ai-content-maker/.venv/Lib/site-packages/pandas/tests/reshape/merge/test_merge.py

2694 lines
91 KiB
Python

from datetime import (
date,
datetime,
timedelta,
)
import random
import re
import numpy as np
import pytest
from pandas.core.dtypes.common import (
is_categorical_dtype,
is_object_dtype,
)
from pandas.core.dtypes.dtypes import CategoricalDtype
import pandas as pd
from pandas import (
Categorical,
CategoricalIndex,
DataFrame,
DatetimeIndex,
IntervalIndex,
MultiIndex,
PeriodIndex,
RangeIndex,
Series,
TimedeltaIndex,
)
import pandas._testing as tm
from pandas.api.types import CategoricalDtype as CDT
from pandas.core.api import (
Float64Index,
Int64Index,
UInt64Index,
)
from pandas.core.reshape.concat import concat
from pandas.core.reshape.merge import (
MergeError,
merge,
)
N = 50
NGROUPS = 8
def get_test_data(ngroups=NGROUPS, n=N):
unique_groups = list(range(ngroups))
arr = np.asarray(np.tile(unique_groups, n // ngroups))
if len(arr) < n:
arr = np.asarray(list(arr) + unique_groups[: n - len(arr)])
random.shuffle(arr)
return arr
def get_series():
return [
Series([1], dtype="int64"),
Series([1], dtype="Int64"),
Series([1.23]),
Series(["foo"]),
Series([True]),
Series([pd.Timestamp("2018-01-01")]),
Series([pd.Timestamp("2018-01-01", tz="US/Eastern")]),
]
def get_series_na():
return [
Series([np.nan], dtype="Int64"),
Series([np.nan], dtype="float"),
Series([np.nan], dtype="object"),
Series([pd.NaT]),
]
@pytest.fixture(params=get_series(), ids=lambda x: x.dtype.name)
def series_of_dtype(request):
"""
A parametrized fixture returning a variety of Series of different
dtypes
"""
return request.param
@pytest.fixture(params=get_series(), ids=lambda x: x.dtype.name)
def series_of_dtype2(request):
"""
A duplicate of the series_of_dtype fixture, so that it can be used
twice by a single function
"""
return request.param
@pytest.fixture(params=get_series_na(), ids=lambda x: x.dtype.name)
def series_of_dtype_all_na(request):
"""
A parametrized fixture returning a variety of Series with all NA
values
"""
return request.param
@pytest.fixture
def dfs_for_indicator():
df1 = DataFrame({"col1": [0, 1], "col_conflict": [1, 2], "col_left": ["a", "b"]})
df2 = DataFrame(
{
"col1": [1, 2, 3, 4, 5],
"col_conflict": [1, 2, 3, 4, 5],
"col_right": [2, 2, 2, 2, 2],
}
)
return df1, df2
class TestMerge:
def setup_method(self):
# aggregate multiple columns
self.df = DataFrame(
{
"key1": get_test_data(),
"key2": get_test_data(),
"data1": np.random.randn(N),
"data2": np.random.randn(N),
}
)
# exclude a couple keys for fun
self.df = self.df[self.df["key2"] > 1]
self.df2 = DataFrame(
{
"key1": get_test_data(n=N // 5),
"key2": get_test_data(ngroups=NGROUPS // 2, n=N // 5),
"value": np.random.randn(N // 5),
}
)
self.left = DataFrame(
{"key": ["a", "b", "c", "d", "e", "e", "a"], "v1": np.random.randn(7)}
)
self.right = DataFrame({"v2": np.random.randn(4)}, index=["d", "b", "c", "a"])
def test_merge_inner_join_empty(self):
# GH 15328
df_empty = DataFrame()
df_a = DataFrame({"a": [1, 2]}, index=[0, 1], dtype="int64")
result = merge(df_empty, df_a, left_index=True, right_index=True)
expected = DataFrame({"a": []}, index=[], dtype="int64")
tm.assert_frame_equal(result, expected)
def test_merge_common(self):
joined = merge(self.df, self.df2)
exp = merge(self.df, self.df2, on=["key1", "key2"])
tm.assert_frame_equal(joined, exp)
def test_merge_non_string_columns(self):
# https://github.com/pandas-dev/pandas/issues/17962
# Checks that method runs for non string column names
left = DataFrame(
{0: [1, 0, 1, 0], 1: [0, 1, 0, 0], 2: [0, 0, 2, 0], 3: [1, 0, 0, 3]}
)
right = left.astype(float)
expected = left
result = merge(left, right)
tm.assert_frame_equal(expected, result)
def test_merge_index_as_on_arg(self):
# GH14355
left = self.df.set_index("key1")
right = self.df2.set_index("key1")
result = merge(left, right, on="key1")
expected = merge(self.df, self.df2, on="key1").set_index("key1")
tm.assert_frame_equal(result, expected)
def test_merge_index_singlekey_right_vs_left(self):
left = DataFrame(
{"key": ["a", "b", "c", "d", "e", "e", "a"], "v1": np.random.randn(7)}
)
right = DataFrame({"v2": np.random.randn(4)}, index=["d", "b", "c", "a"])
merged1 = merge(
left, right, left_on="key", right_index=True, how="left", sort=False
)
merged2 = merge(
right, left, right_on="key", left_index=True, how="right", sort=False
)
tm.assert_frame_equal(merged1, merged2.loc[:, merged1.columns])
merged1 = merge(
left, right, left_on="key", right_index=True, how="left", sort=True
)
merged2 = merge(
right, left, right_on="key", left_index=True, how="right", sort=True
)
tm.assert_frame_equal(merged1, merged2.loc[:, merged1.columns])
def test_merge_index_singlekey_inner(self):
left = DataFrame(
{"key": ["a", "b", "c", "d", "e", "e", "a"], "v1": np.random.randn(7)}
)
right = DataFrame({"v2": np.random.randn(4)}, index=["d", "b", "c", "a"])
# inner join
result = merge(left, right, left_on="key", right_index=True, how="inner")
expected = left.join(right, on="key").loc[result.index]
tm.assert_frame_equal(result, expected)
result = merge(right, left, right_on="key", left_index=True, how="inner")
expected = left.join(right, on="key").loc[result.index]
tm.assert_frame_equal(result, expected.loc[:, result.columns])
def test_merge_misspecified(self):
msg = "Must pass right_on or right_index=True"
with pytest.raises(pd.errors.MergeError, match=msg):
merge(self.left, self.right, left_index=True)
msg = "Must pass left_on or left_index=True"
with pytest.raises(pd.errors.MergeError, match=msg):
merge(self.left, self.right, right_index=True)
msg = (
'Can only pass argument "on" OR "left_on" and "right_on", not '
"a combination of both"
)
with pytest.raises(pd.errors.MergeError, match=msg):
merge(self.left, self.left, left_on="key", on="key")
msg = r"len\(right_on\) must equal len\(left_on\)"
with pytest.raises(ValueError, match=msg):
merge(self.df, self.df2, left_on=["key1"], right_on=["key1", "key2"])
def test_index_and_on_parameters_confusion(self):
msg = "right_index parameter must be of type bool, not <class 'list'>"
with pytest.raises(ValueError, match=msg):
merge(
self.df,
self.df2,
how="left",
left_index=False,
right_index=["key1", "key2"],
)
msg = "left_index parameter must be of type bool, not <class 'list'>"
with pytest.raises(ValueError, match=msg):
merge(
self.df,
self.df2,
how="left",
left_index=["key1", "key2"],
right_index=False,
)
with pytest.raises(ValueError, match=msg):
merge(
self.df,
self.df2,
how="left",
left_index=["key1", "key2"],
right_index=["key1", "key2"],
)
def test_merge_overlap(self):
merged = merge(self.left, self.left, on="key")
exp_len = (self.left["key"].value_counts() ** 2).sum()
assert len(merged) == exp_len
assert "v1_x" in merged
assert "v1_y" in merged
def test_merge_different_column_key_names(self):
left = DataFrame({"lkey": ["foo", "bar", "baz", "foo"], "value": [1, 2, 3, 4]})
right = DataFrame({"rkey": ["foo", "bar", "qux", "foo"], "value": [5, 6, 7, 8]})
merged = left.merge(
right, left_on="lkey", right_on="rkey", how="outer", sort=True
)
exp = Series(["bar", "baz", "foo", "foo", "foo", "foo", np.nan], name="lkey")
tm.assert_series_equal(merged["lkey"], exp)
exp = Series(["bar", np.nan, "foo", "foo", "foo", "foo", "qux"], name="rkey")
tm.assert_series_equal(merged["rkey"], exp)
exp = Series([2, 3, 1, 1, 4, 4, np.nan], name="value_x")
tm.assert_series_equal(merged["value_x"], exp)
exp = Series([6, np.nan, 5, 8, 5, 8, 7], name="value_y")
tm.assert_series_equal(merged["value_y"], exp)
def test_merge_copy(self):
left = DataFrame({"a": 0, "b": 1}, index=range(10))
right = DataFrame({"c": "foo", "d": "bar"}, index=range(10))
merged = merge(left, right, left_index=True, right_index=True, copy=True)
merged["a"] = 6
assert (left["a"] == 0).all()
merged["d"] = "peekaboo"
assert (right["d"] == "bar").all()
def test_merge_nocopy(self, using_array_manager):
left = DataFrame({"a": 0, "b": 1}, index=range(10))
right = DataFrame({"c": "foo", "d": "bar"}, index=range(10))
merged = merge(left, right, left_index=True, right_index=True, copy=False)
assert np.shares_memory(merged["a"]._values, left["a"]._values)
assert np.shares_memory(merged["d"]._values, right["d"]._values)
def test_intelligently_handle_join_key(self):
# #733, be a bit more 1337 about not returning unconsolidated DataFrame
left = DataFrame(
{"key": [1, 1, 2, 2, 3], "value": list(range(5))}, columns=["value", "key"]
)
right = DataFrame({"key": [1, 1, 2, 3, 4, 5], "rvalue": list(range(6))})
