ai-content-maker/.venv/Lib/site-packages/pandas/tests/arrays/boolean/test_function.py

127 lines
3.9 KiB
Python

import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
@pytest.mark.parametrize(
"ufunc", [np.add, np.logical_or, np.logical_and, np.logical_xor]
)
def test_ufuncs_binary(ufunc):
# two BooleanArrays
a = pd.array([True, False, None], dtype="boolean")
result = ufunc(a, a)
expected = pd.array(ufunc(a._data, a._data), dtype="boolean")
expected[a._mask] = np.nan
tm.assert_extension_array_equal(result, expected)
s = pd.Series(a)
result = ufunc(s, a)
expected = pd.Series(ufunc(a._data, a._data), dtype="boolean")
expected[a._mask] = np.nan
tm.assert_series_equal(result, expected)
# Boolean with numpy array
arr = np.array([True, True, False])
result = ufunc(a, arr)
expected = pd.array(ufunc(a._data, arr), dtype="boolean")
expected[a._mask] = np.nan
tm.assert_extension_array_equal(result, expected)
result = ufunc(arr, a)
expected = pd.array(ufunc(arr, a._data), dtype="boolean")
expected[a._mask] = np.nan
tm.assert_extension_array_equal(result, expected)
# BooleanArray with scalar
result = ufunc(a, True)
expected = pd.array(ufunc(a._data, True), dtype="boolean")
expected[a._mask] = np.nan
tm.assert_extension_array_equal(result, expected)
result = ufunc(True, a)
expected = pd.array(ufunc(True, a._data), dtype="boolean")
expected[a._mask] = np.nan
tm.assert_extension_array_equal(result, expected)
# not handled types
msg = r"operand type\(s\) all returned NotImplemented from __array_ufunc__"
with pytest.raises(TypeError, match=msg):
ufunc(a, "test")
@pytest.mark.parametrize("ufunc", [np.logical_not])
def test_ufuncs_unary(ufunc):
a = pd.array([True, False, None], dtype="boolean")
result = ufunc(a)
expected = pd.array(ufunc(a._data), dtype="boolean")
expected[a._mask] = np.nan
tm.assert_extension_array_equal(result, expected)
ser = pd.Series(a)
result = ufunc(ser)
expected = pd.Series(ufunc(a._data), dtype="boolean")
expected[a._mask] = np.nan
tm.assert_series_equal(result, expected)
def test_ufunc_numeric():
# np.sqrt on np.bool returns float16, which we upcast to Float32
# bc we do not have Float16
arr = pd.array([True, False, None], dtype="boolean")
res = np.sqrt(arr)
expected = pd.array([1, 0, None], dtype="Float32")
tm.assert_extension_array_equal(res, expected)
@pytest.mark.parametrize("values", [[True, False], [True, None]])
def test_ufunc_reduce_raises(values):
arr = pd.array(values, dtype="boolean")
res = np.add.reduce(arr)
if arr[-1] is pd.NA:
expected = pd.NA
else:
expected = arr._data.sum()
tm.assert_almost_equal(res, expected)
def test_value_counts_na():
arr = pd.array([True, False, pd.NA], dtype="boolean")
result = arr.value_counts(dropna=False)
expected = pd.Series([1, 1, 1], index=arr, dtype="Int64")
assert expected.index.dtype == arr.dtype
tm.assert_series_equal(result, expected)
result = arr.value_counts(dropna=True)
expected = pd.Series([1, 1], index=arr[:-1], dtype="Int64")
assert expected.index.dtype == arr.dtype
tm.assert_series_equal(result, expected)
def test_value_counts_with_normalize():
ser = pd.Series([True, False, pd.NA], dtype="boolean")
result = ser.value_counts(normalize=True)
expected = pd.Series([1, 1], index=ser[:-1], dtype="Float64") / 2
assert expected.index.dtype == "boolean"
tm.assert_series_equal(result, expected)
def test_diff():
a = pd.array(
[True, True, False, False, True, None, True, None, False], dtype="boolean"
)
result = pd.core.algorithms.diff(a, 1)
expected = pd.array(
[None, False, True, False, True, None, None, None, None], dtype="boolean"
)
tm.assert_extension_array_equal(result, expected)
ser = pd.Series(a)
result = ser.diff()
expected = pd.Series(expected)
tm.assert_series_equal(result, expected)