ai-content-maker/.venv/Lib/site-packages/networkx/drawing/tests/test_pylab.py

755 lines
26 KiB
Python

"""Unit tests for matplotlib drawing functions."""
import itertools
import os
import pytest
mpl = pytest.importorskip("matplotlib")
np = pytest.importorskip("numpy")
mpl.use("PS")
plt = pytest.importorskip("matplotlib.pyplot")
plt.rcParams["text.usetex"] = False
import networkx as nx
barbell = nx.barbell_graph(4, 6)
def test_draw():
try:
functions = [
nx.draw_circular,
nx.draw_kamada_kawai,
nx.draw_planar,
nx.draw_random,
nx.draw_spectral,
nx.draw_spring,
nx.draw_shell,
]
options = [{"node_color": "black", "node_size": 100, "width": 3}]
for function, option in itertools.product(functions, options):
function(barbell, **option)
plt.savefig("test.ps")
finally:
try:
os.unlink("test.ps")
except OSError:
pass
def test_draw_shell_nlist():
try:
nlist = [list(range(4)), list(range(4, 10)), list(range(10, 14))]
nx.draw_shell(barbell, nlist=nlist)
plt.savefig("test.ps")
finally:
try:
os.unlink("test.ps")
except OSError:
pass
def test_edge_colormap():
colors = range(barbell.number_of_edges())
nx.draw_spring(
barbell, edge_color=colors, width=4, edge_cmap=plt.cm.Blues, with_labels=True
)
# plt.show()
def test_arrows():
nx.draw_spring(barbell.to_directed())
# plt.show()
@pytest.mark.parametrize(
("edge_color", "expected"),
(
(None, "black"), # Default
("r", "red"), # Non-default color string
(["r"], "red"), # Single non-default color in a list
((1.0, 1.0, 0.0), "yellow"), # single color as rgb tuple
([(1.0, 1.0, 0.0)], "yellow"), # single color as rgb tuple in list
((0, 1, 0, 1), "lime"), # single color as rgba tuple
([(0, 1, 0, 1)], "lime"), # single color as rgba tuple in list
("#0000ff", "blue"), # single color hex code
(["#0000ff"], "blue"), # hex code in list
),
)
@pytest.mark.parametrize("edgelist", (None, [(0, 1)]))
def test_single_edge_color_undirected(edge_color, expected, edgelist):
"""Tests ways of specifying all edges have a single color for edges
drawn with a LineCollection"""
G = nx.path_graph(3)
drawn_edges = nx.draw_networkx_edges(
G, pos=nx.random_layout(G), edgelist=edgelist, edge_color=edge_color
)
assert mpl.colors.same_color(drawn_edges.get_color(), expected)
@pytest.mark.parametrize(
("edge_color", "expected"),
(
(None, "black"), # Default
("r", "red"), # Non-default color string
(["r"], "red"), # Single non-default color in a list
((1.0, 1.0, 0.0), "yellow"), # single color as rgb tuple
([(1.0, 1.0, 0.0)], "yellow"), # single color as rgb tuple in list
((0, 1, 0, 1), "lime"), # single color as rgba tuple
([(0, 1, 0, 1)], "lime"), # single color as rgba tuple in list
("#0000ff", "blue"), # single color hex code
(["#0000ff"], "blue"), # hex code in list
),
)
@pytest.mark.parametrize("edgelist", (None, [(0, 1)]))
def test_single_edge_color_directed(edge_color, expected, edgelist):
"""Tests ways of specifying all edges have a single color for edges drawn
with FancyArrowPatches"""
G = nx.path_graph(3, create_using=nx.DiGraph)
drawn_edges = nx.draw_networkx_edges(
G, pos=nx.random_layout(G), edgelist=edgelist, edge_color=edge_color
)
for fap in drawn_edges:
assert mpl.colors.same_color(fap.get_edgecolor(), expected)
def test_edge_color_tuple_interpretation():
"""If edge_color is a sequence with the same length as edgelist, then each
value in edge_color is mapped onto each edge via colormap."""
