ai-content-maker/.venv/Lib/site-packages/numba/tests/test_tuples.py

766 lines
23 KiB
Python

import collections
import itertools
import numpy as np
from numba import njit, jit, typeof, literally
from numba.core import types, errors, utils
from numba.tests.support import TestCase, MemoryLeakMixin, tag
import unittest
Rect = collections.namedtuple('Rect', ('width', 'height'))
Point = collections.namedtuple('Point', ('x', 'y', 'z'))
Point2 = collections.namedtuple('Point2', ('x', 'y', 'z'))
Empty = collections.namedtuple('Empty', ())
def tuple_return_usecase(a, b):
return a, b
def tuple_first(tup):
a, b = tup
return a
def tuple_second(tup):
a, b = tup
return b
def tuple_index(tup, idx):
return tup[idx]
def tuple_index_static(tup):
# Note the negative index
return tup[-2]
def tuple_slice2(tup):
return tup[1:-1]
def tuple_slice3(tup):
return tup[1::2]
def len_usecase(tup):
return len(tup)
def add_usecase(a, b):
return a + b
def eq_usecase(a, b):
return a == b
def ne_usecase(a, b):
return a != b
def gt_usecase(a, b):
return a > b
def ge_usecase(a, b):
return a >= b
def lt_usecase(a, b):
return a < b
def le_usecase(a, b):
return a <= b
def in_usecase(a, b):
return a in b
def bool_usecase(tup):
return bool(tup), (3 if tup else 2)
def getattr_usecase(tup):
return tup.z, tup.y, tup.x
def make_point(a, b, c):
return Point(a, b, c)
def make_point_kws(a, b, c):
return Point(z=c, y=b, x=a)
def make_point_nrt(n):
r = Rect(list(range(n)), np.zeros(n + 1))
# This also exercises attribute access
p = Point(r, len(r.width), len(r.height))
return p
def type_usecase(tup, *args):
return type(tup)(*args)
def identity(tup):
return tup
def index_method_usecase(tup, value):
return tup.index(value)
def tuple_unpack_static_getitem_err():
# see issue3895, `c` is imprecise
a, b, c, d = [], [], [], 0.0
a.append(1)
b.append(1)
return
class TestTupleLengthError(unittest.TestCase):
def test_tuple_length_error(self):
# issue 2195
# raise an error on tuples greater than 1000 in length
@njit
def eattuple(tup):
return len(tup)
with self.assertRaises(errors.UnsupportedError) as raises:
tup = tuple(range(1001))
eattuple(tup)
expected = "Tuple 'tup' length must be smaller than 1000"
self.assertIn(expected, str(raises.exception))
class TestTupleTypeNotIterable(unittest.TestCase):
'''
issue 4369
raise an error if 'type' is not iterable
'''
def test_namedtuple_types_exception(self):
with self.assertRaises(errors.TypingError) as raises:
types.NamedTuple(types.uint32, 'p')
self.assertIn(
"Argument 'types' is not iterable",
str(raises.exception)
)
def test_tuple_types_exception(self):
with self.assertRaises(errors.TypingError) as raises:
types.Tuple((types.uint32))
self.assertIn(
"Argument 'types' is not iterable",
str(raises.exception)
)
class TestTupleReturn(TestCase):
def test_array_tuple(self):
aryty = types.Array(types.float64, 1, 'C')
cfunc = njit((aryty, aryty))(tuple_return_usecase)
a = b = np.arange(5, dtype='float64')
ra, rb = cfunc(a, b)
self.assertPreciseEqual(ra, a)
self.assertPreciseEqual(rb, b)
del a, b
self.assertPreciseEqual(ra, rb)
def test_scalar_tuple(self):
scalarty = types.float32
cfunc = njit((scalarty, scalarty))(tuple_return_usecase)
a = b = 1
ra, rb = cfunc(a, b)
self.assertEqual(ra, a)
self.assertEqual(rb, b)
def test_hetero_tuple(self):
alltypes = []
allvalues = []
alltypes.append((types.int32, types.int64))
allvalues.append((1, 2))
alltypes.append((types.float32, types.float64))
allvalues.append((1.125, .25))
alltypes.append((types.int32, types.float64))
allvalues.append((1231, .5))
for (ta, tb), (a, b) in zip(alltypes, allvalues):
