ai-content-maker/.venv/Lib/site-packages/pandas-1.5.3.dist-info/METADATA

212 lines
12 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Metadata-Version: 2.1
Name: pandas
Version: 1.5.3
Summary: Powerful data structures for data analysis, time series, and statistics
Home-page: https://pandas.pydata.org
Author: The Pandas Development Team
Author-email: pandas-dev@python.org
License: BSD-3-Clause
Project-URL: Bug Tracker, https://github.com/pandas-dev/pandas/issues
Project-URL: Documentation, https://pandas.pydata.org/docs/
Project-URL: Source Code, https://github.com/pandas-dev/pandas
Platform: any
Classifier: Development Status :: 5 - Production/Stable
Classifier: Environment :: Console
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: BSD License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Cython
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Topic :: Scientific/Engineering
Requires-Python: >=3.8
Description-Content-Type: text/markdown
License-File: LICENSE
Requires-Dist: python-dateutil (>=2.8.1)
Requires-Dist: pytz (>=2020.1)
Requires-Dist: numpy (>=1.20.3) ; python_version < "3.10"
Requires-Dist: numpy (>=1.21.0) ; python_version >= "3.10"
Requires-Dist: numpy (>=1.23.2) ; python_version >= "3.11"
Provides-Extra: test
Requires-Dist: hypothesis (>=5.5.3) ; extra == 'test'
Requires-Dist: pytest (>=6.0) ; extra == 'test'
Requires-Dist: pytest-xdist (>=1.31) ; extra == 'test'
<div align="center">
<img src="https://pandas.pydata.org/static/img/pandas.svg"><br>
</div>
-----------------
# pandas: powerful Python data analysis toolkit
[![PyPI Latest Release](https://img.shields.io/pypi/v/pandas.svg)](https://pypi.org/project/pandas/)
[![Conda Latest Release](https://anaconda.org/conda-forge/pandas/badges/version.svg)](https://anaconda.org/anaconda/pandas/)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3509134.svg)](https://doi.org/10.5281/zenodo.3509134)
[![Package Status](https://img.shields.io/pypi/status/pandas.svg)](https://pypi.org/project/pandas/)
[![License](https://img.shields.io/pypi/l/pandas.svg)](https://github.com/pandas-dev/pandas/blob/main/LICENSE)
[![Coverage](https://codecov.io/github/pandas-dev/pandas/coverage.svg?branch=main)](https://codecov.io/gh/pandas-dev/pandas)
[![Downloads](https://static.pepy.tech/personalized-badge/pandas?period=month&units=international_system&left_color=black&right_color=orange&left_text=PyPI%20downloads%20per%20month)](https://pepy.tech/project/pandas)
[![Gitter](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/pydata/pandas)
[![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](https://numfocus.org)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/)
## What is it?
**pandas** is a Python package that provides fast, flexible, and expressive data
structures designed to make working with "relational" or "labeled" data both
easy and intuitive. It aims to be the fundamental high-level building block for
doing practical, **real world** data analysis in Python. Additionally, it has
the broader goal of becoming **the most powerful and flexible open source data
analysis / manipulation tool available in any language**. It is already well on
its way towards this goal.
## Main Features
Here are just a few of the things that pandas does well:
- Easy handling of [**missing data**][missing-data] (represented as
`NaN`, `NA`, or `NaT`) in floating point as well as non-floating point data
- Size mutability: columns can be [**inserted and
deleted**][insertion-deletion] from DataFrame and higher dimensional
objects
- Automatic and explicit [**data alignment**][alignment]: objects can
be explicitly aligned to a set of labels, or the user can simply
ignore the labels and let `Series`, `DataFrame`, etc. automatically
align the data for you in computations
- Powerful, flexible [**group by**][groupby] functionality to perform
split-apply-combine operations on data sets, for both aggregating
and transforming data
- Make it [**easy to convert**][conversion] ragged,
differently-indexed data in other Python and NumPy data structures
into DataFrame objects
- Intelligent label-based [**slicing**][slicing], [**fancy
indexing**][fancy-indexing], and [**subsetting**][subsetting] of
large data sets
- Intuitive [**merging**][merging] and [**joining**][joining] data
sets
- Flexible [**reshaping**][reshape] and [**pivoting**][pivot-table] of
data sets
- [**Hierarchical**][mi] labeling of axes (possible to have multiple
labels per tick)
- Robust IO tools for loading data from [**flat files**][flat-files]
(CSV and delimited), [**Excel files**][excel], [**databases**][db],
and saving/loading data from the ultrafast [**HDF5 format**][hdfstore]
- [**Time series**][timeseries]-specific functionality: date range
generation and frequency conversion, moving window statistics,
date shifting and lagging
[missing-data]: https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html
[insertion-deletion]: https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#column-selection-addition-deletion
[alignment]: https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html?highlight=alignment#intro-to-data-structures
[groupby]: https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#group-by-split-apply-combine
[conversion]: https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#dataframe
[slicing]: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#slicing-ranges
[fancy-indexing]: https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html#advanced
[subsetting]: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#boolean-indexing
[merging]: https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#database-style-dataframe-or-named-series-joining-merging
[joining]: https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#joining-on-index
[reshape]: https://pandas.pydata.org/pandas-docs/stable/user_guide/reshaping.html
[pivot-table]: https://pandas.pydata.org/pandas-docs/stable/user_guide/reshaping.html
[mi]: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#hierarchical-indexing-multiindex
[flat-files]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#csv-text-files
[excel]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#excel-files
[db]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#sql-queries
[hdfstore]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#hdf5-pytables
[timeseries]: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#time-series-date-functionality
## Where to get it
The source code is currently hosted on GitHub at:
https://github.com/pandas-dev/pandas
Binary installers for the latest released version are available at the [Python
Package Index (PyPI)](https://pypi.org/project/pandas) and on [Conda](https://docs.conda.io/en/latest/).