joined = merge(left, right, on="key", how="outer")
expected = DataFrame(
{
"key": [1, 1, 1, 1, 2, 2, 3, 4, 5],
"value": np.array([0, 0, 1, 1, 2, 3, 4, np.nan, np.nan]),
"rvalue": [0, 1, 0, 1, 2, 2, 3, 4, 5],
},
columns=["value", "key", "rvalue"],
)
tm.assert_frame_equal(joined, expected)
def test_merge_join_key_dtype_cast(self):
# #8596
df1 = DataFrame({"key": [1], "v1": [10]})
df2 = DataFrame({"key": [2], "v1": [20]})
df = merge(df1, df2, how="outer")
assert df["key"].dtype == "int64"
df1 = DataFrame({"key": [True], "v1": [1]})
df2 = DataFrame({"key": [False], "v1": [0]})
df = merge(df1, df2, how="outer")
# GH13169
# GH#40073
assert df["key"].dtype == "bool"
df1 = DataFrame({"val": [1]})
df2 = DataFrame({"val": [2]})
lkey = np.array([1])
rkey = np.array([2])
df = merge(df1, df2, left_on=lkey, right_on=rkey, how="outer")
assert df["key_0"].dtype == "int64"
def test_handle_join_key_pass_array(self):
left = DataFrame(
{"key": [1, 1, 2, 2, 3], "value": np.arange(5)},
columns=["value", "key"],
dtype="int64",
)
right = DataFrame({"rvalue": np.arange(6)}, dtype="int64")
key = np.array([1, 1, 2, 3, 4, 5], dtype="int64")
merged = merge(left, right, left_on="key", right_on=key, how="outer")
merged2 = merge(right, left, left_on=key, right_on="key", how="outer")
tm.assert_series_equal(merged["key"], merged2["key"])
assert merged["key"].notna().all()
assert merged2["key"].notna().all()
left = DataFrame({"value": np.arange(5)}, columns=["value"])
right = DataFrame({"rvalue": np.arange(6)})
lkey = np.array([1, 1, 2, 2, 3])
rkey = np.array([1, 1, 2, 3, 4, 5])
merged = merge(left, right, left_on=lkey, right_on=rkey, how="outer")
tm.assert_series_equal(
merged["key_0"], Series([1, 1, 1, 1, 2, 2, 3, 4, 5], name="key_0")
)
left = DataFrame({"value": np.arange(3)})
right = DataFrame({"rvalue": np.arange(6)})
key = np.array([0, 1, 1, 2, 2, 3], dtype=np.int64)
merged = merge(left, right, left_index=True, right_on=key, how="outer")
tm.assert_series_equal(merged["key_0"], Series(key, name="key_0"))
def test_no_overlap_more_informative_error(self):
dt = datetime.now()
df1 = DataFrame({"x": ["a"]}, index=[dt])
df2 = DataFrame({"y": ["b", "c"]}, index=[dt, dt])
msg = (
"No common columns to perform merge on. "
f"Merge options: left_on={None}, right_on={None}, "
f"left_index={False}, right_index={False}"
)
with pytest.raises(MergeError, match=msg):
merge(df1, df2)
def test_merge_non_unique_indexes(self):
dt = datetime(2012, 5, 1)
dt2 = datetime(2012, 5, 2)
dt3 = datetime(2012, 5, 3)
dt4 = datetime(2012, 5, 4)
df1 = DataFrame({"x": ["a"]}, index=[dt])
df2 = DataFrame({"y": ["b", "c"]}, index=[dt, dt])
_check_merge(df1, df2)
# Not monotonic
df1 = DataFrame({"x": ["a", "b", "q"]}, index=[dt2, dt, dt4])
df2 = DataFrame(
{"y": ["c", "d", "e", "f", "g", "h"]}, index=[dt3, dt3, dt2, dt2, dt, dt]
)
_check_merge(df1, df2)
df1 = DataFrame({"x": ["a", "b"]}, index=[dt, dt])
df2 = DataFrame({"y": ["c", "d"]}, index=[dt, dt])
_check_merge(df1, df2)
def test_merge_non_unique_index_many_to_many(self):
dt = datetime(2012, 5, 1)
dt2 = datetime(2012, 5, 2)
dt3 = datetime(2012, 5, 3)
df1 = DataFrame({"x": ["a", "b", "c", "d"]}, index=[dt2, dt2, dt, dt])
df2 = DataFrame(
{"y": ["e", "f", "g", " h", "i"]}, index=[dt2, dt2, dt3, dt, dt]
)
_check_merge(df1, df2)
def test_left_merge_empty_dataframe(self):
left = DataFrame({"key": [1], "value": [2]})
right = DataFrame({"key": []})
result = merge(left, right, on="key", how="left")
tm.assert_frame_equal(result, left)
result = merge(right, left, on="key", how="right")
tm.assert_frame_equal(result, left)
@pytest.mark.parametrize(
"kwarg",
[
{"left_index": True, "right_index": True},
{"left_index": True, "right_on": "x"},
{"left_on": "a", "right_index": True},
{"left_on": "a", "right_on": "x"},
],
)
def test_merge_left_empty_right_empty(self, join_type, kwarg):
# GH 10824
left = DataFrame(columns=["a", "b", "c"])
right = DataFrame(columns=["x", "y", "z"])
exp_in = DataFrame(
columns=["a", "b", "c", "x", "y", "z"],
index=pd.Index([], dtype=object),
dtype=object,
)
result = merge(left, right, how=join_type, **kwarg)
tm.assert_frame_equal(result, exp_in)
def test_merge_left_empty_right_notempty(self):
# GH 10824
left = DataFrame(columns=["a", "b", "c"])
right = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["x", "y", "z"])
exp_out = DataFrame(
{
"a": np.array([np.nan] * 3, dtype=object),
"b": np.array([np.nan] * 3, dtype=object),
"c": np.array([np.nan] * 3, dtype=object),
"x": [1, 4, 7],
"y": [2, 5, 8],
"z": [3, 6, 9],
},
columns=["a", "b", "c", "x", "y", "z"],
)
exp_in = exp_out[0:0] # make empty DataFrame keeping dtype
# result will have object dtype
exp_in.index = exp_in.index.astype(object)
def check1(exp, kwarg):
result = merge(left, right, how="inner", **kwarg)
tm.assert_frame_equal(result, exp)
result = merge(left, right, how="left", **kwarg)
tm.assert_frame_equal(result, exp)
def check2(exp, kwarg):
result = merge(left, right, how="right", **kwarg)
tm.assert_frame_equal(result, exp)
result = merge(left, right, how="outer", **kwarg)
tm.assert_frame_equal(result, exp)
for kwarg in [
{"left_index": True, "right_index": True},
{"left_index": True, "right_on": "x"},
]:
check1(exp_in, kwarg)
check2(exp_out, kwarg)
kwarg = {"left_on": "a", "right_index": True}
check1(exp_in, kwarg)
exp_out["a"] = [0, 1, 2]
check2(exp_out, kwarg)
kwarg = {"left_on": "a", "right_on": "x"}
check1(exp_in, kwarg)
exp_out["a"] = np.array([np.nan] * 3, dtype=object)
check2(exp_out, kwarg)
def test_merge_left_notempty_right_empty(self):
# GH 10824
left = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["a", "b", "c"])
right = DataFrame(columns=["x", "y", "z"])
exp_out = DataFrame(
{
"a": [1, 4, 7],
"b": [2, 5, 8],
"c": [3, 6, 9],
"x": np.array([np.nan] * 3, dtype=object),
"y": np.array([np.nan] * 3, dtype=object),
"z": np.array([np.nan] * 3, dtype=object),
},
columns=["a", "b", "c", "x", "y", "z"],
)
exp_in = exp_out[0:0] # make empty DataFrame keeping dtype
# result will have object dtype
exp_in.index = exp_in.index.astype(object)
def check1(exp, kwarg):
result = merge(left, right, how="inner", **kwarg)
tm.assert_frame_equal(result, exp)
result = merge(left, right, how="right", **kwarg)
tm.assert_frame_equal(result, exp)
def check2(exp, kwarg):
result = merge(left, right, how="left", **kwarg)
tm.assert_frame_equal(result, exp)
result = merge(left, right, how="outer", **kwarg)
tm.assert_frame_equal(result, exp)
# TODO: should the next loop be un-indented? doing so breaks this test
for kwarg in [
{"left_index": True, "right_index": True},
{"left_index": True, "right_on": "x"},
{"left_on": "a", "right_index": True},
{"left_on": "a", "right_on": "x"},
]:
check1(exp_in, kwarg)
check2(exp_out, kwarg)
def test_merge_empty_frame(self, series_of_dtype, series_of_dtype2):
# GH 25183
df = DataFrame(
{"key": series_of_dtype, "value": series_of_dtype2},
columns=["key", "value"],
)
df_empty = df[:0]
expected = DataFrame(
{
"value_x": Series(dtype=df.dtypes["value"]),
"key": Series(dtype=df.dtypes["key"]),
"value_y": Series(dtype=df.dtypes["value"]),
},
columns=["value_x", "key", "value_y"],
)
actual = df_empty.merge(df, on="key")
tm.assert_frame_equal(actual, expected)
def test_merge_all_na_column(self, series_of_dtype, series_of_dtype_all_na):
# GH 25183
df_left = DataFrame(
{"key": series_of_dtype, "value": series_of_dtype_all_na},
columns=["key", "value"],
)
df_right = DataFrame(
{"key": series_of_dtype, "value": series_of_dtype_all_na},
columns=["key", "value"],
)
expected = DataFrame(
{
"key": series_of_dtype,
"value_x": series_of_dtype_all_na,
"value_y": series_of_dtype_all_na,
},
columns=["key", "value_x", "value_y"],
)
actual = df_left.merge(df_right, on="key")
tm.assert_frame_equal(actual, expected)
def test_merge_nosort(self):
# GH#2098
d = {
"var1": np.random.randint(0, 10, size=10),
"var2": np.random.randint(0, 10, size=10),
"var3": [
datetime(2012, 1, 12),
datetime(2011, 2, 4),
datetime(2010, 2, 3),
datetime(2012, 1, 12),
datetime(2011, 2, 4),
datetime(2012, 4, 3),
datetime(2012, 3, 4),
datetime(2008, 5, 1),
datetime(2010, 2, 3),
datetime(2012, 2, 3),
],
}
df = DataFrame.from_dict(d)
var3 = df.var3.unique()
var3.sort()
new = DataFrame.from_dict({"var3": var3, "var8": np.random.random(7)})
result = df.merge(new, on="var3", sort=False)
exp = merge(df, new, on="var3", sort=False)
tm.assert_frame_equal(result, exp)
assert (df.var3.unique() == result.var3.unique()).all()
@pytest.mark.parametrize(