G = nx.path_graph(6, create_using=nx.DiGraph)
pos = {n: (n, n) for n in range(len(G))}
# num edges != 3 or 4 --> edge_color interpreted as rgb(a)
for ec in ((0, 0, 1), (0, 0, 1, 1)):
# More than 4 edges
drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=ec)
for fap in drawn_edges:
assert mpl.colors.same_color(fap.get_edgecolor(), ec)
# Fewer than 3 edges
drawn_edges = nx.draw_networkx_edges(
G, pos, edgelist=[(0, 1), (1, 2)], edge_color=ec
)
for fap in drawn_edges:
assert mpl.colors.same_color(fap.get_edgecolor(), ec)
# num edges == 3, len(edge_color) == 4: interpreted as rgba
drawn_edges = nx.draw_networkx_edges(
G, pos, edgelist=[(0, 1), (1, 2), (2, 3)], edge_color=(0, 0, 1, 1)
)
for fap in drawn_edges:
assert mpl.colors.same_color(fap.get_edgecolor(), "blue")
# num edges == 4, len(edge_color) == 3: interpreted as rgb
drawn_edges = nx.draw_networkx_edges(
G, pos, edgelist=[(0, 1), (1, 2), (2, 3), (3, 4)], edge_color=(0, 0, 1)
)
for fap in drawn_edges:
assert mpl.colors.same_color(fap.get_edgecolor(), "blue")
# num edges == len(edge_color) == 3: interpreted with cmap, *not* as rgb
drawn_edges = nx.draw_networkx_edges(
G, pos, edgelist=[(0, 1), (1, 2), (2, 3)], edge_color=(0, 0, 1)
)
assert mpl.colors.same_color(
drawn_edges[0].get_edgecolor(), drawn_edges[1].get_edgecolor()
)
for fap in drawn_edges:
assert not mpl.colors.same_color(fap.get_edgecolor(), "blue")
# num edges == len(edge_color) == 4: interpreted with cmap, *not* as rgba
drawn_edges = nx.draw_networkx_edges(
G, pos, edgelist=[(0, 1), (1, 2), (2, 3), (3, 4)], edge_color=(0, 0, 1, 1)
)
assert mpl.colors.same_color(
drawn_edges[0].get_edgecolor(), drawn_edges[1].get_edgecolor()
)
assert mpl.colors.same_color(
drawn_edges[2].get_edgecolor(), drawn_edges[3].get_edgecolor()
)
for fap in drawn_edges:
assert not mpl.colors.same_color(fap.get_edgecolor(), "blue")
def test_fewer_edge_colors_than_num_edges_directed():
"""Test that the edge colors are cycled when there are fewer specified
colors than edges."""
G = barbell.to_directed()
pos = nx.random_layout(barbell)
edgecolors = ("r", "g", "b")
drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=edgecolors)
for fap, expected in zip(drawn_edges, itertools.cycle(edgecolors)):
assert mpl.colors.same_color(fap.get_edgecolor(), expected)
def test_more_edge_colors_than_num_edges_directed():
"""Test that extra edge colors are ignored when there are more specified
colors than edges."""
G = nx.path_graph(4, create_using=nx.DiGraph) # 3 edges
pos = nx.random_layout(barbell)
edgecolors = ("r", "g", "b", "c") # 4 edge colors
drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=edgecolors)
for fap, expected in zip(drawn_edges, edgecolors[:-1]):
assert mpl.colors.same_color(fap.get_edgecolor(), expected)
def test_edge_color_string_with_gloabl_alpha_undirected():
edge_collection = nx.draw_networkx_edges(
barbell,
pos=nx.random_layout(barbell),
edgelist=[(0, 1), (1, 2)],
edge_color="purple",
alpha=0.2,
)
ec = edge_collection.get_color().squeeze() # as rgba tuple
assert len(edge_collection.get_paths()) == 2
assert mpl.colors.same_color(ec[:-1], "purple")
assert ec[-1] == 0.2
def test_edge_color_string_with_global_alpha_directed():
drawn_edges = nx.draw_networkx_edges(
barbell.to_directed(),
pos=nx.random_layout(barbell),
edgelist=[(0, 1), (1, 2)],
edge_color="purple",
alpha=0.2,
)
assert len(drawn_edges) == 2
for fap in drawn_edges:
ec = fap.get_edgecolor() # As rgba tuple
assert mpl.colors.same_color(ec[:-1], "purple")
assert ec[-1] == 0.2
@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
def test_edge_width_default_value(graph_type):
"""Test the default linewidth for edges drawn either via LineCollection or
FancyArrowPatches."""