```sh
# conda
conda install pandas
```
```sh
# or PyPI
pip install pandas
```
## Dependencies
- [NumPy - Adds support for large, multi-dimensional arrays, matrices and high-level mathematical functions to operate on these arrays](https://www.numpy.org)
- [python-dateutil - Provides powerful extensions to the standard datetime module](https://dateutil.readthedocs.io/en/stable/index.html)
- [pytz - Brings the Olson tz database into Python which allows accurate and cross platform timezone calculations](https://github.com/stub42/pytz)
See the [full installation instructions](https://pandas.pydata.org/pandas-docs/stable/install.html#dependencies) for minimum supported versions of required, recommended and optional dependencies.
## Installation from sources
To install pandas from source you need [Cython](https://cython.org/) in addition to the normal
dependencies above. Cython can be installed from PyPI:
```sh
pip install cython
```
In the `pandas` directory (same one where you found this file after
cloning the git repo), execute:
```sh
python setup.py install
```
or for installing in [development mode](https://pip.pypa.io/en/latest/cli/pip_install/#install-editable):
```sh
python -m pip install -e . --no-build-isolation --no-use-pep517
```
If you have `make`, you can also use `make develop` to run the same command.
or alternatively
```sh
python setup.py develop
```
See the full instructions for [installing from source](https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html#installing-from-source).
## License
[BSD 3](LICENSE)
## Documentation
The official documentation is hosted on PyData.org: https://pandas.pydata.org/pandas-docs/stable
## Background
Work on ``pandas`` started at [AQR](https://www.aqr.com/) (a quantitative hedge fund) in 2008 and
has been under active development since then.
## Getting Help
For usage questions, the best place to go to is [StackOverflow](https://stackoverflow.com/questions/tagged/pandas).
Further, general questions and discussions can also take place on the [pydata mailing list](https://groups.google.com/forum/?fromgroups#!forum/pydata).
## Discussion and Development
Most development discussions take place on GitHub in this repo. Further, the [pandas-dev mailing list](https://mail.python.org/mailman/listinfo/pandas-dev) can also be used for specialized discussions or design issues, and a [Gitter channel](https://gitter.im/pydata/pandas) is available for quick development related questions.
## Contributing to pandas [![Open Source Helpers](https://www.codetriage.com/pandas-dev/pandas/badges/users.svg)](https://www.codetriage.com/pandas-dev/pandas)
All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome.
A detailed overview on how to contribute can be found in the **[contributing guide](https://pandas.pydata.org/docs/dev/development/contributing.html)**.
If you are simply looking to start working with the pandas codebase, navigate to the [GitHub "issues" tab](https://github.com/pandas-dev/pandas/issues) and start looking through interesting issues. There are a number of issues listed under [Docs](https://github.com/pandas-dev/pandas/issues?labels=Docs&sort=updated&state=open) and [good first issue](https://github.com/pandas-dev/pandas/issues?labels=good+first+issue&sort=updated&state=open) where you could start out.
You can also triage issues which may include reproducing bug reports, or asking for vital information such as version numbers or reproduction instructions. If you would like to start triaging issues, one easy way to get started is to [subscribe to pandas on CodeTriage](https://www.codetriage.com/pandas-dev/pandas).
Or maybe through using pandas you have an idea of your own or are looking for something in the documentation and thinking this can be improved...you can do something about it!
Feel free to ask questions on the [mailing list](https://groups.google.com/forum/?fromgroups#!forum/pydata) or on [Gitter](https://gitter.im/pydata/pandas).
As contributors and maintainers to this project, you are expected to abide by pandas' code of conduct. More information can be found at: [Contributor Code of Conduct](https://github.com/pandas-dev/.github/blob/master/CODE_OF_CONDUCT.md)