|
|
|
|
>>> # Question Answering example
|
|
>>> inference = InferenceApi("deepset/roberta-base-squad2")
|
|
>>> inputs = {
|
|
... "question": "What's my name?",
|
|
... "context": "My name is Clara and I live in Berkeley.",
|
|
... }
|
|
>>> inference(inputs)
|
|
{'score': 0.9326569437980652, 'start': 11, 'end': 16, 'answer': 'Clara'}
|
|
|
|
>>> # Zero-shot example
|
|
>>> inference = InferenceApi("typeform/distilbert-base-uncased-mnli")
|
|
>>> inputs = "Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!"
|
|
>>> params = {"candidate_labels": ["refund", "legal", "faq"]}
|
|
>>> inference(inputs, params)
|
|
{'sequence': 'Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!', 'labels': ['refund', 'faq', 'legal'], 'scores': [0.9378499388694763, 0.04914155602455139, 0.013008488342165947]}
|
|
|
|
>>> # Overriding configured task
|
|
>>> inference = InferenceApi("bert-base-uncased", task="feature-extraction")
|
|
|
|
>>> # Text-to-image
|
|
>>> inference = InferenceApi("stabilityai/stable-diffusion-2-1")
|
|
>>> inference("cat")
|
|
<PIL.PngImagePlugin.PngImageFile image (...)>
|
|
|
|
>>> # Return as raw response to parse the output yourself
|
|
>>> inference = InferenceApi("mio/amadeus")
|
|
>>> response = inference("hello world", raw_response=True)
|
|
>>> response.headers
|
|
{"Content-Type": "audio/flac", ...}
|
|
>>> response.content # raw bytes from server
|
|
b'(...)'
|
|
```
|
|
"""
|
|
|
|
@validate_hf_hub_args
|
|
@_deprecate_method(
|
|
version="1.0",
|
|
message=(
|
|
"`InferenceApi` client is deprecated in favor of the more feature-complete `InferenceClient`. Check out"
|
|
" this guide to learn how to convert your script to use it:"
|
|
" https://huggingface.co/docs/huggingface_hub/guides/inference#legacy-inferenceapi-client."
|
|
),
|
|
)
|
|
def __init__(
|
|
self,
|
|
repo_id: str,
|
|
task: Optional[str] = None,
|
|
token: Optional[str] = None,
|
|
gpu: bool = False,
|
|
):
|
|
"""Inits headers and API call information.
|
|
|
|
Args:
|
|
repo_id (``str``):
|
|
Id of repository (e.g. `user/bert-base-uncased`).
|
|
task (``str``, `optional`, defaults ``None``):
|
|
Whether to force a task instead of using task specified in the
|
|
repository.
|
|
token (`str`, `optional`):
|
|
The API token to use as HTTP bearer authorization. This is not
|
|
the authentication token. You can find the token in
|
|
https://huggingface.co/settings/token. Alternatively, you can
|
|
find both your organizations and personal API tokens using
|
|
`HfApi().whoami(token)`.
|
|
gpu (`bool`, `optional`, defaults `False`):
|
|
Whether to use GPU instead of CPU for inference(requires Startup
|
|
plan at least).
|
|
"""
|
|
self.options = {"wait_for_model": True, "use_gpu": gpu}
|
|
self.headers = build_hf_headers(token=token)
|
|
|
|
# Configure task
|
|
model_info = HfApi(token=token).model_info(repo_id=repo_id)
|
|
if not model_info.pipeline_tag and not task:
|
|
raise ValueError(
|
|
"Task not specified in the repository. Please add it to the model card"
|
|
" using pipeline_tag"
|
|
" (https://huggingface.co/docs#how-is-a-models-type-of-inference-api-and-widget-determined)"
|
|
)
|
|
|
|
if task and task != model_info.pipeline_tag:
|
|
if task not in ALL_TASKS:
|
|
raise ValueError(f"Invalid task {task}. Make sure it's valid.")
|
|
|
|
logger.warning(
|
|
"You're using a different task than the one specified in the"
|
|
" repository. Be sure to know what you're doing :)"
|
|
)
|
|
self.task = task
|
|
else:
|
|
assert model_info.pipeline_tag is not None, "Pipeline tag cannot be None"
|
|
self.task = model_info.pipeline_tag
|
|
|
|
self.api_url = f"{INFERENCE_ENDPOINT}/pipeline/{self.task}/{repo_id}"
|
|
|
|
def __repr__(self):
|
|
# Do not add headers to repr to avoid leaking token.
|
|
return f"InferenceAPI(api_url='{self.api_url}', task='{self.task}', options={self.options})"
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: Optional[Union[str, Dict, List[str], List[List[str]]]] = None,
|
|
params: Optional[Dict] = None,
|
|
data: Optional[bytes] = None,
|
|
raw_response: bool = False,
|
|
) -> Any:
|
|
"""Make a call to the Inference API.
|
|
|
|
Args:
|
|
inputs (`str` or `Dict` or `List[str]` or `List[List[str]]`, *optional*):
|
|
Inputs for the prediction.
|
|
params (`Dict`, *optional*):
|
|
Additional parameters for the models. Will be sent as `parameters` in the
|
|
payload.
|
|
data (`bytes`, *optional*):
|
|
Bytes content of the request. In this case, leave `inputs` and `params` empty.
|
|
raw_response (`bool`, defaults to `False`):
|
|
If `True`, the raw `Response` object is returned. You can parse its content
|
|
as preferred. By default, the content is parsed into a more practical format
|
|
(json dictionary or PIL Image for example).
|
|
"""
|
|
# Build payload
|
|
payload: Dict[str, Any] = {
|
|
"options": self.options,
|
|
}
|
|
if inputs:
|
|
payload["inputs"] = inputs
|
|
if params:
|
|
payload["parameters"] = params
|
|
|
|
# Make API call
|
|
response = get_session().post(self.api_url, headers=self.headers, json=payload, data=data)
|
|
|
|
# Let the user handle the response
|
|
if raw_response:
|
|
return response
|
|
|
|
# By default, parse the response for the user.
|
|
content_type = response.headers.get("Content-Type") or ""
|
|
if content_type.startswith("image"):
|
|
if not is_pillow_available():
|
|
raise ImportError(
|
|
f"Task '{self.task}' returned as image but Pillow is not installed."
|
|
" Please install it (`pip install Pillow`) or pass"
|
|
" `raw_response=True` to get the raw `Response` object and parse"
|
|
" the image by yourself."
|
|
)
|
|
|
|
from PIL import Image
|
|
|
|
return Image.open(io.BytesIO(response.content))
|
|
elif content_type == "application/json":
|
|
return response.json()
|
|
else:
|
|
raise NotImplementedError(
|
|
f"{content_type} output type is not implemented yet. You can pass"
|
|
" `raw_response=True` to get the raw `Response` object and parse the"
|
|
" output by yourself."
|
|
)
|