G = nx.path_graph(2, create_using=graph_type)
pos = {n: (n, n) for n in range(len(G))}
drawn_edges = nx.draw_networkx_edges(G, pos)
if isinstance(drawn_edges, list): # directed case: list of FancyArrowPatch
drawn_edges = drawn_edges[0]
assert drawn_edges.get_linewidth() == 1
@pytest.mark.parametrize(
("edgewidth", "expected"),
(
(3, 3), # single-value, non-default
([3], 3), # Single value as a list
),
)
def test_edge_width_single_value_undirected(edgewidth, expected):
G = nx.path_graph(4)
pos = {n: (n, n) for n in range(len(G))}
drawn_edges = nx.draw_networkx_edges(G, pos, width=edgewidth)
assert len(drawn_edges.get_paths()) == 3
assert drawn_edges.get_linewidth() == expected
@pytest.mark.parametrize(
("edgewidth", "expected"),
(
(3, 3), # single-value, non-default
([3], 3), # Single value as a list
),
)
def test_edge_width_single_value_directed(edgewidth, expected):
G = nx.path_graph(4, create_using=nx.DiGraph)
pos = {n: (n, n) for n in range(len(G))}
drawn_edges = nx.draw_networkx_edges(G, pos, width=edgewidth)
assert len(drawn_edges) == 3
for fap in drawn_edges:
assert fap.get_linewidth() == expected
@pytest.mark.parametrize(
"edgelist",
(
[(0, 1), (1, 2), (2, 3)], # one width specification per edge
None, # fewer widths than edges - widths cycle
[(0, 1), (1, 2)], # More widths than edges - unused widths ignored
),
)
def test_edge_width_sequence(edgelist):
G = barbell.to_directed()
pos = nx.random_layout(G)
widths = (0.5, 2.0, 12.0)
drawn_edges = nx.draw_networkx_edges(G, pos, edgelist=edgelist, width=widths)
for fap, expected_width in zip(drawn_edges, itertools.cycle(widths)):
assert fap.get_linewidth() == expected_width
def test_edge_color_with_edge_vmin_vmax():
"""Test that edge_vmin and edge_vmax properly set the dynamic range of the
color map when num edges == len(edge_colors)."""
G = nx.path_graph(3, create_using=nx.DiGraph)
pos = nx.random_layout(G)
# Extract colors from the original (unscaled) colormap
drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=[0, 1.0])
orig_colors = [e.get_edgecolor() for e in drawn_edges]
# Colors from scaled colormap
drawn_edges = nx.draw_networkx_edges(
G, pos, edge_color=[0.2, 0.8], edge_vmin=0.2, edge_vmax=0.8
)
scaled_colors = [e.get_edgecolor() for e in drawn_edges]
assert mpl.colors.same_color(orig_colors, scaled_colors)
def test_directed_edges_linestyle_default():
"""Test default linestyle for edges drawn with FancyArrowPatches."""
G = nx.path_graph(4, create_using=nx.DiGraph) # Graph with 3 edges
pos = {n: (n, n) for n in range(len(G))}
# edge with default style
drawn_edges = nx.draw_networkx_edges(G, pos)
assert len(drawn_edges) == 3
for fap in drawn_edges:
assert fap.get_linestyle() == "solid"
@pytest.mark.parametrize(
"style",
(
"dashed", # edge with string style
"--", # edge with simplified string style
(1, (1, 1)), # edge with (offset, onoffseq) style
),
)
def test_directed_edges_linestyle_single_value(style):
"""Tests support for specifying linestyles with a single value to be applied to
all edges in ``draw_networkx_edges`` for FancyArrowPatch outputs
(e.g. directed edges)."""