("sort", "values"), [(False, [1, 1, 0, 1, 1]), (True, [0, 1, 1, 1, 1])]
)
@pytest.mark.parametrize("how", ["left", "right"])
def test_merge_same_order_left_right(self, sort, values, how):
# GH#35382
df = DataFrame({"a": [1, 0, 1]})
result = df.merge(df, on="a", how=how, sort=sort)
expected = DataFrame(values, columns=["a"])
tm.assert_frame_equal(result, expected)
def test_merge_nan_right(self):
df1 = DataFrame({"i1": [0, 1], "i2": [0, 1]})
df2 = DataFrame({"i1": [0], "i3": [0]})
result = df1.join(df2, on="i1", rsuffix="_")
expected = (
DataFrame(
{
"i1": {0: 0.0, 1: 1},
"i2": {0: 0, 1: 1},
"i1_": {0: 0, 1: np.nan},
"i3": {0: 0.0, 1: np.nan},
None: {0: 0, 1: 0},
}
)
.set_index(None)
.reset_index()[["i1", "i2", "i1_", "i3"]]
)
tm.assert_frame_equal(result, expected, check_dtype=False)
def test_merge_nan_right2(self):
df1 = DataFrame({"i1": [0, 1], "i2": [0.5, 1.5]})
df2 = DataFrame({"i1": [0], "i3": [0.7]})
result = df1.join(df2, rsuffix="_", on="i1")
expected = DataFrame(
{
"i1": {0: 0, 1: 1},
"i1_": {0: 0.0, 1: np.nan},
"i2": {0: 0.5, 1: 1.5},
"i3": {0: 0.69999999999999996, 1: np.nan},
}
)[["i1", "i2", "i1_", "i3"]]
tm.assert_frame_equal(result, expected)
def test_merge_type(self):
class NotADataFrame(DataFrame):
@property
def _constructor(self):
return NotADataFrame
nad = NotADataFrame(self.df)
result = nad.merge(self.df2, on="key1")
assert isinstance(result, NotADataFrame)
def test_join_append_timedeltas(self, using_array_manager):
# timedelta64 issues with join/merge
# GH 5695
d = DataFrame.from_dict(
{"d": [datetime(2013, 11, 5, 5, 56)], "t": [timedelta(0, 22500)]}
)
df = DataFrame(columns=list("dt"))
df = concat([df, d], ignore_index=True)
result = concat([df, d], ignore_index=True)
expected = DataFrame(
{
"d": [datetime(2013, 11, 5, 5, 56), datetime(2013, 11, 5, 5, 56)],
"t": [timedelta(0, 22500), timedelta(0, 22500)],
}
)
if using_array_manager:
# TODO(ArrayManager) decide on exact casting rules in concat
expected = expected.astype(object)
tm.assert_frame_equal(result, expected)
def test_join_append_timedeltas2(self):
# timedelta64 issues with join/merge
# GH 5695
td = np.timedelta64(300000000)
lhs = DataFrame(Series([td, td], index=["A", "B"]))
rhs = DataFrame(Series([td], index=["A"]))
result = lhs.join(rhs, rsuffix="r", how="left")
expected = DataFrame(
{
"0": Series([td, td], index=list("AB")),
"0r": Series([td, pd.NaT], index=list("AB")),
}
)
tm.assert_frame_equal(result, expected)
def test_other_datetime_unit(self):
# GH 13389
df1 = DataFrame({"entity_id": [101, 102]})
s = Series([None, None], index=[101, 102], name="days")
for dtype in [
"datetime64[D]",
"datetime64[h]",
"datetime64[m]",
"datetime64[s]",
"datetime64[ms]",
"datetime64[us]",
"datetime64[ns]",
]:
df2 = s.astype(dtype).to_frame("days")
# coerces to datetime64[ns], thus should not be affected
assert df2["days"].dtype == "datetime64[ns]"
result = df1.merge(df2, left_on="entity_id", right_index=True)
exp = DataFrame(
{
"entity_id": [101, 102],
"days": np.array(["nat", "nat"], dtype="datetime64[ns]"),
},
columns=["entity_id", "days"],
)
tm.assert_frame_equal(result, exp)
@pytest.mark.parametrize("unit", ["D", "h", "m", "s", "ms", "us", "ns"])
def test_other_timedelta_unit(self, unit):
# GH 13389
df1 = DataFrame({"entity_id": [101, 102]})
s = Series([None, None], index=[101, 102], name="days")
dtype = f"m8[{unit}]"
df2 = s.astype(dtype).to_frame("days")
assert df2["days"].dtype == "m8[ns]"
result = df1.merge(df2, left_on="entity_id", right_index=True)
exp = DataFrame(
{"entity_id": [101, 102], "days": np.array(["nat", "nat"], dtype=dtype)},
columns=["entity_id", "days"],
)
tm.assert_frame_equal(result, exp)
def test_overlapping_columns_error_message(self):
df = DataFrame({"key": [1, 2, 3], "v1": [4, 5, 6], "v2": [7, 8, 9]})
df2 = DataFrame({"key": [1, 2, 3], "v1": [4, 5, 6], "v2": [7, 8, 9]})
df.columns = ["key", "foo", "foo"]
df2.columns = ["key", "bar", "bar"]
expected = DataFrame(
{
"key": [1, 2, 3],
"v1": [4, 5, 6],
"v2": [7, 8, 9],
"v3": [4, 5, 6],
"v4": [7, 8, 9],
}
)
expected.columns = ["key", "foo", "foo", "bar", "bar"]
tm.assert_frame_equal(merge(df, df2), expected)
# #2649, #10639
df2.columns = ["key1", "foo", "foo"]
msg = r"Data columns not unique: Index\(\['foo'\], dtype='object'\)"
with pytest.raises(MergeError, match=msg):
merge(df, df2)
def test_merge_on_datetime64tz(self):
# GH11405
left = DataFrame(
{
"key": pd.date_range("20151010", periods=2, tz="US/Eastern"),
"value": [1, 2],
}
)
right = DataFrame(
{
"key": pd.date_range("20151011", periods=3, tz="US/Eastern"),
"value": [1, 2, 3],
}
)
expected = DataFrame(
{
"key": pd.date_range("20151010", periods=4, tz="US/Eastern"),
"value_x": [1, 2, np.nan, np.nan],
"value_y": [np.nan, 1, 2, 3],
}
)
result = merge(left, right, on="key", how="outer")
tm.assert_frame_equal(result, expected)
def test_merge_datetime64tz_values(self):
left = DataFrame(
{
"key": [1, 2],
"value": pd.date_range("20151010", periods=2, tz="US/Eastern"),
}
)
right = DataFrame(
{
"key": [2, 3],
"value": pd.date_range("20151011", periods=2, tz="US/Eastern"),
}
)
expected = DataFrame(
{
"key": [1, 2, 3],
"value_x": list(pd.date_range("20151010", periods=2, tz="US/Eastern"))
+ [pd.NaT],
"value_y": [pd.NaT]
+ list(pd.date_range("20151011", periods=2, tz="US/Eastern")),
}
)
result = merge(left, right, on="key", how="outer")
tm.assert_frame_equal(result, expected)
assert result["value_x"].dtype == "datetime64[ns, US/Eastern]"
assert result["value_y"].dtype == "datetime64[ns, US/Eastern]"
def test_merge_on_datetime64tz_empty(self):
# https://github.com/pandas-dev/pandas/issues/25014
dtz = pd.DatetimeTZDtype(tz="UTC")
right = DataFrame(
{
"date": [pd.Timestamp("2018", tz=dtz.tz)],
"value": [4.0],
"date2": [pd.Timestamp("2019", tz=dtz.tz)],
},
columns=["date", "value", "date2"],
)
left = right[:0]
result = left.merge(right, on="date")
expected = DataFrame(
{
"value_x": Series(dtype=float),
"date2_x": Series(dtype=dtz),
"date": Series(dtype=dtz),
"value_y": Series(dtype=float),
"date2_y": Series(dtype=dtz),
},
columns=["value_x", "date2_x", "date", "value_y", "date2_y"],
)
tm.assert_frame_equal(result, expected)
def test_merge_datetime64tz_with_dst_transition(self):
# GH 18885
df1 = DataFrame(
pd.date_range("2017-10-29 01:00", periods=4, freq="H", tz="Europe/Madrid"),
columns=["date"],
)
df1["value"] = 1
df2 = DataFrame(
{
"date": pd.to_datetime(
[
"2017-10-29 03:00:00",
"2017-10-29 04:00:00",
"2017-10-29 05:00:00",
]
),
"value": 2,
}
)
df2["date"] = df2["date"].dt.tz_localize("UTC").dt.tz_convert("Europe/Madrid")
result = merge(df1, df2, how="outer", on="date")
expected = DataFrame(
{
"date": pd.date_range(
"2017-10-29 01:00", periods=7, freq="H", tz="Europe/Madrid"
),
"value_x": [1] * 4 + [np.nan] * 3,
"value_y": [np.nan] * 4 + [2] * 3,
}
)
tm.assert_frame_equal(result, expected)
def test_merge_non_unique_period_index(self):
# GH #16871
index = pd.period_range("2016-01-01", periods=16, freq="M")
df = DataFrame(list(range(len(index))), index=index, columns=["pnum"])
df2 = concat([df, df])
result = df.merge(df2, left_index=True, right_index=True, how="inner")
expected = DataFrame(
np.tile(np.arange(16, dtype=np.int64).repeat(2).reshape(-1, 1), 2),
columns=["pnum_x", "pnum_y"],
index=df2.sort_index().index,
)
tm.assert_frame_equal(result, expected)
def test_merge_on_periods(self):
left = DataFrame(
{"key": pd.period_range("20151010", periods=2, freq="D"), "value": [1, 2]}
)
right = DataFrame(
{
"key": pd.period_range("20151011", periods=3, freq="D"),
"value": [1, 2, 3],
}
)
expected = DataFrame(
{
"key": pd.period_range("20151010", periods=4, freq="D"),
"value_x": [1, 2, np.nan, np.nan],
"value_y": [np.nan, 1, 2, 3],
}
)
result = merge(left, right, on="key", how="outer")
tm.assert_frame_equal(result, expected)
def test_merge_period_values(self):
left = DataFrame(
{"key": [1, 2], "value": pd.period_range("20151010", periods=2, freq="D")}
)
right = DataFrame(
{"key": [2, 3], "value": pd.period_range("20151011", periods=2, freq="D")}
)
exp_x = pd.period_range("20151010", periods=2, freq="D")
exp_y = pd.period_range("20151011", periods=2, freq="D")
expected = DataFrame(
{
"key": [1, 2, 3],
"value_x": list(exp_x) + [pd.NaT],
"value_y": [pd.NaT] + list(exp_y),
}
)
result = merge(left, right, on="key", how="outer")
tm.assert_frame_equal(result, expected)
assert result["value_x"].dtype == "Period[D]"
assert result["value_y"].dtype == "Period[D]"
def test_indicator(self, dfs_for_indicator):