cfunc = njit((ta, tb))(tuple_return_usecase)
ra, rb = cfunc(a, b)
self.assertPreciseEqual((ra, rb), (a, b))
class TestTuplePassing(TestCase):
def test_unituple(self):
tuple_type = types.UniTuple(types.int32, 2)
cf_first = njit((tuple_type,))(tuple_first)
cf_second = njit((tuple_type,))(tuple_second)
self.assertPreciseEqual(cf_first((4, 5)), 4)
self.assertPreciseEqual(cf_second((4, 5)), 5)
def test_hetero_tuple(self):
tuple_type = types.Tuple((types.int64, types.float32))
cf_first = njit((tuple_type,))(tuple_first)
cf_second = njit((tuple_type,))(tuple_second)
self.assertPreciseEqual(cf_first((2**61, 1.5)), 2**61)
self.assertPreciseEqual(cf_second((2**61, 1.5)), 1.5)
def test_size_mismatch(self):
# Issue #1638: tuple size should be checked when unboxing
tuple_type = types.UniTuple(types.int32, 2)
cfunc = njit((tuple_type,))(tuple_first)
entry_point = cfunc.overloads[cfunc.signatures[0]].entry_point
with self.assertRaises(ValueError) as raises:
entry_point((4, 5, 6))
self.assertEqual(str(raises.exception),
("size mismatch for tuple, "
"expected 2 element(s) but got 3"))
class TestOperations(TestCase):
def test_len(self):
pyfunc = len_usecase
cfunc = njit((types.Tuple((types.int64, types.float32)),))(pyfunc)
self.assertPreciseEqual(cfunc((4, 5)), 2)
cfunc = njit((types.UniTuple(types.int64, 3),))(pyfunc)
self.assertPreciseEqual(cfunc((4, 5, 6)), 3)
def test_index_literal(self):
# issue #6023, test non-static getitem with IntegerLiteral index
def pyfunc(tup, idx):
idx = literally(idx)
return tup[idx]
cfunc = njit(pyfunc)
tup = (4, 3.1, 'sss')
for i in range(len(tup)):
self.assertPreciseEqual(cfunc(tup, i), tup[i])
def test_index(self):
pyfunc = tuple_index
cfunc = njit((types.UniTuple(types.int64, 3), types.int64),)(pyfunc)
tup = (4, 3, 6)
for i in range(len(tup)):
self.assertPreciseEqual(cfunc(tup, i), tup[i])
# test negative indexing
for i in range(len(tup) + 1):
self.assertPreciseEqual(cfunc(tup, -i), tup[-i])
# oob indexes, +ve then -ve
with self.assertRaises(IndexError) as raises:
cfunc(tup, len(tup))
self.assertEqual("tuple index out of range", str(raises.exception))
with self.assertRaises(IndexError) as raises:
cfunc(tup, -(len(tup) + 1))
self.assertEqual("tuple index out of range", str(raises.exception))
# Test empty tuple, this is a bit unusual as `njit` will infer the empty
# tuple arg as a types.Tuple and not match the compiled signature, this
# is essentially because the test originally relied on
# `compile_isolated`.
args = (types.UniTuple(types.int64, 0), types.int64,)
cr = njit(args)(pyfunc).overloads[args]
with self.assertRaises(IndexError) as raises:
cr.entry_point((), 0)
self.assertEqual("tuple index out of range", str(raises.exception))
# test uintp indexing (because, e.g., parfor generates unsigned prange)
cfunc = njit((types.UniTuple(types.int64, 3), types.uintp,),)(pyfunc)
for i in range(len(tup)):
self.assertPreciseEqual(cfunc(tup, types.uintp(i)), tup[i])
# With a compile-time static index (the code generation path is
# different)
pyfunc = tuple_index_static
for typ in (types.UniTuple(types.int64, 4),
types.Tuple((types.int64, types.int32, types.int64, types.int32))):
cfunc = njit((typ,))(pyfunc)
tup = (4, 3, 42, 6)
self.assertPreciseEqual(cfunc(tup), pyfunc(tup))
typ = types.UniTuple(types.int64, 1)
with self.assertTypingError():
njit((typ,))(pyfunc)
# test unpack, staticgetitem with imprecise type (issue #3895)
pyfunc = tuple_unpack_static_getitem_err
with self.assertTypingError() as raises:
njit((),)(pyfunc)
msg = ("Cannot infer the type of variable 'c', have imprecise type: "
"list(undefined)<iv=None>.")