G = nx.path_graph(4, create_using=nx.DiGraph) # Graph with 3 edges
pos = {n: (n, n) for n in range(len(G))}
drawn_edges = nx.draw_networkx_edges(G, pos, style=style)
assert len(drawn_edges) == 3
for fap in drawn_edges:
assert fap.get_linestyle() == style
@pytest.mark.parametrize(
"style_seq",
(
["dashed"], # edge with string style in list
["--"], # edge with simplified string style in list
[(1, (1, 1))], # edge with (offset, onoffseq) style in list
["--", "-", ":"], # edges with styles for each edge
["--", "-"], # edges with fewer styles than edges (styles cycle)
["--", "-", ":", "-."], # edges with more styles than edges (extra unused)
),
)
def test_directed_edges_linestyle_sequence(style_seq):
"""Tests support for specifying linestyles with sequences in
``draw_networkx_edges`` for FancyArrowPatch outputs (e.g. directed edges)."""
G = nx.path_graph(4, create_using=nx.DiGraph) # Graph with 3 edges
pos = {n: (n, n) for n in range(len(G))}
drawn_edges = nx.draw_networkx_edges(G, pos, style=style_seq)
assert len(drawn_edges) == 3
for fap, style in zip(drawn_edges, itertools.cycle(style_seq)):
assert fap.get_linestyle() == style
def test_labels_and_colors():
G = nx.cubical_graph()
pos = nx.spring_layout(G) # positions for all nodes
# nodes
nx.draw_networkx_nodes(
G, pos, nodelist=[0, 1, 2, 3], node_color="r", node_size=500, alpha=0.75
)
nx.draw_networkx_nodes(
G,
pos,
nodelist=[4, 5, 6, 7],
node_color="b",
node_size=500,
alpha=[0.25, 0.5, 0.75, 1.0],
)
# edges
nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5)
nx.draw_networkx_edges(
G,
pos,
edgelist=[(0, 1), (1, 2), (2, 3), (3, 0)],
width=8,
alpha=0.5,
edge_color="r",
)
nx.draw_networkx_edges(
G,
pos,
edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)],
width=8,
alpha=0.5,
edge_color="b",
)
nx.draw_networkx_edges(
G,
pos,
edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)],
min_source_margin=0.5,
min_target_margin=0.75,
width=8,
edge_color="b",
)
# some math labels
labels = {}
labels[0] = r"$a$"
labels[1] = r"$b$"
labels[2] = r"$c$"
labels[3] = r"$d$"
labels[4] = r"$\alpha$"
labels[5] = r"$\beta$"
labels[6] = r"$\gamma$"
labels[7] = r"$\delta$"
nx.draw_networkx_labels(G, pos, labels, font_size=16)
nx.draw_networkx_edge_labels(G, pos, edge_labels=None, rotate=False)
nx.draw_networkx_edge_labels(G, pos, edge_labels={(4, 5): "4-5"})
# plt.show()
@pytest.mark.mpl_image_compare
def test_house_with_colors():
G = nx.house_graph()
# explicitly set positions
fig, ax = plt.subplots()
pos = {0: (0, 0), 1: (1, 0), 2: (0, 1), 3: (1, 1), 4: (0.5, 2.0)}
# Plot nodes with different properties for the "wall" and "roof" nodes
nx.draw_networkx_nodes(
G,
pos,
node_size=3000,
nodelist=[0, 1, 2, 3],
node_color="tab:blue",
)
nx.draw_networkx_nodes(
G, pos, node_size=2000, nodelist=[4], node_color="tab:orange"
)
nx.draw_networkx_edges(G, pos, alpha=0.5, width=6)
# Customize axes
ax.margins(0.11)
plt.tight_layout()
plt.axis("off")
return fig
def test_axes():
fig, ax = plt.subplots()
nx.draw(barbell, ax=ax)
nx.draw_networkx_edge_labels(barbell, nx.circular_layout(barbell), ax=ax)
def test_empty_graph():
G = nx.Graph()
nx.draw(G)
def test_draw_empty_nodes_return_values():
# See Issue #3833
import matplotlib.collections # call as mpl.collections
G = nx.Graph([(1, 2), (2, 3)])
DG = nx.DiGraph([(1, 2), (2, 3)])
pos = nx.circular_layout(G)
assert isinstance(
nx.draw_networkx_nodes(G, pos, nodelist=[]), mpl.collections.PathCollection
)
assert isinstance(
nx.draw_networkx_nodes(DG, pos, nodelist=[]), mpl.collections.PathCollection
)