# PR #10054. xref #7412 and closes #8790.
df1, df2 = dfs_for_indicator
df1_copy = df1.copy()
df2_copy = df2.copy()
df_result = DataFrame(
{
"col1": [0, 1, 2, 3, 4, 5],
"col_conflict_x": [1, 2, np.nan, np.nan, np.nan, np.nan],
"col_left": ["a", "b", np.nan, np.nan, np.nan, np.nan],
"col_conflict_y": [np.nan, 1, 2, 3, 4, 5],
"col_right": [np.nan, 2, 2, 2, 2, 2],
}
)
df_result["_merge"] = Categorical(
[
"left_only",
"both",
"right_only",
"right_only",
"right_only",
"right_only",
],
categories=["left_only", "right_only", "both"],
)
df_result = df_result[
[
"col1",
"col_conflict_x",
"col_left",
"col_conflict_y",
"col_right",
"_merge",
]
]
test = merge(df1, df2, on="col1", how="outer", indicator=True)
tm.assert_frame_equal(test, df_result)
test = df1.merge(df2, on="col1", how="outer", indicator=True)
tm.assert_frame_equal(test, df_result)
# No side effects
tm.assert_frame_equal(df1, df1_copy)
tm.assert_frame_equal(df2, df2_copy)
# Check with custom name
df_result_custom_name = df_result
df_result_custom_name = df_result_custom_name.rename(
columns={"_merge": "custom_name"}
)
test_custom_name = merge(
df1, df2, on="col1", how="outer", indicator="custom_name"
)
tm.assert_frame_equal(test_custom_name, df_result_custom_name)
test_custom_name = df1.merge(
df2, on="col1", how="outer", indicator="custom_name"
)
tm.assert_frame_equal(test_custom_name, df_result_custom_name)
def test_merge_indicator_arg_validation(self, dfs_for_indicator):
# Check only accepts strings and booleans
df1, df2 = dfs_for_indicator
msg = "indicator option can only accept boolean or string arguments"
with pytest.raises(ValueError, match=msg):
merge(df1, df2, on="col1", how="outer", indicator=5)
with pytest.raises(ValueError, match=msg):
df1.merge(df2, on="col1", how="outer", indicator=5)
def test_merge_indicator_result_integrity(self, dfs_for_indicator):
# Check result integrity
df1, df2 = dfs_for_indicator
test2 = merge(df1, df2, on="col1", how="left", indicator=True)
assert (test2._merge != "right_only").all()
test2 = df1.merge(df2, on="col1", how="left", indicator=True)
assert (test2._merge != "right_only").all()
test3 = merge(df1, df2, on="col1", how="right", indicator=True)
assert (test3._merge != "left_only").all()
test3 = df1.merge(df2, on="col1", how="right", indicator=True)
assert (test3._merge != "left_only").all()
test4 = merge(df1, df2, on="col1", how="inner", indicator=True)
assert (test4._merge == "both").all()
test4 = df1.merge(df2, on="col1", how="inner", indicator=True)
assert (test4._merge == "both").all()
def test_merge_indicator_invalid(self, dfs_for_indicator):
# Check if working name in df
df1, _ = dfs_for_indicator
for i in ["_right_indicator", "_left_indicator", "_merge"]:
df_badcolumn = DataFrame({"col1": [1, 2], i: [2, 2]})
msg = (
"Cannot use `indicator=True` option when data contains a "
f"column named {i}|"
"Cannot use name of an existing column for indicator column"
)
with pytest.raises(ValueError, match=msg):
merge(df1, df_badcolumn, on="col1", how="outer", indicator=True)
with pytest.raises(ValueError, match=msg):
df1.merge(df_badcolumn, on="col1", how="outer", indicator=True)
# Check for name conflict with custom name
df_badcolumn = DataFrame({"col1": [1, 2], "custom_column_name": [2, 2]})
msg = "Cannot use name of an existing column for indicator column"
with pytest.raises(ValueError, match=msg):
merge(
df1,
df_badcolumn,
on="col1",
how="outer",
indicator="custom_column_name",
)
with pytest.raises(ValueError, match=msg):
df1.merge(
df_badcolumn, on="col1", how="outer", indicator="custom_column_name"
)
def test_merge_indicator_multiple_columns(self):
# Merge on multiple columns
df3 = DataFrame({"col1": [0, 1], "col2": ["a", "b"]})
df4 = DataFrame({"col1": [1, 1, 3], "col2": ["b", "x", "y"]})
hand_coded_result = DataFrame(
{"col1": [0, 1, 1, 3], "col2": ["a", "b", "x", "y"]}
)
hand_coded_result["_merge"] = Categorical(
["left_only", "both", "right_only", "right_only"],
categories=["left_only", "right_only", "both"],
)
test5 = merge(df3, df4, on=["col1", "col2"], how="outer", indicator=True)
tm.assert_frame_equal(test5, hand_coded_result)
test5 = df3.merge(df4, on=["col1", "col2"], how="outer", indicator=True)
tm.assert_frame_equal(test5, hand_coded_result)
def test_validation(self):
left = DataFrame(
{"a": ["a", "b", "c", "d"], "b": ["cat", "dog", "weasel", "horse"]},
index=range(4),
)
right = DataFrame(
{
"a": ["a", "b", "c", "d", "e"],
"c": ["meow", "bark", "um... weasel noise?", "nay", "chirp"],
},
index=range(5),
)
# Make sure no side effects.
left_copy = left.copy()
right_copy = right.copy()
result = merge(left, right, left_index=True, right_index=True, validate="1:1")
tm.assert_frame_equal(left, left_copy)
tm.assert_frame_equal(right, right_copy)
# make sure merge still correct
expected = DataFrame(
{
"a_x": ["a", "b", "c", "d"],
"b": ["cat", "dog", "weasel", "horse"],
"a_y": ["a", "b", "c", "d"],
"c": ["meow", "bark", "um... weasel noise?", "nay"],
},
index=range(4),
columns=["a_x", "b", "a_y", "c"],
)
result = merge(
left, right, left_index=True, right_index=True, validate="one_to_one"
)
tm.assert_frame_equal(result, expected)
expected_2 = DataFrame(
{
"a": ["a", "b", "c", "d"],
"b": ["cat", "dog", "weasel", "horse"],
"c": ["meow", "bark", "um... weasel noise?", "nay"],
},
index=range(4),
)
result = merge(left, right, on="a", validate="1:1")
tm.assert_frame_equal(left, left_copy)
tm.assert_frame_equal(right, right_copy)
tm.assert_frame_equal(result, expected_2)
result = merge(left, right, on="a", validate="one_to_one")
tm.assert_frame_equal(result, expected_2)
# One index, one column
expected_3 = DataFrame(
{
"b": ["cat", "dog", "weasel", "horse"],
"a": ["a", "b", "c", "d"],
"c": ["meow", "bark", "um... weasel noise?", "nay"],
},
columns=["b", "a", "c"],
index=range(4),
)
left_index_reset = left.set_index("a")
result = merge(
left_index_reset,
right,
left_index=True,
right_on="a",
validate="one_to_one",
)
tm.assert_frame_equal(result, expected_3)
# Dups on right
right_w_dups = concat([right, DataFrame({"a": ["e"], "c": ["moo"]}, index=[4])])
merge(
left,
right_w_dups,
left_index=True,
right_index=True,
validate="one_to_many",
)
msg = "Merge keys are not unique in right dataset; not a one-to-one merge"
with pytest.raises(MergeError, match=msg):
merge(
left,
right_w_dups,
left_index=True,
right_index=True,
validate="one_to_one",
)
with pytest.raises(MergeError, match=msg):
merge(left, right_w_dups, on="a", validate="one_to_one")
# Dups on left
left_w_dups = concat(
[left, DataFrame({"a": ["a"], "c": ["cow"]}, index=[3])], sort=True
)
merge(
left_w_dups,
right,
left_index=True,
right_index=True,
validate="many_to_one",
)
msg = "Merge keys are not unique in left dataset; not a one-to-one merge"
with pytest.raises(MergeError, match=msg):
merge(
left_w_dups,
right,
left_index=True,
right_index=True,
validate="one_to_one",
)
with pytest.raises(MergeError, match=msg):
merge(left_w_dups, right, on="a", validate="one_to_one")
# Dups on both
merge(left_w_dups, right_w_dups, on="a", validate="many_to_many")
msg = "Merge keys are not unique in right dataset; not a many-to-one merge"
with pytest.raises(MergeError, match=msg):
merge(
left_w_dups,
right_w_dups,
left_index=True,
right_index=True,
validate="many_to_one",
)
msg = "Merge keys are not unique in left dataset; not a one-to-many merge"
with pytest.raises(MergeError, match=msg):
merge(left_w_dups, right_w_dups, on="a", validate="one_to_many")
# Check invalid arguments
msg = "Not a valid argument for validate"
with pytest.raises(ValueError, match=msg):
merge(left, right, on="a", validate="jibberish")
