ai-content-maker/.venv/Lib/site-packages/pandas/_libs/writers.pyx

176 lines
4.4 KiB
Cython

cimport cython
import numpy as np
from cpython cimport (
PyBytes_GET_SIZE,
PyUnicode_GET_LENGTH,
)
from numpy cimport (
ndarray,
uint8_t,
)
ctypedef fused pandas_string:
str
bytes
@cython.boundscheck(False)
@cython.wraparound(False)
def write_csv_rows(
list data,
ndarray data_index,
Py_ssize_t nlevels,
ndarray cols,
object writer
) -> None:
"""
Write the given data to the writer object, pre-allocating where possible
for performance improvements.
Parameters
----------
data : list[ArrayLike]
data_index : ndarray
nlevels : int
cols : ndarray
writer : _csv.writer
"""
# In crude testing, N>100 yields little marginal improvement
cdef:
Py_ssize_t i, j = 0, k = len(data_index), N = 100, ncols = len(cols)
list rows
# pre-allocate rows
rows = [[None] * (nlevels + ncols) for _ in range(N)]
if nlevels == 1:
for j in range(k):
row = rows[j % N]
row[0] = data_index[j]
for i in range(ncols):
row[1 + i] = data[i][j]
if j >= N - 1 and j % N == N - 1:
writer.writerows(rows)
elif nlevels > 1:
for j in range(k):
row = rows[j % N]
row[:nlevels] = list(data_index[j])
for i in range(ncols):
row[nlevels + i] = data[i][j]
if j >= N - 1 and j % N == N - 1:
writer.writerows(rows)
else:
for j in range(k):
row = rows[j % N]
for i in range(ncols):
row[i] = data[i][j]
if j >= N - 1 and j % N == N - 1:
writer.writerows(rows)
if j >= 0 and (j < N - 1 or (j % N) != N - 1):
writer.writerows(rows[:((j + 1) % N)])
@cython.boundscheck(False)
@cython.wraparound(False)
def convert_json_to_lines(arr: str) -> str:
"""
replace comma separated json with line feeds, paying special attention
to quotes & brackets
"""
cdef:
Py_ssize_t i = 0, num_open_brackets_seen = 0, length
bint in_quotes = False, is_escaping = False
ndarray[uint8_t, ndim=1] narr
unsigned char val, newline, comma, left_bracket, right_bracket, quote
unsigned char backslash
newline = ord('\n')
comma = ord(',')
left_bracket = ord('{')
right_bracket = ord('}')
quote = ord('"')
backslash = ord('\\')
narr = np.frombuffer(arr.encode('utf-8'), dtype='u1').copy()
length = narr.shape[0]
for i in range(length):
val = narr[i]
if val == quote and i > 0 and not is_escaping:
in_quotes = ~in_quotes
if val == backslash or is_escaping:
is_escaping = ~is_escaping
if val == comma: # commas that should be \n
if num_open_brackets_seen == 0 and not in_quotes:
narr[i] = newline
elif val == left_bracket:
if not in_quotes:
num_open_brackets_seen += 1
elif val == right_bracket:
if not in_quotes:
num_open_brackets_seen -= 1
return narr.tobytes().decode('utf-8') + '\n' # GH:36888
# stata, pytables
@cython.boundscheck(False)
@cython.wraparound(False)
def max_len_string_array(pandas_string[:] arr) -> Py_ssize_t:
"""
Return the maximum size of elements in a 1-dim string array.
"""
cdef:
Py_ssize_t i, m = 0, wlen = 0, length = arr.shape[0]
pandas_string val
for i in range(length):
val = arr[i]
wlen = word_len(val)
if wlen > m:
m = wlen
return m
cpdef inline Py_ssize_t word_len(object val):
"""
Return the maximum length of a string or bytes value.
"""
cdef:
Py_ssize_t wlen = 0
if isinstance(val, str):
wlen = PyUnicode_GET_LENGTH(val)
elif isinstance(val, bytes):
wlen = PyBytes_GET_SIZE(val)
return wlen
# ------------------------------------------------------------------
# PyTables Helpers
@cython.boundscheck(False)
@cython.wraparound(False)
def string_array_replace_from_nan_rep(
ndarray[object, ndim=1] arr,
object nan_rep,
object replace=np.nan
) -> None:
"""
Replace the values in the array with 'replacement' if
they are 'nan_rep'. Return the same array.
"""
cdef:
Py_ssize_t length = len(arr), i = 0
for i in range(length):
if arr[i] == nan_rep:
arr[i] = replace