ai-content-maker/.venv/Lib/site-packages/pandas/_testing/__init__.py

1162 lines
32 KiB
Python

from __future__ import annotations
import collections
from datetime import datetime
from decimal import Decimal
import operator
import os
import re
import string
from sys import byteorder
from typing import (
TYPE_CHECKING,
Callable,
ContextManager,
Counter,
Iterable,
)
import warnings
import numpy as np
from pandas._config.localization import (
can_set_locale,
get_locales,
set_locale,
)
from pandas._typing import Dtype
from pandas.compat import pa_version_under1p01
from pandas.core.dtypes.common import (
is_float_dtype,
is_integer_dtype,
is_sequence,
is_unsigned_integer_dtype,
pandas_dtype,
)
import pandas as pd
from pandas import (
Categorical,
CategoricalIndex,
DataFrame,
DatetimeIndex,
Index,
IntervalIndex,
MultiIndex,
RangeIndex,
Series,
bdate_range,
)
from pandas._testing._io import (
close,
network,
round_trip_localpath,
round_trip_pathlib,
round_trip_pickle,
write_to_compressed,
)
from pandas._testing._random import (
randbool,
rands,
rands_array,
)
from pandas._testing._warnings import (
assert_produces_warning,
maybe_produces_warning,
)
from pandas._testing.asserters import (
assert_almost_equal,
assert_attr_equal,
assert_categorical_equal,
assert_class_equal,
assert_contains_all,
assert_copy,
assert_datetime_array_equal,
assert_dict_equal,
assert_equal,
assert_extension_array_equal,
assert_frame_equal,
assert_index_equal,
assert_indexing_slices_equivalent,
assert_interval_array_equal,
assert_is_sorted,
assert_is_valid_plot_return_object,
assert_metadata_equivalent,
assert_numpy_array_equal,
assert_period_array_equal,
assert_series_equal,
assert_sp_array_equal,
assert_timedelta_array_equal,
raise_assert_detail,
)
from pandas._testing.compat import (
get_dtype,
get_obj,
)
from pandas._testing.contexts import (
RNGContext,
decompress_file,
ensure_clean,
ensure_clean_dir,
ensure_safe_environment_variables,
set_timezone,
use_numexpr,
with_csv_dialect,
)
from pandas.core.api import (
Float64Index,
Int64Index,
NumericIndex,
UInt64Index,
)
from pandas.core.arrays import (
BaseMaskedArray,
ExtensionArray,
PandasArray,
)
from pandas.core.arrays._mixins import NDArrayBackedExtensionArray
from pandas.core.construction import extract_array
if TYPE_CHECKING:
from pandas import (
PeriodIndex,
TimedeltaIndex,
)
_N = 30
_K = 4
UNSIGNED_INT_NUMPY_DTYPES: list[Dtype] = ["uint8", "uint16", "uint32", "uint64"]
UNSIGNED_INT_EA_DTYPES: list[Dtype] = ["UInt8", "UInt16", "UInt32", "UInt64"]
SIGNED_INT_NUMPY_DTYPES: list[Dtype] = [int, "int8", "int16", "int32", "int64"]
SIGNED_INT_EA_DTYPES: list[Dtype] = ["Int8", "Int16", "Int32", "Int64"]
ALL_INT_NUMPY_DTYPES = UNSIGNED_INT_NUMPY_DTYPES + SIGNED_INT_NUMPY_DTYPES
ALL_INT_EA_DTYPES = UNSIGNED_INT_EA_DTYPES + SIGNED_INT_EA_DTYPES
FLOAT_NUMPY_DTYPES: list[Dtype] = [float, "float32", "float64"]
FLOAT_EA_DTYPES: list[Dtype] = ["Float32", "Float64"]
COMPLEX_DTYPES: list[Dtype] = [complex, "complex64", "complex128"]
STRING_DTYPES: list[Dtype] = [str, "str", "U"]
DATETIME64_DTYPES: list[Dtype] = ["datetime64[ns]", "M8[ns]"]