# Two column merge, dups in both, but jointly no dups.
left = DataFrame(
{
"a": ["a", "a", "b", "b"],
"b": [0, 1, 0, 1],
"c": ["cat", "dog", "weasel", "horse"],
},
index=range(4),
)
right = DataFrame(
{
"a": ["a", "a", "b"],
"b": [0, 1, 0],
"d": ["meow", "bark", "um... weasel noise?"],
},
index=range(3),
)
expected_multi = DataFrame(
{
"a": ["a", "a", "b"],
"b": [0, 1, 0],
"c": ["cat", "dog", "weasel"],
"d": ["meow", "bark", "um... weasel noise?"],
},
index=range(3),
)
msg = (
"Merge keys are not unique in either left or right dataset; "
"not a one-to-one merge"
)
with pytest.raises(MergeError, match=msg):
merge(left, right, on="a", validate="1:1")
result = merge(left, right, on=["a", "b"], validate="1:1")
tm.assert_frame_equal(result, expected_multi)
def test_merge_two_empty_df_no_division_error(self):
# GH17776, PR #17846
a = DataFrame({"a": [], "b": [], "c": []})
with np.errstate(divide="raise"):
merge(a, a, on=("a", "b"))
@pytest.mark.parametrize("how", ["right", "outer"])
@pytest.mark.parametrize(
"index,expected_index",
[
(
CategoricalIndex([1, 2, 4]),
CategoricalIndex([1, 2, 4, None, None, None]),
),
(
DatetimeIndex(["2001-01-01", "2002-02-02", "2003-03-03"]),
DatetimeIndex(
["2001-01-01", "2002-02-02", "2003-03-03", pd.NaT, pd.NaT, pd.NaT]
),
),
(Float64Index([1, 2, 3]), Float64Index([1, 2, 3, None, None, None])),
(Int64Index([1, 2, 3]), Float64Index([1, 2, 3, None, None, None])),
(
IntervalIndex.from_tuples([(1, 2), (2, 3), (3, 4)]),
IntervalIndex.from_tuples(
[(1, 2), (2, 3), (3, 4), np.nan, np.nan, np.nan]
),
),
(
PeriodIndex(["2001-01-01", "2001-01-02", "2001-01-03"], freq="D"),
PeriodIndex(
["2001-01-01", "2001-01-02", "2001-01-03", pd.NaT, pd.NaT, pd.NaT],
freq="D",
),
),
(
TimedeltaIndex(["1d", "2d", "3d"]),
TimedeltaIndex(["1d", "2d", "3d", pd.NaT, pd.NaT, pd.NaT]),
),
],
)
def test_merge_on_index_with_more_values(self, how, index, expected_index):
# GH 24212
# pd.merge gets [0, 1, 2, -1, -1, -1] as left_indexer, ensure that
# -1 is interpreted as a missing value instead of the last element
df1 = DataFrame({"a": [0, 1, 2], "key": [0, 1, 2]}, index=index)
df2 = DataFrame({"b": [0, 1, 2, 3, 4, 5]})
result = df1.merge(df2, left_on="key", right_index=True, how=how)
expected = DataFrame(
[
[0, 0, 0],
[1, 1, 1],
[2, 2, 2],
[np.nan, 3, 3],
[np.nan, 4, 4],
[np.nan, 5, 5],
],
columns=["a", "key", "b"],
)
expected.set_index(expected_index, inplace=True)
tm.assert_frame_equal(result, expected)
def test_merge_right_index_right(self):
# Note: the expected output here is probably incorrect.
# See https://github.com/pandas-dev/pandas/issues/17257 for more.
# We include this as a regression test for GH-24897.
left = DataFrame({"a": [1, 2, 3], "key": [0, 1, 1]})
right = DataFrame({"b": [1, 2, 3]})
expected = DataFrame(
{"a": [1, 2, 3, None], "key": [0, 1, 1, 2], "b": [1, 2, 2, 3]},
columns=["a", "key", "b"],
index=[0, 1, 2, np.nan],
)
result = left.merge(right, left_on="key", right_index=True, how="right")
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("how", ["left", "right"])
def test_merge_preserves_row_order(self, how):
# GH 27453
left_df = DataFrame({"animal": ["dog", "pig"], "max_speed": [40, 11]})
right_df = DataFrame({"animal": ["quetzal", "pig"], "max_speed": [80, 11]})
result = left_df.merge(right_df, on=["animal", "max_speed"], how=how)
if how == "right":
expected = DataFrame({"animal": ["quetzal", "pig"], "max_speed": [80, 11]})
else:
expected = DataFrame({"animal": ["dog", "pig"], "max_speed": [40, 11]})
tm.assert_frame_equal(result, expected)
def test_merge_take_missing_values_from_index_of_other_dtype(self):
# GH 24212
left = DataFrame(
{
"a": [1, 2, 3],
"key": Categorical(["a", "a", "b"], categories=list("abc")),
}
)
right = DataFrame({"b": [1, 2, 3]}, index=CategoricalIndex(["a", "b", "c"]))
result = left.merge(right, left_on="key", right_index=True, how="right")
expected = DataFrame(
{
"a": [1, 2, 3, None],
"key": Categorical(["a", "a", "b", "c"]),
"b": [1, 1, 2, 3],
},
index=[0, 1, 2, np.nan],
)
expected = expected.reindex(columns=["a", "key", "b"])
tm.assert_frame_equal(result, expected)
def test_merge_readonly(self):
# https://github.com/pandas-dev/pandas/issues/27943
data1 = DataFrame(
np.arange(20).reshape((4, 5)) + 1, columns=["a", "b", "c", "d", "e"]
)
data2 = DataFrame(
np.arange(20).reshape((5, 4)) + 1, columns=["a", "b", "x", "y"]
)
# make each underlying block array / column array read-only
for arr in data1._mgr.arrays:
arr.flags.writeable = False
data1.merge(data2) # no error
def _check_merge(x, y):
for how in ["inner", "left", "outer"]:
result = x.join(y, how=how)
expected = merge(x.reset_index(), y.reset_index(), how=how, sort=True)
expected = expected.set_index("index")
# TODO check_names on merge?
tm.assert_frame_equal(result, expected, check_names=False)
class TestMergeDtypes:
@pytest.mark.parametrize(
"right_vals", [["foo", "bar"], Series(["foo", "bar"]).astype("category")]
)
def test_different(self, right_vals):
left = DataFrame(
{
"A": ["foo", "bar"],
"B": Series(["foo", "bar"]).astype("category"),
"C": [1, 2],
"D": [1.0, 2.0],
"E": Series([1, 2], dtype="uint64"),
"F": Series([1, 2], dtype="int32"),
}
)
right = DataFrame({"A": right_vals})
# GH 9780
# We allow merging on object and categorical cols and cast
# categorical cols to object
result = merge(left, right, on="A")
assert is_object_dtype(result.A.dtype)
@pytest.mark.parametrize("d1", [np.int64, np.int32, np.int16, np.int8, np.uint8])
@pytest.mark.parametrize("d2", [np.int64, np.float64, np.float32, np.float16])
def test_join_multi_dtypes(self, d1, d2):
dtype1 = np.dtype(d1)
dtype2 = np.dtype(d2)
left = DataFrame(
{
"k1": np.array([0, 1, 2] * 8, dtype=dtype1),
"k2": ["foo", "bar"] * 12,
"v": np.array(np.arange(24), dtype=np.int64),
}
)
index = MultiIndex.from_tuples([(2, "bar"), (1, "foo")])
right = DataFrame({"v2": np.array([5, 7], dtype=dtype2)}, index=index)
result = left.join(right, on=["k1", "k2"])
expected = left.copy()
if dtype2.kind == "i":
dtype2 = np.dtype("float64")
expected["v2"] = np.array(np.nan, dtype=dtype2)
expected.loc[(expected.k1 == 2) & (expected.k2 == "bar"), "v2"] = 5
expected.loc[(expected.k1 == 1) & (expected.k2 == "foo"), "v2"] = 7
tm.assert_frame_equal(result, expected)
result = left.join(right, on=["k1", "k2"], sort=True)
expected.sort_values(["k1", "k2"], kind="mergesort", inplace=True)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"int_vals, float_vals, exp_vals",
[
([1, 2, 3], [1.0, 2.0, 3.0], {"X": [1, 2, 3], "Y": [1.0, 2.0, 3.0]}),
([1, 2, 3], [1.0, 3.0], {"X": [1, 3], "Y": [1.0, 3.0]}),
([1, 2], [1.0, 2.0, 3.0], {"X": [1, 2], "Y": [1.0, 2.0]}),
],
)
def test_merge_on_ints_floats(self, int_vals, float_vals, exp_vals):
# GH 16572
# Check that float column is not cast to object if
# merging on float and int columns
A = DataFrame({"X": int_vals})
B = DataFrame({"Y": float_vals})
expected = DataFrame(exp_vals)
result = A.merge(B, left_on="X", right_on="Y")
tm.assert_frame_equal(result, expected)
result = B.merge(A, left_on="Y", right_on="X")
tm.assert_frame_equal(result, expected[["Y", "X"]])
def test_merge_key_dtype_cast(self):
# GH 17044
df1 = DataFrame({"key": [1.0, 2.0], "v1": [10, 20]}, columns=["key", "v1"])
df2 = DataFrame({"key": [2], "v2": [200]}, columns=["key", "v2"])
result = df1.merge(df2, on="key", how="left")
expected = DataFrame(
{"key": [1.0, 2.0], "v1": [10, 20], "v2": [np.nan, 200.0]},
columns=["key", "v1", "v2"],
)
tm.assert_frame_equal(result, expected)
def test_merge_on_ints_floats_warning(self):
# GH 16572
# merge will produce a warning when merging on int and
# float columns where the float values are not exactly
# equal to their int representation
A = DataFrame({"X": [1, 2, 3]})
B = DataFrame({"Y": [1.1, 2.5, 3.0]})
expected = DataFrame({"X": [3], "Y": [3.0]})
with tm.assert_produces_warning(UserWarning):
result = A.merge(B, left_on="X", right_on="Y")
tm.assert_frame_equal(result, expected)
with tm.assert_produces_warning(UserWarning):
result = B.merge(A, left_on="Y", right_on="X")
tm.assert_frame_equal(result, expected[["Y", "X"]])
# test no warning if float has NaNs
B = DataFrame({"Y": [np.nan, np.nan, 3.0]})
with tm.assert_produces_warning(None):
result = B.merge(A, left_on="Y", right_on="X")