self.assertIn(msg, str(raises.exception))
def test_in(self):
pyfunc = in_usecase
cfunc = njit((types.int64, types.UniTuple(types.int64, 3),),)(pyfunc)
tup = (4, 1, 5)
for i in range(5):
self.assertPreciseEqual(cfunc(i, tup), pyfunc(i, tup))
# Test the empty case
cfunc = njit((types.int64, types.Tuple([]),),)(pyfunc)
self.assertPreciseEqual(cfunc(1, ()), pyfunc(1, ()))
def check_slice(self, pyfunc):
tup = (4, 5, 6, 7)
cfunc = njit((types.UniTuple(types.int64, 4),),)(pyfunc)
self.assertPreciseEqual(cfunc(tup), pyfunc(tup))
args = types.Tuple((types.int64, types.int32, types.int64, types.int32))
cfunc = njit((args,))(pyfunc)
self.assertPreciseEqual(cfunc(tup), pyfunc(tup))
def test_slice2(self):
self.check_slice(tuple_slice2)
def test_slice3(self):
self.check_slice(tuple_slice3)
def test_bool(self):
pyfunc = bool_usecase
cfunc = njit((types.Tuple((types.int64, types.int32)),),)(pyfunc)
args = ((4, 5),)
self.assertPreciseEqual(cfunc(*args), pyfunc(*args))
cfunc = njit((types.UniTuple(types.int64, 3),),)(pyfunc)
args = ((4, 5, 6),)
self.assertPreciseEqual(cfunc(*args), pyfunc(*args))
cfunc = njit((types.Tuple(()),),)(pyfunc)
self.assertPreciseEqual(cfunc(()), pyfunc(()))
def test_add(self):
pyfunc = add_usecase
samples = [(types.Tuple(()), ()),
(types.UniTuple(types.int32, 0), ()),
(types.UniTuple(types.int32, 1), (42,)),
(types.Tuple((types.int64, types.float32)), (3, 4.5)),
]
for (ta, a), (tb, b) in itertools.product(samples, samples):
cfunc = njit((ta, tb),)(pyfunc)
expected = pyfunc(a, b)
got = cfunc(a, b)
self.assertPreciseEqual(got, expected, msg=(ta, tb))
def _test_compare(self, pyfunc):
def eq(pyfunc, cfunc, args):
self.assertIs(cfunc(*args), pyfunc(*args),
"mismatch for arguments %s" % (args,))
# Same-sized tuples
argtypes = [types.Tuple((types.int64, types.float32)),
types.UniTuple(types.int32, 2)]
for ta, tb in itertools.product(argtypes, argtypes):
cfunc = njit((ta, tb),)(pyfunc)
for args in [((4, 5), (4, 5)),
((4, 5), (4, 6)),
((4, 6), (4, 5)),
((4, 5), (5, 4))]:
eq(pyfunc, cfunc, args)
# Different-sized tuples
argtypes = [types.Tuple((types.int64, types.float32)),
types.UniTuple(types.int32, 3)]
cfunc = njit(tuple(argtypes),)(pyfunc)
for args in [((4, 5), (4, 5, 6)),
((4, 5), (4, 4, 6)),
((4, 5), (4, 6, 7))]:
eq(pyfunc, cfunc, args)
def test_eq(self):
self._test_compare(eq_usecase)
def test_ne(self):
self._test_compare(ne_usecase)
def test_gt(self):
self._test_compare(gt_usecase)
def test_ge(self):
self._test_compare(ge_usecase)
def test_lt(self):
self._test_compare(lt_usecase)
def test_le(self):
self._test_compare(le_usecase)
class TestNamedTuple(TestCase, MemoryLeakMixin):
def test_unpack(self):