TIMEDELTA64_DTYPES: list[Dtype] = ["timedelta64[ns]", "m8[ns]"]
BOOL_DTYPES: list[Dtype] = [bool, "bool"]
BYTES_DTYPES: list[Dtype] = [bytes, "bytes"]
OBJECT_DTYPES: list[Dtype] = [object, "object"]
ALL_REAL_NUMPY_DTYPES = FLOAT_NUMPY_DTYPES + ALL_INT_NUMPY_DTYPES
ALL_NUMPY_DTYPES = (
ALL_REAL_NUMPY_DTYPES
+ COMPLEX_DTYPES
+ STRING_DTYPES
+ DATETIME64_DTYPES
+ TIMEDELTA64_DTYPES
+ BOOL_DTYPES
+ OBJECT_DTYPES
+ BYTES_DTYPES
)
NARROW_NP_DTYPES = [
np.float16,
np.float32,
np.int8,
np.int16,
np.int32,
np.uint8,
np.uint16,
np.uint32,
]
ENDIAN = {"little": "<", "big": ">"}[byteorder]
NULL_OBJECTS = [None, np.nan, pd.NaT, float("nan"), pd.NA, Decimal("NaN")]
NP_NAT_OBJECTS = [
cls("NaT", unit)
for cls in [np.datetime64, np.timedelta64]
for unit in [
"Y",
"M",
"W",
"D",
"h",
"m",
"s",
"ms",
"us",
"ns",
"ps",
"fs",
"as",
]
]
if not pa_version_under1p01:
import pyarrow as pa
UNSIGNED_INT_PYARROW_DTYPES = [pa.uint8(), pa.uint16(), pa.uint32(), pa.uint64()]
SIGNED_INT_PYARROW_DTYPES = [pa.int8(), pa.int16(), pa.int32(), pa.int64()]
ALL_INT_PYARROW_DTYPES = UNSIGNED_INT_PYARROW_DTYPES + SIGNED_INT_PYARROW_DTYPES
FLOAT_PYARROW_DTYPES = [pa.float32(), pa.float64()]
STRING_PYARROW_DTYPES = [pa.string(), pa.utf8()]
TIME_PYARROW_DTYPES = [
pa.time32("s"),
pa.time32("ms"),
pa.time64("us"),
pa.time64("ns"),
]
DATE_PYARROW_DTYPES = [pa.date32(), pa.date64()]
DATETIME_PYARROW_DTYPES = [
pa.timestamp(unit=unit, tz=tz)
for unit in ["s", "ms", "us", "ns"]
for tz in [None, "UTC", "US/Pacific", "US/Eastern"]
]
TIMEDELTA_PYARROW_DTYPES = [pa.duration(unit) for unit in ["s", "ms", "us", "ns"]]
BOOL_PYARROW_DTYPES = [pa.bool_()]
# TODO: Add container like pyarrow types:
# https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions
ALL_PYARROW_DTYPES = (
ALL_INT_PYARROW_DTYPES
+ FLOAT_PYARROW_DTYPES
+ TIME_PYARROW_DTYPES
+ DATE_PYARROW_DTYPES
+ DATETIME_PYARROW_DTYPES
+ TIMEDELTA_PYARROW_DTYPES
+ BOOL_PYARROW_DTYPES
)
EMPTY_STRING_PATTERN = re.compile("^$")
# set testing_mode
_testing_mode_warnings = (DeprecationWarning, ResourceWarning)
def set_testing_mode() -> None:
# set the testing mode filters
testing_mode = os.environ.get("PANDAS_TESTING_MODE", "None")
if "deprecate" in testing_mode:
for category in _testing_mode_warnings:
warnings.simplefilter("always", category)
def reset_testing_mode() -> None:
# reset the testing mode filters
testing_mode = os.environ.get("PANDAS_TESTING_MODE", "None")
if "deprecate" in testing_mode:
for category in _testing_mode_warnings:
warnings.simplefilter("ignore", category)
set_testing_mode()
def reset_display_options() -> None:
"""
Reset the display options for printing and representing objects.
"""
pd.reset_option("^display.", silent=True)
# -----------------------------------------------------------------------------
# Comparators
def equalContents(arr1, arr2) -> bool:
"""
Checks if the set of unique elements of arr1 and arr2 are equivalent.
"""
return frozenset(arr1) == frozenset(arr2)
def box_expected(expected, box_cls, transpose=True):
"""
Helper function to wrap the expected output of a test in a given box_class.