tm.assert_frame_equal(result, expected[["Y", "X"]])
def test_merge_incompat_infer_boolean_object(self):
# GH21119: bool + object bool merge OK
df1 = DataFrame({"key": Series([True, False], dtype=object)})
df2 = DataFrame({"key": [True, False]})
expected = DataFrame({"key": [True, False]}, dtype=object)
result = merge(df1, df2, on="key")
tm.assert_frame_equal(result, expected)
result = merge(df2, df1, on="key")
tm.assert_frame_equal(result, expected)
def test_merge_incompat_infer_boolean_object_with_missing(self):
# GH21119: bool + object bool merge OK
# with missing value
df1 = DataFrame({"key": Series([True, False, np.nan], dtype=object)})
df2 = DataFrame({"key": [True, False]})
expected = DataFrame({"key": [True, False]}, dtype=object)
result = merge(df1, df2, on="key")
tm.assert_frame_equal(result, expected)
result = merge(df2, df1, on="key")
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"df1_vals, df2_vals",
[
# merge on category coerces to object
([0, 1, 2], Series(["a", "b", "a"]).astype("category")),
([0.0, 1.0, 2.0], Series(["a", "b", "a"]).astype("category")),
# no not infer
([0, 1], Series([False, True], dtype=object)),
([0, 1], Series([False, True], dtype=bool)),
],
)
def test_merge_incompat_dtypes_are_ok(self, df1_vals, df2_vals):
# these are explicitly allowed incompat merges, that pass thru
# the result type is dependent on if the values on the rhs are
# inferred, otherwise these will be coerced to object
df1 = DataFrame({"A": df1_vals})
df2 = DataFrame({"A": df2_vals})
result = merge(df1, df2, on=["A"])
assert is_object_dtype(result.A.dtype)
result = merge(df2, df1, on=["A"])
assert is_object_dtype(result.A.dtype)
@pytest.mark.parametrize(
"df1_vals, df2_vals",
[
# do not infer to numeric
(Series([1, 2], dtype="uint64"), ["a", "b", "c"]),
(Series([1, 2], dtype="int32"), ["a", "b", "c"]),
([0, 1, 2], ["0", "1", "2"]),
([0.0, 1.0, 2.0], ["0", "1", "2"]),
([0, 1, 2], ["0", "1", "2"]),
(
pd.date_range("1/1/2011", periods=2, freq="D"),
["2011-01-01", "2011-01-02"],
),
(pd.date_range("1/1/2011", periods=2, freq="D"), [0, 1]),
(pd.date_range("1/1/2011", periods=2, freq="D"), [0.0, 1.0]),
(
pd.date_range("20130101", periods=3),
pd.date_range("20130101", periods=3, tz="US/Eastern"),
),
],
)
def test_merge_incompat_dtypes_error(self, df1_vals, df2_vals):
# GH 9780, GH 15800
# Raise a ValueError when a user tries to merge on
# dtypes that are incompatible (e.g., obj and int/float)
df1 = DataFrame({"A": df1_vals})
df2 = DataFrame({"A": df2_vals})
msg = (
f"You are trying to merge on {df1['A'].dtype} and "
f"{df2['A'].dtype} columns. If you wish to proceed "
"you should use pd.concat"
)
msg = re.escape(msg)
with pytest.raises(ValueError, match=msg):
merge(df1, df2, on=["A"])
# Check that error still raised when swapping order of dataframes
msg = (
f"You are trying to merge on {df2['A'].dtype} and "
f"{df1['A'].dtype} columns. If you wish to proceed "
"you should use pd.concat"
)
msg = re.escape(msg)
with pytest.raises(ValueError, match=msg):
merge(df2, df1, on=["A"])
@pytest.mark.parametrize(
"expected_data, how",
[
([1, 2], "outer"),
([], "inner"),
([2], "right"),
([1], "left"),
],
)
def test_merge_EA_dtype(self, any_numeric_ea_dtype, how, expected_data):
# GH#40073
d1 = DataFrame([(1,)], columns=["id"], dtype=any_numeric_ea_dtype)
d2 = DataFrame([(2,)], columns=["id"], dtype=any_numeric_ea_dtype)
result = merge(d1, d2, how=how)
expected = DataFrame(expected_data, columns=["id"], dtype=any_numeric_ea_dtype)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"expected_data, how",
[
(["a", "b"], "outer"),
([], "inner"),
(["b"], "right"),
(["a"], "left"),
],
)
def test_merge_string_dtype(self, how, expected_data, any_string_dtype):
# GH#40073
d1 = DataFrame([("a",)], columns=["id"], dtype=any_string_dtype)
d2 = DataFrame([("b",)], columns=["id"], dtype=any_string_dtype)
result = merge(d1, d2, how=how)
expected = DataFrame(expected_data, columns=["id"], dtype=any_string_dtype)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"how, expected_data",
[
("inner", [[True, 1, 4], [False, 5, 3]]),
("outer", [[True, 1, 4], [False, 5, 3]]),
("left", [[True, 1, 4], [False, 5, 3]]),
("right", [[False, 5, 3], [True, 1, 4]]),
],
)
def test_merge_bool_dtype(self, how, expected_data):
# GH#40073
df1 = DataFrame({"A": [True, False], "B": [1, 5]})
df2 = DataFrame({"A": [False, True], "C": [3, 4]})
result = merge(df1, df2, how=how)
expected = DataFrame(expected_data, columns=["A", "B", "C"])
tm.assert_frame_equal(result, expected)
def test_merge_ea_with_string(self, join_type, string_dtype):
# GH 43734 Avoid the use of `assign` with multi-index
df1 = DataFrame(
data={
("lvl0", "lvl1-a"): ["1", "2", "3", "4", None],
("lvl0", "lvl1-b"): ["4", "5", "6", "7", "8"],
},
dtype=pd.StringDtype(),
)
df1_copy = df1.copy()
df2 = DataFrame(
data={
("lvl0", "lvl1-a"): ["1", "2", "3", pd.NA, "5"],
("lvl0", "lvl1-c"): ["7", "8", "9", pd.NA, "11"],
},
dtype=string_dtype,
)
df2_copy = df2.copy()
merged = merge(left=df1, right=df2, on=[("lvl0", "lvl1-a")], how=join_type)
# No change in df1 and df2
tm.assert_frame_equal(df1, df1_copy)
tm.assert_frame_equal(df2, df2_copy)
# Check the expected types for the merged data frame
expected = Series(
[np.dtype("O"), pd.StringDtype(), np.dtype("O")],
index=MultiIndex.from_tuples(
[("lvl0", "lvl1-a"), ("lvl0", "lvl1-b"), ("lvl0", "lvl1-c")]
),
)
tm.assert_series_equal(merged.dtypes, expected)
@pytest.mark.parametrize(
"left_empty, how, exp",
[
(False, "left", "left"),
(False, "right", "empty"),
(False, "inner", "empty"),
(False, "outer", "left"),
(False, "cross", "empty_cross"),
(True, "left", "empty"),
(True, "right", "right"),
(True, "inner", "empty"),
(True, "outer", "right"),
(True, "cross", "empty_cross"),
],
)
def test_merge_empty(self, left_empty, how, exp):
left = DataFrame({"A": [2, 1], "B": [3, 4]})
right = DataFrame({"A": [1], "C": [5]}, dtype="int64")
if left_empty:
left = left.head(0)
else:
right = right.head(0)
result = left.merge(right, how=how)
if exp == "left":
expected = DataFrame({"A": [2, 1], "B": [3, 4], "C": [np.nan, np.nan]})
elif exp == "right":
expected = DataFrame({"B": [np.nan], "A": [1], "C": [5]})
elif exp == "empty":
expected = DataFrame(columns=["A", "B", "C"], dtype="int64")
if left_empty:
expected = expected[["B", "A", "C"]]
elif exp == "empty_cross":
expected = DataFrame(columns=["A_x", "B", "A_y", "C"], dtype="int64")
tm.assert_frame_equal(result, expected)
@pytest.fixture
def left():
np.random.seed(1234)
return DataFrame(
{
"X": Series(np.random.choice(["foo", "bar"], size=(10,))).astype(
CDT(["foo", "bar"])
),
"Y": np.random.choice(["one", "two", "three"], size=(10,)),
}
)
@pytest.fixture
def right():
np.random.seed(1234)
return DataFrame(
{"X": Series(["foo", "bar"]).astype(CDT(["foo", "bar"])), "Z": [1, 2]}
)
class TestMergeCategorical:
def test_identical(self, left):
# merging on the same, should preserve dtypes
merged = merge(left, left, on="X")
result = merged.dtypes.sort_index()
expected = Series(
[CategoricalDtype(categories=["foo", "bar"]), np.dtype("O"), np.dtype("O")],
index=["X", "Y_x", "Y_y"],
)
tm.assert_series_equal(result, expected)
def test_basic(self, left, right):
# we have matching Categorical dtypes in X
# so should preserve the merged column
merged = merge(left, right, on="X")
result = merged.dtypes.sort_index()
expected = Series(
[
CategoricalDtype(categories=["foo", "bar"]),
np.dtype("O"),
np.dtype("int64"),
],
index=["X", "Y", "Z"],
)
tm.assert_series_equal(result, expected)
def test_merge_categorical(self):
# GH 9426
right = DataFrame(
{
"c": {0: "a", 1: "b", 2: "c", 3: "d", 4: "e"},
"d": {0: "null", 1: "null", 2: "null", 3: "null", 4: "null"},
}
)
left = DataFrame(
{
"a": {0: "f", 1: "f", 2: "f", 3: "f", 4: "f"},
"b": {0: "g", 1: "g", 2: "g", 3: "g", 4: "g"},
}
)
df = merge(left, right, how="left", left_on="b", right_on="c")
# object-object
expected = df.copy()
# object-cat
# note that we propagate the category
# because we don't have any matching rows
cright = right.copy()
cright["d"] = cright["d"].astype("category")
result = merge(left, cright, how="left", left_on="b", right_on="c")
expected["d"] = expected["d"].astype(CategoricalDtype(["null"]))
tm.assert_frame_equal(result, expected)
# cat-object
cleft = left.copy()