def check(p):
for pyfunc in tuple_first, tuple_second:
cfunc = jit(nopython=True)(pyfunc)
self.assertPreciseEqual(cfunc(p), pyfunc(p))
# Homogeneous
check(Rect(4, 5))
# Heterogeneous
check(Rect(4, 5.5))
def test_len(self):
def check(p):
pyfunc = len_usecase
cfunc = jit(nopython=True)(pyfunc)
self.assertPreciseEqual(cfunc(p), pyfunc(p))
# Homogeneous
check(Rect(4, 5))
check(Point(4, 5, 6))
# Heterogeneous
check(Rect(4, 5.5))
check(Point(4, 5.5, 6j))
def test_index(self):
pyfunc = tuple_index
cfunc = jit(nopython=True)(pyfunc)
p = Point(4, 5, 6)
for i in range(len(p)):
self.assertPreciseEqual(cfunc(p, i), pyfunc(p, i))
# test uintp indexing (because, e.g., parfor generates unsigned prange)
for i in range(len(p)):
self.assertPreciseEqual(cfunc(p, types.uintp(i)), pyfunc(p, i))
def test_bool(self):
def check(p):
pyfunc = bool_usecase
cfunc = jit(nopython=True)(pyfunc)
self.assertPreciseEqual(cfunc(p), pyfunc(p))
# Homogeneous
check(Rect(4, 5))
# Heterogeneous
check(Rect(4, 5.5))
check(Empty())
def _test_compare(self, pyfunc):
def eq(pyfunc, cfunc, args):
self.assertIs(cfunc(*args), pyfunc(*args),
"mismatch for arguments %s" % (args,))
cfunc = jit(nopython=True)(pyfunc)
# Same-sized named tuples
for a, b in [((4, 5), (4, 5)),
((4, 5), (4, 6)),
((4, 6), (4, 5)),
((4, 5), (5, 4))]:
eq(pyfunc, cfunc, (Rect(*a), Rect(*b)))
# Different-sized named tuples
for a, b in [((4, 5), (4, 5, 6)),
((4, 5), (4, 4, 6)),
((4, 5), (4, 6, 7))]:
eq(pyfunc, cfunc, (Rect(*a), Point(*b)))
def test_eq(self):
self._test_compare(eq_usecase)
def test_ne(self):
self._test_compare(ne_usecase)
def test_gt(self):
self._test_compare(gt_usecase)
def test_ge(self):
self._test_compare(ge_usecase)
def test_lt(self):
self._test_compare(lt_usecase)
def test_le(self):
self._test_compare(le_usecase)
def test_getattr(self):
pyfunc = getattr_usecase
cfunc = jit(nopython=True)(pyfunc)
for args in (4, 5, 6), (4, 5.5, 6j):
p = Point(*args)
self.assertPreciseEqual(cfunc(p), pyfunc(p))
def test_construct(self):
def check(pyfunc):
cfunc = jit(nopython=True)(pyfunc)
for args in (4, 5, 6), (4, 5.5, 6j):
expected = pyfunc(*args)
got = cfunc(*args)
self.assertIs(type(got), type(expected))
self.assertPreciseEqual(got, expected)
check(make_point)
check(make_point_kws)
def test_type(self):
# Test the type() built-in on named tuples
pyfunc = type_usecase
cfunc = jit(nopython=True)(pyfunc)
arg_tuples = [(4, 5, 6), (4, 5.5, 6j)]
for tup_args, args in itertools.product(arg_tuples, arg_tuples):
tup = Point(*tup_args)
expected = pyfunc(tup, *args)
got = cfunc(tup, *args)
self.assertIs(type(got), type(expected))
self.assertPreciseEqual(got, expected)
def test_literal_unification(self):