Parameters
----------
expected : np.ndarray, Index, Series
box_cls : {Index, Series, DataFrame}
Returns
-------
subclass of box_cls
"""
if box_cls is pd.array:
if isinstance(expected, RangeIndex):
# pd.array would return an IntegerArray
expected = PandasArray(np.asarray(expected._values))
else:
expected = pd.array(expected)
elif box_cls is Index:
expected = Index._with_infer(expected)
elif box_cls is Series:
expected = Series(expected)
elif box_cls is DataFrame:
expected = Series(expected).to_frame()
if transpose:
# for vector operations, we need a DataFrame to be a single-row,
# not a single-column, in order to operate against non-DataFrame
# vectors of the same length. But convert to two rows to avoid
# single-row special cases in datetime arithmetic
expected = expected.T
expected = pd.concat([expected] * 2, ignore_index=True)
elif box_cls is np.ndarray or box_cls is np.array:
expected = np.array(expected)
elif box_cls is to_array:
expected = to_array(expected)
else:
raise NotImplementedError(box_cls)
return expected
def to_array(obj):
"""
Similar to pd.array, but does not cast numpy dtypes to nullable dtypes.
"""
# temporary implementation until we get pd.array in place
dtype = getattr(obj, "dtype", None)
if dtype is None:
return np.asarray(obj)
return extract_array(obj, extract_numpy=True)
# -----------------------------------------------------------------------------
# Others
def getCols(k) -> str:
return string.ascii_uppercase[:k]
# make index
def makeStringIndex(k=10, name=None) -> Index:
return Index(rands_array(nchars=10, size=k), name=name)
def makeCategoricalIndex(k=10, n=3, name=None, **kwargs) -> CategoricalIndex:
"""make a length k index or n categories"""
x = rands_array(nchars=4, size=n, replace=False)
return CategoricalIndex(
Categorical.from_codes(np.arange(k) % n, categories=x), name=name, **kwargs
)
def makeIntervalIndex(k=10, name=None, **kwargs) -> IntervalIndex:
"""make a length k IntervalIndex"""
x = np.linspace(0, 100, num=(k + 1))
return IntervalIndex.from_breaks(x, name=name, **kwargs)
def makeBoolIndex(k=10, name=None) -> Index:
if k == 1:
return Index([True], name=name)
elif k == 2:
return Index([False, True], name=name)
return Index([False, True] + [False] * (k - 2), name=name)
def makeNumericIndex(k=10, name=None, *, dtype) -> NumericIndex:
dtype = pandas_dtype(dtype)
assert isinstance(dtype, np.dtype)
if is_integer_dtype(dtype):
values = np.arange(k, dtype=dtype)
if is_unsigned_integer_dtype(dtype):
values += 2 ** (dtype.itemsize * 8 - 1)
elif is_float_dtype(dtype):
values = np.random.random_sample(k) - np.random.random_sample(1)
values.sort()
values = values * (10 ** np.random.randint(0, 9))
else:
raise NotImplementedError(f"wrong dtype {dtype}")
return NumericIndex(values, dtype=dtype, name=name)
def makeIntIndex(k=10, name=None) -> Int64Index:
base_idx = makeNumericIndex(k, name=name, dtype="int64")
return Int64Index(base_idx)
def makeUIntIndex(k=10, name=None) -> UInt64Index:
base_idx = makeNumericIndex(k, name=name, dtype="uint64")
return UInt64Index(base_idx)
def makeRangeIndex(k=10, name=None, **kwargs) -> RangeIndex:
return RangeIndex(0, k, 1, name=name, **kwargs)
def makeFloatIndex(k=10, name=None) -> Float64Index:
base_idx = makeNumericIndex(k, name=name, dtype="float64")
return Float64Index(base_idx)
def makeDateIndex(k: int = 10, freq="B", name=None, **kwargs) -> DatetimeIndex:
dt = datetime(2000, 1, 1)
dr = bdate_range(dt, periods=k, freq=freq, name=name)
return DatetimeIndex(dr, name=name, **kwargs)
def makeTimedeltaIndex(k: int = 10, freq="D", name=None, **kwargs) -> TimedeltaIndex:
return pd.timedelta_range(start="1 day", periods=k, freq=freq, name=name, **kwargs)
def makePeriodIndex(k: int = 10, name=None, **kwargs) -> PeriodIndex:
dt = datetime(2000, 1, 1)
return pd.period_range(start=dt, periods=k, freq="B", name=name, **kwargs)
def makeMultiIndex(k=10, names=None, **kwargs):
N = (k // 2) + 1
rng = range(N)
mi = MultiIndex.from_product([("foo", "bar"), rng], names=names, **kwargs)
assert len(mi) >= k # GH#38795
return mi[:k]
def index_subclass_makers_generator():
make_index_funcs = [
makeDateIndex,
makePeriodIndex,
makeTimedeltaIndex,
makeRangeIndex,
makeIntervalIndex,
makeCategoricalIndex,
makeMultiIndex,
]
yield from make_index_funcs
def all_timeseries_index_generator(k: int = 10) -> Iterable[Index]:
"""
Generator which can be iterated over to get instances of all the classes
which represent time-series.