cleft["b"] = cleft["b"].astype("category")
result = merge(cleft, cright, how="left", left_on="b", right_on="c")
tm.assert_frame_equal(result, expected)
# cat-cat
cright = right.copy()
cright["d"] = cright["d"].astype("category")
cleft = left.copy()
cleft["b"] = cleft["b"].astype("category")
result = merge(cleft, cright, how="left", left_on="b", right_on="c")
tm.assert_frame_equal(result, expected)
def tests_merge_categorical_unordered_equal(self):
# GH-19551
df1 = DataFrame(
{
"Foo": Categorical(["A", "B", "C"], categories=["A", "B", "C"]),
"Left": ["A0", "B0", "C0"],
}
)
df2 = DataFrame(
{
"Foo": Categorical(["C", "B", "A"], categories=["C", "B", "A"]),
"Right": ["C1", "B1", "A1"],
}
)
result = merge(df1, df2, on=["Foo"])
expected = DataFrame(
{
"Foo": Categorical(["A", "B", "C"]),
"Left": ["A0", "B0", "C0"],
"Right": ["A1", "B1", "C1"],
}
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("ordered", [True, False])
def test_multiindex_merge_with_unordered_categoricalindex(self, ordered):
# GH 36973
pcat = CategoricalDtype(categories=["P2", "P1"], ordered=ordered)
df1 = DataFrame(
{
"id": ["C", "C", "D"],
"p": Categorical(["P2", "P1", "P2"], dtype=pcat),
"a": [0, 1, 2],
}
).set_index(["id", "p"])
df2 = DataFrame(
{
"id": ["A", "C", "C"],
"p": Categorical(["P2", "P2", "P1"], dtype=pcat),
"d1": [10, 11, 12],
}
).set_index(["id", "p"])
result = merge(df1, df2, how="left", left_index=True, right_index=True)
expected = DataFrame(
{
"id": ["C", "C", "D"],
"p": Categorical(["P2", "P1", "P2"], dtype=pcat),
"a": [0, 1, 2],
"d1": [11.0, 12.0, np.nan],
}
).set_index(["id", "p"])
tm.assert_frame_equal(result, expected)
def test_other_columns(self, left, right):
# non-merge columns should preserve if possible
right = right.assign(Z=right.Z.astype("category"))
merged = merge(left, right, on="X")
result = merged.dtypes.sort_index()
expected = Series(
[
CategoricalDtype(categories=["foo", "bar"]),
np.dtype("O"),
CategoricalDtype(categories=[1, 2]),
],
index=["X", "Y", "Z"],
)
tm.assert_series_equal(result, expected)
# categories are preserved
assert left.X.values._categories_match_up_to_permutation(merged.X.values)
assert right.Z.values._categories_match_up_to_permutation(merged.Z.values)
@pytest.mark.parametrize(
"change",
[
lambda x: x,
lambda x: x.astype(CDT(["foo", "bar", "bah"])),
lambda x: x.astype(CDT(ordered=True)),
],
)
def test_dtype_on_merged_different(self, change, join_type, left, right):
# our merging columns, X now has 2 different dtypes
# so we must be object as a result
X = change(right.X.astype("object"))
right = right.assign(X=X)
assert is_categorical_dtype(left.X.values.dtype)
# assert not left.X.values._categories_match_up_to_permutation(right.X.values)
merged = merge(left, right, on="X", how=join_type)
result = merged.dtypes.sort_index()
expected = Series(
[np.dtype("O"), np.dtype("O"), np.dtype("int64")], index=["X", "Y", "Z"]
)
tm.assert_series_equal(result, expected)
def test_self_join_multiple_categories(self):
# GH 16767
# non-duplicates should work with multiple categories
m = 5
df = DataFrame(
{
"a": ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"] * m,
"b": ["t", "w", "x", "y", "z"] * 2 * m,
"c": [
letter
for each in ["m", "n", "u", "p", "o"]
for letter in [each] * 2 * m
],
"d": [
letter
for each in [
"aa",
"bb",
"cc",
"dd",
"ee",
"ff",
"gg",
"hh",
"ii",
"jj",
]
for letter in [each] * m
],
}
)
# change them all to categorical variables
df = df.apply(lambda x: x.astype("category"))
# self-join should equal ourselves
result = merge(df, df, on=list(df.columns))
tm.assert_frame_equal(result, df)
def test_dtype_on_categorical_dates(self):
# GH 16900
# dates should not be coerced to ints
df = DataFrame(
[[date(2001, 1, 1), 1.1], [date(2001, 1, 2), 1.3]], columns=["date", "num2"]
)
df["date"] = df["date"].astype("category")
df2 = DataFrame(
[[date(2001, 1, 1), 1.3], [date(2001, 1, 3), 1.4]], columns=["date", "num4"]
)
df2["date"] = df2["date"].astype("category")
expected_outer = DataFrame(
[
[pd.Timestamp("2001-01-01").date(), 1.1, 1.3],
[pd.Timestamp("2001-01-02").date(), 1.3, np.nan],
[pd.Timestamp("2001-01-03").date(), np.nan, 1.4],
],
columns=["date", "num2", "num4"],
)
result_outer = merge(df, df2, how="outer", on=["date"])
tm.assert_frame_equal(result_outer, expected_outer)
expected_inner = DataFrame(
[[pd.Timestamp("2001-01-01").date(), 1.1, 1.3]],
columns=["date", "num2", "num4"],
)
result_inner = merge(df, df2, how="inner", on=["date"])
tm.assert_frame_equal(result_inner, expected_inner)
@pytest.mark.parametrize("ordered", [True, False])
@pytest.mark.parametrize(
"category_column,categories,expected_categories",
[
([False, True, True, False], [True, False], [True, False]),
([2, 1, 1, 2], [1, 2], [1, 2]),
(["False", "True", "True", "False"], ["True", "False"], ["True", "False"]),
],
)
def test_merging_with_bool_or_int_cateorical_column(
self, category_column, categories, expected_categories, ordered
):
# GH 17187
# merging with a boolean/int categorical column
df1 = DataFrame({"id": [1, 2, 3, 4], "cat": category_column})
df1["cat"] = df1["cat"].astype(CDT(categories, ordered=ordered))
df2 = DataFrame({"id": [2, 4], "num": [1, 9]})
result = df1.merge(df2)
expected = DataFrame({"id": [2, 4], "cat": expected_categories, "num": [1, 9]})
expected["cat"] = expected["cat"].astype(CDT(categories, ordered=ordered))
tm.assert_frame_equal(expected, result)
def test_merge_on_int_array(self):
# GH 23020
df = DataFrame({"A": Series([1, 2, np.nan], dtype="Int64"), "B": 1})
result = merge(df, df, on="A")
expected = DataFrame(
{"A": Series([1, 2, np.nan], dtype="Int64"), "B_x": 1, "B_y": 1}
)
tm.assert_frame_equal(result, expected)
@pytest.fixture
def left_df():
return DataFrame({"a": [20, 10, 0]}, index=[2, 1, 0])
@pytest.fixture
def right_df():
return DataFrame({"b": [300, 100, 200]}, index=[3, 1, 2])
class TestMergeOnIndexes:
@pytest.mark.parametrize(
"how, sort, expected",
[
("inner", False, DataFrame({"a": [20, 10], "b": [200, 100]}, index=[2, 1])),
("inner", True, DataFrame({"a": [10, 20], "b": [100, 200]}, index=[1, 2])),
(
"left",
False,
DataFrame({"a": [20, 10, 0], "b": [200, 100, np.nan]}, index=[2, 1, 0]),
),
(
"left",
True,
DataFrame({"a": [0, 10, 20], "b": [np.nan, 100, 200]}, index=[0, 1, 2]),
),
(
"right",
False,
DataFrame(
{"a": [np.nan, 10, 20], "b": [300, 100, 200]}, index=[3, 1, 2]
),
),
(
"right",
True,
DataFrame(
{"a": [10, 20, np.nan], "b": [100, 200, 300]}, index=[1, 2, 3]
),
),
(
"outer",
False,
DataFrame(
{"a": [0, 10, 20, np.nan], "b": [np.nan, 100, 200, 300]},
index=[0, 1, 2, 3],
),
),
(
"outer",
True,
DataFrame(
{"a": [0, 10, 20, np.nan], "b": [np.nan, 100, 200, 300]},
index=[0, 1, 2, 3],
),
),
],
)
def test_merge_on_indexes(self, left_df, right_df, how, sort, expected):
result = merge(
left_df, right_df, left_index=True, right_index=True, how=how, sort=sort
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"index",
[
CategoricalIndex(["A", "B"], categories=["A", "B"], name="index_col"),
Float64Index([1.0, 2.0], name="index_col"),
Int64Index([1, 2], name="index_col"),
UInt64Index([1, 2], name="index_col"),
RangeIndex(start=0, stop=2, name="index_col"),
DatetimeIndex(["2018-01-01", "2018-01-02"], name="index_col"),
],
ids=lambda x: type(x).__name__,
)
def test_merge_index_types(index):
# gh-20777
# assert key access is consistent across index types
left = DataFrame({"left_data": [1, 2]}, index=index)
right = DataFrame({"right_data": [1.0, 2.0]}, index=index)
result = left.merge(right, on=["index_col"])
expected = DataFrame({"left_data": [1, 2], "right_data": [1.0, 2.0]}, index=index)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"on,left_on,right_on,left_index,right_index,nm",
[
(["outer", "inner"], None, None, False, False, "B"),
(None, None, None, True, True, "B"),
(None, ["outer", "inner"], None, False, True, "B"),
(None, None, ["outer", "inner"], True, False, "B"),
(["outer", "inner"], None, None, False, False, None),
(None, None, None, True, True, None),
(None, ["outer", "inner"], None, False, True, None),
(None, None, ["outer", "inner"], True, False, None),
],
)
def test_merge_series(on, left_on, right_on, left_index, right_index, nm):
# GH 21220
a = DataFrame(
{"A": [1, 2, 3, 4]},
index=MultiIndex.from_product([["a", "b"], [0, 1]], names=["outer", "inner"]),