# drawing empty edges used to return an empty LineCollection or empty list.
# Now it is always an empty list (because edges are now lists of FancyArrows)
assert nx.draw_networkx_edges(G, pos, edgelist=[], arrows=True) == []
assert nx.draw_networkx_edges(G, pos, edgelist=[], arrows=False) == []
assert nx.draw_networkx_edges(DG, pos, edgelist=[], arrows=False) == []
assert nx.draw_networkx_edges(DG, pos, edgelist=[], arrows=True) == []
def test_multigraph_edgelist_tuples():
# See Issue #3295
G = nx.path_graph(3, create_using=nx.MultiDiGraph)
nx.draw_networkx(G, edgelist=[(0, 1, 0)])
nx.draw_networkx(G, edgelist=[(0, 1, 0)], node_size=[10, 20, 0])
def test_alpha_iter():
pos = nx.random_layout(barbell)
fig = plt.figure()
# with fewer alpha elements than nodes
fig.add_subplot(131) # Each test in a new axis object
nx.draw_networkx_nodes(barbell, pos, alpha=[0.1, 0.2])
# with equal alpha elements and nodes
num_nodes = len(barbell.nodes)
alpha = [x / num_nodes for x in range(num_nodes)]
colors = range(num_nodes)
fig.add_subplot(132)
nx.draw_networkx_nodes(barbell, pos, node_color=colors, alpha=alpha)
# with more alpha elements than nodes
alpha.append(1)
fig.add_subplot(133)
nx.draw_networkx_nodes(barbell, pos, alpha=alpha)
def test_error_invalid_kwds():
with pytest.raises(ValueError, match="Received invalid argument"):
nx.draw(barbell, foo="bar")
def test_draw_networkx_arrowsize_incorrect_size():
G = nx.DiGraph([(0, 1), (0, 2), (0, 3), (1, 3)])
arrowsize = [1, 2, 3]
with pytest.raises(
ValueError, match="arrowsize should have the same length as edgelist"
):
nx.draw(G, arrowsize=arrowsize)
@pytest.mark.parametrize("arrowsize", (30, [10, 20, 30]))
def test_draw_edges_arrowsize(arrowsize):
G = nx.DiGraph([(0, 1), (0, 2), (1, 2)])
pos = {0: (0, 0), 1: (0, 1), 2: (1, 0)}
edges = nx.draw_networkx_edges(G, pos=pos, arrowsize=arrowsize)
arrowsize = itertools.repeat(arrowsize) if isinstance(arrowsize, int) else arrowsize
for fap, expected in zip(edges, arrowsize):
assert isinstance(fap, mpl.patches.FancyArrowPatch)
assert fap.get_mutation_scale() == expected
def test_np_edgelist():
# see issue #4129
nx.draw_networkx(barbell, edgelist=np.array([(0, 2), (0, 3)]))
def test_draw_nodes_missing_node_from_position():
G = nx.path_graph(3)
pos = {0: (0, 0), 1: (1, 1)} # No position for node 2
with pytest.raises(nx.NetworkXError, match="has no position"):
nx.draw_networkx_nodes(G, pos)
# NOTE: parametrizing on marker to test both branches of internal
# nx.draw_networkx_edges.to_marker_edge function
@pytest.mark.parametrize("node_shape", ("o", "s"))
def test_draw_edges_min_source_target_margins(node_shape):
"""Test that there is a wider gap between the node and the start of an
incident edge when min_source_margin is specified.