Parameters
----------
k: length of each of the index instances
"""
make_index_funcs: list[Callable[..., Index]] = [
makeDateIndex,
makePeriodIndex,
makeTimedeltaIndex,
]
for make_index_func in make_index_funcs:
yield make_index_func(k=k)
# make series
def make_rand_series(name=None, dtype=np.float64) -> Series:
index = makeStringIndex(_N)
data = np.random.randn(_N)
with np.errstate(invalid="ignore"):
data = data.astype(dtype, copy=False)
return Series(data, index=index, name=name)
def makeFloatSeries(name=None) -> Series:
return make_rand_series(name=name)
def makeStringSeries(name=None) -> Series:
return make_rand_series(name=name)
def makeObjectSeries(name=None) -> Series:
data = makeStringIndex(_N)
data = Index(data, dtype=object)
index = makeStringIndex(_N)
return Series(data, index=index, name=name)
def getSeriesData() -> dict[str, Series]:
index = makeStringIndex(_N)
return {c: Series(np.random.randn(_N), index=index) for c in getCols(_K)}
def makeTimeSeries(nper=None, freq="B", name=None) -> Series:
if nper is None:
nper = _N
return Series(
np.random.randn(nper), index=makeDateIndex(nper, freq=freq), name=name
)
def makePeriodSeries(nper=None, name=None) -> Series:
if nper is None:
nper = _N
return Series(np.random.randn(nper), index=makePeriodIndex(nper), name=name)
def getTimeSeriesData(nper=None, freq="B") -> dict[str, Series]:
return {c: makeTimeSeries(nper, freq) for c in getCols(_K)}
def getPeriodData(nper=None) -> dict[str, Series]:
return {c: makePeriodSeries(nper) for c in getCols(_K)}
# make frame
def makeTimeDataFrame(nper=None, freq="B") -> DataFrame:
data = getTimeSeriesData(nper, freq)
return DataFrame(data)
def makeDataFrame() -> DataFrame:
data = getSeriesData()
return DataFrame(data)
def getMixedTypeDict():
index = Index(["a", "b", "c", "d", "e"])
data = {
"A": [0.0, 1.0, 2.0, 3.0, 4.0],
"B": [0.0, 1.0, 0.0, 1.0, 0.0],
"C": ["foo1", "foo2", "foo3", "foo4", "foo5"],
"D": bdate_range("1/1/2009", periods=5),
}
return index, data
def makeMixedDataFrame() -> DataFrame:
return DataFrame(getMixedTypeDict()[1])
def makePeriodFrame(nper=None) -> DataFrame:
data = getPeriodData(nper)
return DataFrame(data)
def makeCustomIndex(
nentries,
nlevels,
prefix="#",
names: bool | str | list[str] | None = False,
ndupe_l=None,
idx_type=None,
) -> Index:
"""
Create an index/multindex with given dimensions, levels, names, etc'
nentries - number of entries in index
nlevels - number of levels (> 1 produces multindex)
prefix - a string prefix for labels
names - (Optional), bool or list of strings. if True will use default
names, if false will use no names, if a list is given, the name of
each level in the index will be taken from the list.
ndupe_l - (Optional), list of ints, the number of rows for which the
label will repeated at the corresponding level, you can specify just
the first few, the rest will use the default ndupe_l of 1.
len(ndupe_l) <= nlevels.
idx_type - "i"/"f"/"s"/"dt"/"p"/"td".