# Test for #3565.
@jit(nopython=True)
def Data1(value):
return Rect(value, -321)
@jit(nopython=True)
def call(i, j):
if j == 0:
# In the error, `result` is typed to `Rect(int, LiteralInt)`
# because of the `-321` literal. This doesn't match the
# `result` type in the other branch.
result = Data1(i)
else:
# `result` is typed to be `Rect(int, int)`
result = Rect(i, j)
return result
r = call(123, 1321)
self.assertEqual(r, Rect(width=123, height=1321))
r = call(123, 0)
self.assertEqual(r, Rect(width=123, height=-321))
def test_string_literal_in_ctor(self):
# Test for issue #3813
@jit(nopython=True)
def foo():
return Rect(10, 'somestring')
r = foo()
self.assertEqual(r, Rect(width=10, height='somestring'))
def test_dispatcher_mistreat(self):
# Test for issue #5215 that mistreat namedtuple as tuples
@jit(nopython=True)
def foo(x):
return x
in1 = (1, 2, 3)
out1 = foo(in1)
self.assertEqual(in1, out1)
in2 = Point(1, 2, 3)
out2 = foo(in2)
self.assertEqual(in2, out2)
# Check the signatures
self.assertEqual(len(foo.nopython_signatures), 2)
self.assertEqual(foo.nopython_signatures[0].args[0], typeof(in1))
self.assertEqual(foo.nopython_signatures[1].args[0], typeof(in2))
# Differently named
in3 = Point2(1, 2, 3)
out3 = foo(in3)
self.assertEqual(in3, out3)
self.assertEqual(len(foo.nopython_signatures), 3)
self.assertEqual(foo.nopython_signatures[2].args[0], typeof(in3))
class TestTupleNRT(TestCase, MemoryLeakMixin):
def test_tuple_add(self):
def pyfunc(x):
a = np.arange(3)
return (a,) + (x,)
cfunc = jit(nopython=True)(pyfunc)
x = 123
expect_a, expect_x = pyfunc(x)
got_a, got_x = cfunc(x)
np.testing.assert_equal(got_a, expect_a)
self.assertEqual(got_x, expect_x)
class TestNamedTupleNRT(TestCase, MemoryLeakMixin):
def test_return(self):
# Check returning a namedtuple with a list inside it
pyfunc = make_point_nrt
cfunc = jit(nopython=True)(pyfunc)
for arg in (3, 0):
expected = pyfunc(arg)
got = cfunc(arg)
self.assertIs(type(got), type(expected))
self.assertPreciseEqual(got, expected)
class TestConversions(TestCase):
"""
Test implicit conversions between tuple types.
"""
def check_conversion(self, fromty, toty, val):
pyfunc = identity
cfunc = njit(toty(fromty))(pyfunc)
res = cfunc(val)
self.assertEqual(res, val)
def test_conversions(self):
check = self.check_conversion
fromty = types.UniTuple(types.int32, 2)
check(fromty, types.UniTuple(types.float32, 2), (4, 5))
check(fromty, types.Tuple((types.float32, types.int16)), (4, 5))
aty = types.UniTuple(types.int32, 0)
bty = types.Tuple(())
check(aty, bty, ())
check(bty, aty, ())
with self.assertRaises(errors.TypingError) as raises:
check(fromty, types.Tuple((types.float32,)), (4, 5))
msg = "No conversion from UniTuple(int32 x 2) to UniTuple(float32 x 1)"
self.assertIn(msg, str(raises.exception))
class TestMethods(TestCase):
def test_index(self):
pyfunc = index_method_usecase
cfunc = jit(nopython=True)(pyfunc)
self.assertEqual(cfunc((1, 2, 3), 2), 1)
with self.assertRaises(ValueError) as raises:
cfunc((1, 2, 3), 4)
msg = 'tuple.index(x): x not in tuple'
self.assertEqual(msg, str(raises.exception))
class TestTupleBuild(TestCase):
def test_build_unpack(self):
def check(p):
pyfunc = lambda a: (1, *a)
cfunc = jit(nopython=True)(pyfunc)
self.assertPreciseEqual(cfunc(p), pyfunc(p))
# Homogeneous
check((4, 5))
# Heterogeneous
check((4, 5.5))
def test_build_unpack_assign_like(self):
# see #6534
def check(p):
pyfunc = lambda a: (*a,)
cfunc = jit(nopython=True)(pyfunc)
self.assertPreciseEqual(cfunc(p), pyfunc(p))
# Homogeneous
check((4, 5))
# Heterogeneous
check((4, 5.5))
def test_build_unpack_fail_on_list_assign_like(self):
# see #6534
def check(p):
pyfunc = lambda a: (*a,)
cfunc = jit(nopython=True)(pyfunc)
self.assertPreciseEqual(cfunc(p), pyfunc(p))
with self.assertRaises(errors.TypingError) as raises:
check([4, 5])
