ai-content-maker/.venv/Lib/site-packages/huggingface_hub/inference_api.py

218 lines
8.1 KiB
Python

import io
from typing import Any, Dict, List, Optional, Union
from .constants import INFERENCE_ENDPOINT
from .hf_api import HfApi
from .utils import build_hf_headers, get_session, is_pillow_available, logging, validate_hf_hub_args
from .utils._deprecation import _deprecate_method
logger = logging.get_logger(__name__)
ALL_TASKS = [
# NLP
"text-classification",
"token-classification",
"table-question-answering",
"question-answering",
"zero-shot-classification",
"translation",
"summarization",
"conversational",
"feature-extraction",
"text-generation",
"text2text-generation",
"fill-mask",
"sentence-similarity",
# Audio
"text-to-speech",
"automatic-speech-recognition",
"audio-to-audio",
"audio-classification",
"voice-activity-detection",
# Computer vision
"image-classification",
"object-detection",
"image-segmentation",
"text-to-image",
"image-to-image",
# Others
"tabular-classification",
"tabular-regression",
]
class InferenceApi:
"""Client to configure requests and make calls to the HuggingFace Inference API.
Example:
```python
>>> from huggingface_hub.inference_api import InferenceApi
>>> # Mask-fill example
>>> inference = InferenceApi("bert-base-uncased")
>>> inference(inputs="The goal of life is [MASK].")
[{'sequence': 'the goal of life is life.', 'score': 0.10933292657136917, 'token': 2166, 'token_str': 'life'}]
>>> # Question Answering example
>>> inference = InferenceApi("deepset/roberta-base-squad2")
>>> inputs = {
... "question": "What's my name?",
... "context": "My name is Clara and I live in Berkeley.",
... }
>>> inference(inputs)
{'score': 0.9326569437980652, 'start': 11, 'end': 16, 'answer': 'Clara'}
>>> # Zero-shot example
>>> inference = InferenceApi("typeform/distilbert-base-uncased-mnli")
>>> inputs = "Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!"
>>> params = {"candidate_labels": ["refund", "legal", "faq"]}
>>> inference(inputs, params)
{'sequence': 'Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!', 'labels': ['refund', 'faq', 'legal'], 'scores': [0.9378499388694763, 0.04914155602455139, 0.013008488342165947]}
>>> # Overriding configured task
>>> inference = InferenceApi("bert-base-uncased", task="feature-extraction")
>>> # Text-to-image
>>> inference = InferenceApi("stabilityai/stable-diffusion-2-1")
>>> inference("cat")
<PIL.PngImagePlugin.PngImageFile image (...)>
>>> # Return as raw response to parse the output yourself
>>> inference = InferenceApi("mio/amadeus")
>>> response = inference("hello world", raw_response=True)
>>> response.headers
{"Content-Type": "audio/flac", ...}
>>> response.content # raw bytes from server
b'(...)'
```
"""
@validate_hf_hub_args
@_deprecate_method(
version="1.0",
message=(
"`InferenceApi` client is deprecated in favor of the more feature-complete `InferenceClient`. Check out"
" this guide to learn how to convert your script to use it:"
" https://huggingface.co/docs/huggingface_hub/guides/inference#legacy-inferenceapi-client."
),
)
def __init__(
self,
repo_id: str,
task: Optional[str] = None,
token: Optional[str] = None,
gpu: bool = False,
):
"""Inits headers and API call information.
Args:
repo_id (``str``):
Id of repository (e.g. `user/bert-base-uncased`).
task (``str``, `optional`, defaults ``None``):
Whether to force a task instead of using task specified in the
repository.
token (`str`, `optional`):
The API token to use as HTTP bearer authorization. This is not
the authentication token. You can find the token in
https://huggingface.co/settings/token. Alternatively, you can
find both your organizations and personal API tokens using
`HfApi().whoami(token)`.
gpu (`bool`, `optional`, defaults `False`):
Whether to use GPU instead of CPU for inference(requires Startup
plan at least).
"""
self.options = {"wait_for_model": True, "use_gpu": gpu}
self.headers = build_hf_headers(token=token)
# Configure task
model_info = HfApi(token=token).model_info(repo_id=repo_id)
if not model_info.pipeline_tag and not task:
raise ValueError(
"Task not specified in the repository. Please add it to the model card"
" using pipeline_tag"
" (https://huggingface.co/docs#how-is-a-models-type-of-inference-api-and-widget-determined)"
)
if task and task != model_info.pipeline_tag:
if task not in ALL_TASKS:
raise ValueError(f"Invalid task {task}. Make sure it's valid.")
logger.warning(
"You're using a different task than the one specified in the"
" repository. Be sure to know what you're doing :)"
)
self.task = task
else:
assert model_info.pipeline_tag is not None, "Pipeline tag cannot be None"
self.task = model_info.pipeline_tag
self.api_url = f"{INFERENCE_ENDPOINT}/pipeline/{self.task}/{repo_id}"
def __repr__(self):
# Do not add headers to repr to avoid leaking token.
return f"InferenceAPI(api_url='{self.api_url}', task='{self.task}', options={self.options})"
def __call__(
self,
inputs: Optional[Union[str, Dict, List[str], List[List[str]]]] = None,
params: Optional[Dict] = None,
data: Optional[bytes] = None,
raw_response: bool = False,
) -> Any:
"""Make a call to the Inference API.
Args:
inputs (`str` or `Dict` or `List[str]` or `List[List[str]]`, *optional*):
Inputs for the prediction.
params (`Dict`, *optional*):
Additional parameters for the models. Will be sent as `parameters` in the
payload.
data (`bytes`, *optional*):
Bytes content of the request. In this case, leave `inputs` and `params` empty.
raw_response (`bool`, defaults to `False`):
If `True`, the raw `Response` object is returned. You can parse its content
as preferred. By default, the content is parsed into a more practical format
(json dictionary or PIL Image for example).
"""
# Build payload
payload: Dict[str, Any] = {
"options": self.options,
}
if inputs:
payload["inputs"] = inputs
if params:
payload["parameters"] = params
# Make API call
response = get_session().post(self.api_url, headers=self.headers, json=payload, data=data)
# Let the user handle the response
if raw_response:
return response
# By default, parse the response for the user.
content_type = response.headers.get("Content-Type") or ""
if content_type.startswith("image"):
if not is_pillow_available():
raise ImportError(
f"Task '{self.task}' returned as image but Pillow is not installed."
" Please install it (`pip install Pillow`) or pass"
" `raw_response=True` to get the raw `Response` object and parse"
" the image by yourself."
)
from PIL import Image
return Image.open(io.BytesIO(response.content))
elif content_type == "application/json":
return response.json()
else:
raise NotImplementedError(
f"{content_type} output type is not implemented yet. You can pass"
" `raw_response=True` to get the raw `Response` object and parse the"
" output by yourself."
)