If idx_type is not None, `idx_nlevels` must be 1.
"i"/"f" creates an integer/float index,
"s" creates a string
"dt" create a datetime index.
"td" create a datetime index.
if unspecified, string labels will be generated.
"""
if ndupe_l is None:
ndupe_l = [1] * nlevels
assert is_sequence(ndupe_l) and len(ndupe_l) <= nlevels
assert names is None or names is False or names is True or len(names) is nlevels
assert idx_type is None or (
idx_type in ("i", "f", "s", "u", "dt", "p", "td") and nlevels == 1
)
if names is True:
# build default names
names = [prefix + str(i) for i in range(nlevels)]
if names is False:
# pass None to index constructor for no name
names = None
# make singleton case uniform
if isinstance(names, str) and nlevels == 1:
names = [names]
# specific 1D index type requested?
idx_func_dict: dict[str, Callable[..., Index]] = {
"i": makeIntIndex,
"f": makeFloatIndex,
"s": makeStringIndex,
"dt": makeDateIndex,
"td": makeTimedeltaIndex,
"p": makePeriodIndex,
}
idx_func = idx_func_dict.get(idx_type)
if idx_func:
idx = idx_func(nentries)
# but we need to fill in the name
if names:
idx.name = names[0]
return idx
elif idx_type is not None:
raise ValueError(
f"{repr(idx_type)} is not a legal value for `idx_type`, "
"use 'i'/'f'/'s'/'dt'/'p'/'td'."
)
if len(ndupe_l) < nlevels:
ndupe_l.extend([1] * (nlevels - len(ndupe_l)))
assert len(ndupe_l) == nlevels
assert all(x > 0 for x in ndupe_l)
list_of_lists = []
for i in range(nlevels):
def keyfunc(x):
import re
numeric_tuple = re.sub(r"[^\d_]_?", "", x).split("_")
return [int(num) for num in numeric_tuple]
# build a list of lists to create the index from
div_factor = nentries // ndupe_l[i] + 1
# Deprecated since version 3.9: collections.Counter now supports []. See PEP 585
# and Generic Alias Type.
cnt: Counter[str] = collections.Counter()
for j in range(div_factor):
label = f"{prefix}_l{i}_g{j}"
cnt[label] = ndupe_l[i]
# cute Counter trick
result = sorted(cnt.elements(), key=keyfunc)[:nentries]
list_of_lists.append(result)
tuples = list(zip(*list_of_lists))
# convert tuples to index
if nentries == 1:
# we have a single level of tuples, i.e. a regular Index
name = None if names is None else names[0]
index = Index(tuples[0], name=name)
elif nlevels == 1:
name = None if names is None else names[0]
index = Index((x[0] for x in tuples), name=name)
else:
index = MultiIndex.from_tuples(tuples, names=names)
return index
def makeCustomDataframe(
nrows,
ncols,
c_idx_names=True,
r_idx_names=True,
c_idx_nlevels=1,
r_idx_nlevels=1,
data_gen_f=None,
c_ndupe_l=None,
r_ndupe_l=None,
dtype=None,
c_idx_type=None,
r_idx_type=None,
) -> DataFrame:
"""
Create a DataFrame using supplied parameters.
Parameters
----------
nrows, ncols - number of data rows/cols
c_idx_names, idx_names - False/True/list of strings, yields No names ,
default names or uses the provided names for the levels of the
corresponding index. You can provide a single string when
c_idx_nlevels ==1.
c_idx_nlevels - number of levels in columns index. > 1 will yield MultiIndex
r_idx_nlevels - number of levels in rows index. > 1 will yield MultiIndex
data_gen_f - a function f(row,col) which return the data value
at that position, the default generator used yields values of the form
"RxCy" based on position.
c_ndupe_l, r_ndupe_l - list of integers, determines the number
of duplicates for each label at a given level of the corresponding
index. The default `None` value produces a multiplicity of 1 across
all levels, i.e. a unique index. Will accept a partial list of length
N < idx_nlevels, for just the first N levels. If ndupe doesn't divide
nrows/ncol, the last label might have lower multiplicity.
dtype - passed to the DataFrame constructor as is, in case you wish to
have more control in conjunction with a custom `data_gen_f`
r_idx_type, c_idx_type - "i"/"f"/"s"/"dt"/"td".