# Python 3.9 has a peephole rewrite due to large changes in tuple
# unpacking. It results in a tuple + list situation from the above
# so the error message reflects that. Catching this specific and
# seemingly rare sequence in the peephole rewrite is prohibitively
# hard. Should it be reported numerous times, revisit then.
msg1 = "No implementation of function"
self.assertIn(msg1, str(raises.exception))
msg2 = "tuple(reflected list(" # ignore the rest of reflected list
# part, it's repr is quite volatile.
self.assertIn(msg2, str(raises.exception))
def test_build_unpack_more(self):
def check(p):
pyfunc = lambda a: (1, *a, (1, 2), *a)
cfunc = jit(nopython=True)(pyfunc)
self.assertPreciseEqual(cfunc(p), pyfunc(p))
# Homogeneous
check((4, 5))
# Heterogeneous
check((4, 5.5))
def test_build_unpack_call(self):
def check(p):
@jit
def inner(*args):
return args
pyfunc = lambda a: inner(1, *a)
cfunc = jit(nopython=True)(pyfunc)
self.assertPreciseEqual(cfunc(p), pyfunc(p))
# Homogeneous
check((4, 5))
# Heterogeneous
check((4, 5.5))
def test_build_unpack_call_more(self):
def check(p):
@jit
def inner(*args):
return args
pyfunc = lambda a: inner(1, *a, *(1, 2), *a)
cfunc = jit(nopython=True)(pyfunc)
self.assertPreciseEqual(cfunc(p), pyfunc(p))
# Homogeneous
check((4, 5))
# Heterogeneous
check((4, 5.5))
def test_tuple_constructor(self):
def check(pyfunc, arg):
cfunc = jit(nopython=True)(pyfunc)
self.assertPreciseEqual(cfunc(arg), pyfunc(arg))
# empty
check(lambda _: tuple(), ())
# Homogeneous
check(lambda a: tuple(a), (4, 5))
# Heterogeneous
check(lambda a: tuple(a), (4, 5.5))
@unittest.skipIf(utils.PYVERSION < (3, 9), "needs Python 3.9+")
def test_unpack_with_predicate_fails(self):
# this fails as the list_to_tuple/list_extend peephole bytecode
# rewriting needed for Python 3.9+ cannot yet traverse the CFG.
@njit
def foo():
a = (1,)
b = (3,2, 4)
return (*(b if a[0] else (5, 6)),)
with self.assertRaises(errors.UnsupportedError) as raises:
foo()
msg = "op_LIST_EXTEND at the start of a block"
self.assertIn(msg, str(raises.exception))
def test_build_unpack_with_calls_in_unpack(self):
def check(p):
def pyfunc(a):
z = [1, 2]
return (*a, z.append(3), z.extend(a), np.ones(3)), z
cfunc = jit(nopython=True)(pyfunc)
self.assertPreciseEqual(cfunc(p), pyfunc(p))
check((4, 5))
def test_build_unpack_complicated(self):
def check(p):
def pyfunc(a):
z = [1, 2]
return (*a, *(*a, a), *(a, (*(a, (1, 2), *(3,), *a),
(a, 1, (2, 3), *a, 1), (1,))),
*(z.append(4), z.extend(a))), z
cfunc = jit(nopython=True)(pyfunc)
self.assertPreciseEqual(cfunc(p), pyfunc(p))
check((10, 20))
if __name__ == '__main__':
unittest.main()