This test checks that the use of min_{source/target}_margin kwargs result
in shorter (more padding) between the edges and source and target nodes.
As a crude visual example, let 's' and 't' represent source and target
nodes, respectively:
Default:
s-----------------------------t
With margins:
s ----------------------- t
"""
# Create a single axis object to get consistent pixel coords across
# multiple draws
fig, ax = plt.subplots()
G = nx.DiGraph([(0, 1)])
pos = {0: (0, 0), 1: (1, 0)} # horizontal layout
# Get leftmost and rightmost points of the FancyArrowPatch object
# representing the edge between nodes 0 and 1 (in pixel coordinates)
default_patch = nx.draw_networkx_edges(G, pos, ax=ax, node_shape=node_shape)[0]
default_extent = default_patch.get_extents().corners()[::2, 0]
# Now, do the same but with "padding" for the source and target via the
# min_{source/target}_margin kwargs
padded_patch = nx.draw_networkx_edges(
G,
pos,
ax=ax,
node_shape=node_shape,
min_source_margin=100,
min_target_margin=100,
)[0]
padded_extent = padded_patch.get_extents().corners()[::2, 0]
# With padding, the left-most extent of the edge should be further to the
# right
assert padded_extent[0] > default_extent[0]
# And the rightmost extent of the edge, further to the left
assert padded_extent[1] < default_extent[1]
def test_nonzero_selfloop_with_single_node():
"""Ensure that selfloop extent is non-zero when there is only one node."""
# Create explicit axis object for test
fig, ax = plt.subplots()
# Graph with single node + self loop
G = nx.DiGraph()
G.add_node(0)
G.add_edge(0, 0)
# Draw
patch = nx.draw_networkx_edges(G, {0: (0, 0)})[0]
# The resulting patch must have non-zero extent
bbox = patch.get_extents()
assert bbox.width > 0 and bbox.height > 0
# Cleanup
plt.delaxes(ax)
def test_nonzero_selfloop_with_single_edge_in_edgelist():
"""Ensure that selfloop extent is non-zero when only a single edge is
specified in the edgelist.
"""
# Create explicit axis object for test
fig, ax = plt.subplots()
# Graph with selfloop
G = nx.path_graph(2, create_using=nx.DiGraph)
G.add_edge(1, 1)
pos = {n: (n, n) for n in G.nodes}
# Draw only the selfloop edge via the `edgelist` kwarg
patch = nx.draw_networkx_edges(G, pos, edgelist=[(1, 1)])[0]
# The resulting patch must have non-zero extent
bbox = patch.get_extents()
assert bbox.width > 0 and bbox.height > 0
# Cleanup
plt.delaxes(ax)
def test_apply_alpha():
"""Test apply_alpha when there is a mismatch between the number of
supplied colors and elements.