If idx_type is not None, `idx_nlevels` must be 1.
"i"/"f" creates an integer/float index,
"s" creates a string index
"dt" create a datetime index.
"td" create a timedelta index.
if unspecified, string labels will be generated.
Examples
--------
# 5 row, 3 columns, default names on both, single index on both axis
>> makeCustomDataframe(5,3)
# make the data a random int between 1 and 100
>> mkdf(5,3,data_gen_f=lambda r,c:randint(1,100))
# 2-level multiindex on rows with each label duplicated
# twice on first level, default names on both axis, single
# index on both axis
>> a=makeCustomDataframe(5,3,r_idx_nlevels=2,r_ndupe_l=[2])
# DatetimeIndex on row, index with unicode labels on columns
# no names on either axis
>> a=makeCustomDataframe(5,3,c_idx_names=False,r_idx_names=False,
r_idx_type="dt",c_idx_type="u")
# 4-level multindex on rows with names provided, 2-level multindex
# on columns with default labels and default names.
>> a=makeCustomDataframe(5,3,r_idx_nlevels=4,
r_idx_names=["FEE","FIH","FOH","FUM"],
c_idx_nlevels=2)
>> a=mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4)
"""
assert c_idx_nlevels > 0
assert r_idx_nlevels > 0
assert r_idx_type is None or (
r_idx_type in ("i", "f", "s", "dt", "p", "td") and r_idx_nlevels == 1
)
assert c_idx_type is None or (
c_idx_type in ("i", "f", "s", "dt", "p", "td") and c_idx_nlevels == 1
)
columns = makeCustomIndex(
ncols,
nlevels=c_idx_nlevels,
prefix="C",
names=c_idx_names,
ndupe_l=c_ndupe_l,
idx_type=c_idx_type,
)
index = makeCustomIndex(
nrows,
nlevels=r_idx_nlevels,
prefix="R",
names=r_idx_names,
ndupe_l=r_ndupe_l,
idx_type=r_idx_type,
)
# by default, generate data based on location
if data_gen_f is None:
data_gen_f = lambda r, c: f"R{r}C{c}"
data = [[data_gen_f(r, c) for c in range(ncols)] for r in range(nrows)]
return DataFrame(data, index, columns, dtype=dtype)
def _create_missing_idx(nrows, ncols, density, random_state=None):
if random_state is None:
random_state = np.random
else:
random_state = np.random.RandomState(random_state)
# below is cribbed from scipy.sparse
size = round((1 - density) * nrows * ncols)
# generate a few more to ensure unique values
min_rows = 5
fac = 1.02
extra_size = min(size + min_rows, fac * size)
def _gen_unique_rand(rng, _extra_size):
ind = rng.rand(int(_extra_size))
return np.unique(np.floor(ind * nrows * ncols))[:size]
ind = _gen_unique_rand(random_state, extra_size)
while ind.size < size:
extra_size *= 1.05
ind = _gen_unique_rand(random_state, extra_size)
j = np.floor(ind * 1.0 / nrows).astype(int)
i = (ind - j * nrows).astype(int)
return i.tolist(), j.tolist()
def makeMissingDataframe(density=0.9, random_state=None) -> DataFrame:
df = makeDataFrame()
i, j = _create_missing_idx(*df.shape, density=density, random_state=random_state)
df.values[i, j] = np.nan
return df
class SubclassedSeries(Series):
_metadata = ["testattr", "name"]
@property
def _constructor(self):
# For testing, those properties return a generic callable, and not
# the actual class. In this case that is equivalent, but it is to
# ensure we don't rely on the property returning a class
# See https://github.com/pandas-dev/pandas/pull/46018 and
# https://github.com/pandas-dev/pandas/issues/32638 and linked issues
return lambda *args, **kwargs: SubclassedSeries(*args, **kwargs)
@property
def _constructor_expanddim(self):
return lambda *args, **kwargs: SubclassedDataFrame(*args, **kwargs)
class SubclassedDataFrame(DataFrame):
_metadata = ["testattr"]
@property
def _constructor(self):
return lambda *args, **kwargs: SubclassedDataFrame(*args, **kwargs)
@property
def _constructor_sliced(self):
return lambda *args, **kwargs: SubclassedSeries(*args, **kwargs)
class SubclassedCategorical(Categorical):
@property
def _constructor(self):
return SubclassedCategorical
def _make_skipna_wrapper(alternative, skipna_alternative=None):
"""
Create a function for calling on an array.
Parameters
----------
alternative : function
The function to be called on the array with no NaNs.
Only used when 'skipna_alternative' is None.
skipna_alternative : function
The function to be called on the original array
Returns
-------
function
"""
if skipna_alternative:
def skipna_wrapper(x):
return skipna_alternative(x.values)
else:
def skipna_wrapper(x):
nona = x.dropna()
if len(nona) == 0:
return np.nan
return alternative(nona)
return skipna_wrapper
def convert_rows_list_to_csv_str(rows_list: list[str]) -> str:
"""
Convert list of CSV rows to single CSV-formatted string for current OS.
This method is used for creating expected value of to_csv() method.
Parameters
----------
rows_list : List[str]
Each element represents the row of csv.
Returns
-------
str
Expected output of to_csv() in current OS.
"""
sep = os.linesep
return sep.join(rows_list) + sep
def external_error_raised(expected_exception: type[Exception]) -> ContextManager:
"""
Helper function to mark pytest.raises that have an external error message.
Parameters
----------
expected_exception : Exception
Expected error to raise.
Returns
-------
Callable
Regular `pytest.raises` function with `match` equal to `None`.
"""
import pytest
return pytest.raises(expected_exception, match=None) # noqa: PDF010
cython_table = pd.core.common._cython_table.items()
def get_cython_table_params(ndframe, func_names_and_expected):
"""
Combine frame, functions from com._cython_table
keys and expected result.
Parameters
----------
ndframe : DataFrame or Series
func_names_and_expected : Sequence of two items
The first item is a name of a NDFrame method ('sum', 'prod') etc.
The second item is the expected return value.
Returns
-------
list
List of three items (DataFrame, function, expected result)
"""
results = []
for func_name, expected in func_names_and_expected:
results.append((ndframe, func_name, expected))
results += [
(ndframe, func, expected)
for func, name in cython_table
if name == func_name
]
return results
def get_op_from_name(op_name: str) -> Callable:
"""
The operator function for a given op name.
Parameters
----------
op_name : str
The op name, in form of "add" or "__add__".
Returns
-------
function
A function performing the operation.
"""
short_opname = op_name.strip("_")
try:
op = getattr(operator, short_opname)
except AttributeError:
# Assume it is the reverse operator
rop = getattr(operator, short_opname[1:])
op = lambda x, y: rop(y, x)
return op
# -----------------------------------------------------------------------------
# Indexing test helpers
def getitem(x):
return x
def setitem(x):
return x
def loc(x):
return x.loc
def iloc(x):
return x.iloc
def at(x):
return x.at
def iat(x):
return x.iat
# -----------------------------------------------------------------------------
def shares_memory(left, right) -> bool:
"""
Pandas-compat for np.shares_memory.
"""
if isinstance(left, np.ndarray) and isinstance(right, np.ndarray):
return np.shares_memory(left, right)
elif isinstance(left, np.ndarray):