"""
nodelist = [0, 1, 2]
colorlist = ["r", "g", "b"]
alpha = 0.5
rgba_colors = nx.drawing.nx_pylab.apply_alpha(colorlist, alpha, nodelist)
assert all(rgba_colors[:, -1] == alpha)
def test_draw_edges_toggling_with_arrows_kwarg():
"""
The `arrows` keyword argument is used as a 3-way switch to select which
type of object to use for drawing edges:
- ``arrows=None`` -> default (FancyArrowPatches for directed, else LineCollection)
- ``arrows=True`` -> FancyArrowPatches
- ``arrows=False`` -> LineCollection
"""
import matplotlib.collections
import matplotlib.patches
UG = nx.path_graph(3)
DG = nx.path_graph(3, create_using=nx.DiGraph)
pos = {n: (n, n) for n in UG}
# Use FancyArrowPatches when arrows=True, regardless of graph type
for G in (UG, DG):
edges = nx.draw_networkx_edges(G, pos, arrows=True)
assert len(edges) == len(G.edges)
assert isinstance(edges[0], mpl.patches.FancyArrowPatch)
# Use LineCollection when arrows=False, regardless of graph type
for G in (UG, DG):
edges = nx.draw_networkx_edges(G, pos, arrows=False)
assert isinstance(edges, mpl.collections.LineCollection)
# Default behavior when arrows=None: FAPs for directed, LC's for undirected
edges = nx.draw_networkx_edges(UG, pos)
assert isinstance(edges, mpl.collections.LineCollection)
edges = nx.draw_networkx_edges(DG, pos)
assert len(edges) == len(G.edges)
assert isinstance(edges[0], mpl.patches.FancyArrowPatch)
@pytest.mark.parametrize("drawing_func", (nx.draw, nx.draw_networkx))
def test_draw_networkx_arrows_default_undirected(drawing_func):
import matplotlib.collections
G = nx.path_graph(3)
fig, ax = plt.subplots()
drawing_func(G, ax=ax)
assert any(isinstance(c, mpl.collections.LineCollection) for c in ax.collections)
assert not ax.patches
plt.delaxes(ax)
@pytest.mark.parametrize("drawing_func", (nx.draw, nx.draw_networkx))
def test_draw_networkx_arrows_default_directed(drawing_func):
import matplotlib.collections
G = nx.path_graph(3, create_using=nx.DiGraph)
fig, ax = plt.subplots()
drawing_func(G, ax=ax)
assert not any(
isinstance(c, mpl.collections.LineCollection) for c in ax.collections
)
assert ax.patches
plt.delaxes(ax)
def test_edgelist_kwarg_not_ignored():
# See gh-4994
G = nx.path_graph(3)
G.add_edge(0, 0)
fig, ax = plt.subplots()
nx.draw(G, edgelist=[(0, 1), (1, 2)], ax=ax) # Exclude self-loop from edgelist
assert not ax.patches
plt.delaxes(ax)
def test_draw_networkx_edge_label_multiedge_exception():
"""
draw_networkx_edge_labels should raise an informative error message when
the edge label includes keys
"""
exception_msg = "draw_networkx_edge_labels does not support multiedges"
G = nx.MultiGraph()
G.add_edge(0, 1, weight=10)
G.add_edge(0, 1, weight=20)
edge_labels = nx.get_edge_attributes(G, "weight") # Includes edge keys
pos = {n: (n, n) for n in G}
with pytest.raises(nx.NetworkXError, match=exception_msg):
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels)
def test_draw_networkx_edge_label_empty_dict():
"""Regression test for draw_networkx_edge_labels with empty dict. See
gh-5372."""
G = nx.path_graph(3)
pos = {n: (n, n) for n in G.nodes}
assert nx.draw_networkx_edge_labels(G, pos, edge_labels={}) == {}
def test_draw_networkx_edges_undirected_selfloop_colors():
"""When an edgelist is supplied along with a sequence of colors, check that
the self-loops have the correct colors."""
fig, ax = plt.subplots()
# Edge list and corresponding colors
edgelist = [(1, 3), (1, 2), (2, 3), (1, 1), (3, 3), (2, 2)]
edge_colors = ["pink", "cyan", "black", "red", "blue", "green"]
G = nx.Graph(edgelist)
pos = {n: (n, n) for n in G.nodes}
nx.draw_networkx_edges(G, pos, ax=ax, edgelist=edgelist, edge_color=edge_colors)
# Verify that there are three fancy arrow patches (1 per self loop)
assert len(ax.patches) == 3
# These are points that should be contained in the self loops. For example,
# sl_points[0] will be (1, 1.1), which is inside the "path" of the first
# self-loop but outside the others
sl_points = np.array(edgelist[-3:]) + np.array([0, 0.1])
# Check that the mapping between self-loop locations and their colors is
# correct
for fap, clr, slp in zip(ax.patches, edge_colors[-3:], sl_points):
assert fap.get_path().contains_point(slp)
assert mpl.colors.same_color(fap.get_edgecolor(), clr)