# Call with reversed args to get to unpacking logic below.
return shares_memory(right, left)
if isinstance(left, RangeIndex):
return False
if isinstance(left, MultiIndex):
return shares_memory(left._codes, right)
if isinstance(left, (Index, Series)):
return shares_memory(left._values, right)
if isinstance(left, NDArrayBackedExtensionArray):
return shares_memory(left._ndarray, right)
if isinstance(left, pd.core.arrays.SparseArray):
return shares_memory(left.sp_values, right)
if isinstance(left, pd.core.arrays.IntervalArray):
return shares_memory(left._left, right) or shares_memory(left._right, right)
if isinstance(left, ExtensionArray) and left.dtype == "string[pyarrow]":
# https://github.com/pandas-dev/pandas/pull/43930#discussion_r736862669
if isinstance(right, ExtensionArray) and right.dtype == "string[pyarrow]":
# error: "ExtensionArray" has no attribute "_data"
left_pa_data = left._data # type: ignore[attr-defined]
# error: "ExtensionArray" has no attribute "_data"
right_pa_data = right._data # type: ignore[attr-defined]
left_buf1 = left_pa_data.chunk(0).buffers()[1]
right_buf1 = right_pa_data.chunk(0).buffers()[1]
return left_buf1 == right_buf1
if isinstance(left, BaseMaskedArray) and isinstance(right, BaseMaskedArray):
# By convention, we'll say these share memory if they share *either*
# the _data or the _mask
return np.shares_memory(left._data, right._data) or np.shares_memory(
left._mask, right._mask
)
if isinstance(left, DataFrame) and len(left._mgr.arrays) == 1:
arr = left._mgr.arrays[0]
return shares_memory(arr, right)
raise NotImplementedError(type(left), type(right))
__all__ = [
"ALL_INT_EA_DTYPES",
"ALL_INT_NUMPY_DTYPES",
"ALL_NUMPY_DTYPES",
"ALL_REAL_NUMPY_DTYPES",
"all_timeseries_index_generator",
"assert_almost_equal",
"assert_attr_equal",
"assert_categorical_equal",
"assert_class_equal",
"assert_contains_all",
"assert_copy",
"assert_datetime_array_equal",
"assert_dict_equal",
"assert_equal",
"assert_extension_array_equal",
"assert_frame_equal",
"assert_index_equal",
"assert_indexing_slices_equivalent",
"assert_interval_array_equal",
"assert_is_sorted",
"assert_is_valid_plot_return_object",
"assert_metadata_equivalent",
"assert_numpy_array_equal",
"assert_period_array_equal",
"assert_produces_warning",
"assert_series_equal",
"assert_sp_array_equal",
"assert_timedelta_array_equal",
"at",
"BOOL_DTYPES",
"box_expected",
"BYTES_DTYPES",
"can_set_locale",
"close",
"COMPLEX_DTYPES",
"convert_rows_list_to_csv_str",
"DATETIME64_DTYPES",
"decompress_file",
"EMPTY_STRING_PATTERN",
"ENDIAN",
"ensure_clean",
"ensure_clean_dir",
"ensure_safe_environment_variables",
"equalContents",
"external_error_raised",
"FLOAT_EA_DTYPES",
"FLOAT_NUMPY_DTYPES",
"getCols",
"get_cython_table_params",
"get_dtype",
"getitem",
"get_locales",
"getMixedTypeDict",
"get_obj",
"get_op_from_name",
"getPeriodData",
"getSeriesData",
"getTimeSeriesData",
"iat",
"iloc",
"index_subclass_makers_generator",
"loc",
"makeBoolIndex",
"makeCategoricalIndex",
"makeCustomDataframe",
"makeCustomIndex",
"makeDataFrame",
"makeDateIndex",
"makeFloatIndex",
"makeFloatSeries",
"makeIntervalIndex",
"makeIntIndex",
"makeMissingDataframe",
"makeMixedDataFrame",
"makeMultiIndex",
"makeNumericIndex",
"makeObjectSeries",
"makePeriodFrame",
"makePeriodIndex",
"makePeriodSeries",
"make_rand_series",
"makeRangeIndex",
"makeStringIndex",
"makeStringSeries",
"makeTimeDataFrame",
"makeTimedeltaIndex",
"makeTimeSeries",
"makeUIntIndex",
"maybe_produces_warning",
"NARROW_NP_DTYPES",
"network",
"NP_NAT_OBJECTS",
"NULL_OBJECTS",
"OBJECT_DTYPES",
"raise_assert_detail",
"randbool",
"rands",
"reset_display_options",
"reset_testing_mode",
"RNGContext",
"round_trip_localpath",
"round_trip_pathlib",
"round_trip_pickle",
"setitem",
"set_locale",
"set_testing_mode",
"set_timezone",
"shares_memory",
"SIGNED_INT_EA_DTYPES",
"SIGNED_INT_NUMPY_DTYPES",
"STRING_DTYPES",
"SubclassedCategorical",
"SubclassedDataFrame",
"SubclassedSeries",
"TIMEDELTA64_DTYPES",
"to_array",
"UNSIGNED_INT_EA_DTYPES",
"UNSIGNED_INT_NUMPY_DTYPES",
"use_numexpr",
"with_csv_dialect",
"write_to_compressed",
]