)
b = Series(
[1, 2, 3, 4],
index=MultiIndex.from_product([["a", "b"], [1, 2]], names=["outer", "inner"]),
name=nm,
)
expected = DataFrame(
{"A": [2, 4], "B": [1, 3]},
index=MultiIndex.from_product([["a", "b"], [1]], names=["outer", "inner"]),
)
if nm is not None:
result = merge(
a,
b,
on=on,
left_on=left_on,
right_on=right_on,
left_index=left_index,
right_index=right_index,
)
tm.assert_frame_equal(result, expected)
else:
msg = "Cannot merge a Series without a name"
with pytest.raises(ValueError, match=msg):
result = merge(
a,
b,
on=on,
left_on=left_on,
right_on=right_on,
left_index=left_index,
right_index=right_index,
)
def test_merge_series_multilevel():
# GH#47946
a = DataFrame(
{"A": [1, 2, 3, 4]},
index=MultiIndex.from_product([["a", "b"], [0, 1]], names=["outer", "inner"]),
)
b = Series(
[1, 2, 3, 4],
index=MultiIndex.from_product([["a", "b"], [1, 2]], names=["outer", "inner"]),
name=("B", "C"),
)
expected = DataFrame(
{"A": [2, 4], ("B", "C"): [1, 3]},
index=MultiIndex.from_product([["a", "b"], [1]], names=["outer", "inner"]),
)
with tm.assert_produces_warning(FutureWarning):
result = merge(a, b, on=["outer", "inner"])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"col1, col2, kwargs, expected_cols",
[
(0, 0, {"suffixes": ("", "_dup")}, ["0", "0_dup"]),
(0, 0, {"suffixes": (None, "_dup")}, [0, "0_dup"]),
(0, 0, {"suffixes": ("_x", "_y")}, ["0_x", "0_y"]),
(0, 0, {"suffixes": ["_x", "_y"]}, ["0_x", "0_y"]),
("a", 0, {"suffixes": (None, "_y")}, ["a", 0]),
(0.0, 0.0, {"suffixes": ("_x", None)}, ["0.0_x", 0.0]),
("b", "b", {"suffixes": (None, "_y")}, ["b", "b_y"]),
("a", "a", {"suffixes": ("_x", None)}, ["a_x", "a"]),
("a", "b", {"suffixes": ("_x", None)}, ["a", "b"]),
("a", "a", {"suffixes": (None, "_x")}, ["a", "a_x"]),
(0, 0, {"suffixes": ("_a", None)}, ["0_a", 0]),
("a", "a", {}, ["a_x", "a_y"]),
(0, 0, {}, ["0_x", "0_y"]),
],
)
def test_merge_suffix(col1, col2, kwargs, expected_cols):
# issue: 24782
a = DataFrame({col1: [1, 2, 3]})
b = DataFrame({col2: [4, 5, 6]})
expected = DataFrame([[1, 4], [2, 5], [3, 6]], columns=expected_cols)
result = a.merge(b, left_index=True, right_index=True, **kwargs)
tm.assert_frame_equal(result, expected)
result = merge(a, b, left_index=True, right_index=True, **kwargs)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"how,expected",
[
(
"right",
DataFrame(
{"A": [100, 200, 300], "B1": [60, 70, np.nan], "B2": [600, 700, 800]}
),
),
(
"outer",
DataFrame(
{
"A": [100, 200, 1, 300],
"B1": [60, 70, 80, np.nan],
"B2": [600, 700, np.nan, 800],
}
),
),
],
)
def test_merge_duplicate_suffix(how, expected):
left_df = DataFrame({"A": [100, 200, 1], "B": [60, 70, 80]})
right_df = DataFrame({"A": [100, 200, 300], "B": [600, 700, 800]})
result = merge(left_df, right_df, on="A", how=how, suffixes=("_x", "_x"))
expected.columns = ["A", "B_x", "B_x"]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"col1, col2, suffixes",
[("a", "a", (None, None)), ("a", "a", ("", None)), (0, 0, (None, ""))],
)
def test_merge_suffix_error(col1, col2, suffixes):
# issue: 24782
a = DataFrame({col1: [1, 2, 3]})
b = DataFrame({col2: [3, 4, 5]})
# TODO: might reconsider current raise behaviour, see issue 24782
msg = "columns overlap but no suffix specified"
with pytest.raises(ValueError, match=msg):
merge(a, b, left_index=True, right_index=True, suffixes=suffixes)
@pytest.mark.parametrize("suffixes", [{"left", "right"}, {"left": 0, "right": 0}])
def test_merge_suffix_warns(suffixes):
a = DataFrame({"a": [1, 2, 3]})
b = DataFrame({"b": [3, 4, 5]})
with tm.assert_produces_warning(FutureWarning):
merge(a, b, left_index=True, right_index=True, suffixes={"left", "right"})
@pytest.mark.parametrize(
"col1, col2, suffixes, msg",
[
("a", "a", ("a", "b", "c"), r"too many values to unpack \(expected 2\)"),
("a", "a", tuple("a"), r"not enough values to unpack \(expected 2, got 1\)"),
],
)
def test_merge_suffix_length_error(col1, col2, suffixes, msg):
a = DataFrame({col1: [1, 2, 3]})
b = DataFrame({col2: [3, 4, 5]})
with pytest.raises(ValueError, match=msg):
merge(a, b, left_index=True, right_index=True, suffixes=suffixes)
@pytest.mark.parametrize("cat_dtype", ["one", "two"])
@pytest.mark.parametrize("reverse", [True, False])
def test_merge_equal_cat_dtypes(cat_dtype, reverse):
# see gh-22501
cat_dtypes = {
"one": CategoricalDtype(categories=["a", "b", "c"], ordered=False),
"two": CategoricalDtype(categories=["a", "b", "c"], ordered=False),
}
df1 = DataFrame(
{"foo": Series(["a", "b", "c"]).astype(cat_dtypes["one"]), "left": [1, 2, 3]}
).set_index("foo")
data_foo = ["a", "b", "c"]
data_right = [1, 2, 3]
if reverse:
data_foo.reverse()
data_right.reverse()
df2 = DataFrame(
{"foo": Series(data_foo).astype(cat_dtypes[cat_dtype]), "right": data_right}
).set_index("foo")
result = df1.merge(df2, left_index=True, right_index=True)
expected = DataFrame(
{
"left": [1, 2, 3],
"right": [1, 2, 3],
"foo": Series(["a", "b", "c"]).astype(cat_dtypes["one"]),
}
).set_index("foo")
tm.assert_frame_equal(result, expected)
def test_merge_equal_cat_dtypes2():
# see gh-22501
cat_dtype = CategoricalDtype(categories=["a", "b", "c"], ordered=False)
# Test Data
df1 = DataFrame(
{"foo": Series(["a", "b"]).astype(cat_dtype), "left": [1, 2]}
).set_index("foo")
df2 = DataFrame(
{"foo": Series(["a", "b", "c"]).astype(cat_dtype), "right": [3, 2, 1]}
).set_index("foo")
result = df1.merge(df2, left_index=True, right_index=True)
expected = DataFrame(
{"left": [1, 2], "right": [3, 2], "foo": Series(["a", "b"]).astype(cat_dtype)}
).set_index("foo")
tm.assert_frame_equal(result, expected)
def test_merge_on_cat_and_ext_array():
# GH 28668
right = DataFrame(
{"a": Series([pd.Interval(0, 1), pd.Interval(1, 2)], dtype="interval")}
)
left = right.copy()
left["a"] = left["a"].astype("category")
result = merge(left, right, how="inner", on="a")
expected = right.copy()
tm.assert_frame_equal(result, expected)
def test_merge_multiindex_columns():
# Issue #28518
# Verify that merging two dataframes give the expected labels
# The original cause of this issue come from a bug lexsort_depth and is tested in
# test_lexsort_depth
letters = ["a", "b", "c", "d"]
numbers = ["1", "2", "3"]
index = MultiIndex.from_product((letters, numbers), names=["outer", "inner"])
frame_x = DataFrame(columns=index)
frame_x["id"] = ""
frame_y = DataFrame(columns=index)
frame_y["id"] = ""
l_suf = "_x"
r_suf = "_y"
result = frame_x.merge(frame_y, on="id", suffixes=((l_suf, r_suf)))
# Constructing the expected results
expected_labels = [letter + l_suf for letter in letters] + [
letter + r_suf for letter in letters
]
expected_index = MultiIndex.from_product(
[expected_labels, numbers], names=["outer", "inner"]
)
expected = DataFrame(columns=expected_index)
expected["id"] = ""
tm.assert_frame_equal(result, expected)
def test_merge_datetime_upcast_dtype():
# https://github.com/pandas-dev/pandas/issues/31208
df1 = DataFrame({"x": ["a", "b", "c"], "y": ["1", "2", "4"]})
df2 = DataFrame(
{"y": ["1", "2", "3"], "z": pd.to_datetime(["2000", "2001", "2002"])}
)
result = merge(df1, df2, how="left", on="y")
expected = DataFrame(
{
"x": ["a", "b", "c"],
"y": ["1", "2", "4"],
"z": pd.to_datetime(["2000", "2001", "NaT"]),
}
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("n_categories", [5, 128])
def test_categorical_non_unique_monotonic(n_categories):
# GH 28189
# With n_categories as 5, we test the int8 case is hit in libjoin,
# with n_categories as 128 we test the int16 case.
left_index = CategoricalIndex([0] + list(range(n_categories)))
df1 = DataFrame(range(n_categories + 1), columns=["value"], index=left_index)
df2 = DataFrame(
[[6]],
columns=["value"],
index=CategoricalIndex([0], categories=np.arange(n_categories)),
)
result = merge(df1, df2, how="left", left_index=True, right_index=True)
expected = DataFrame(
[[i, 6.0] if i < 2 else [i, np.nan] for i in range(n_categories + 1)],
columns=["value_x", "value_y"],
index=left_index,
)
tm.assert_frame_equal(expected, result)
def test_merge_join_categorical_multiindex():
# From issue 16627
a = {
"Cat1": Categorical(["a", "b", "a", "c", "a", "b"], ["a", "b", "c"]),
"Int1": [0, 1, 0, 1, 0, 0],
}
a = DataFrame(a)
b = {
"Cat": Categorical(["a", "b", "c", "a", "b", "c"], ["a", "b", "c"]),
"Int": [0, 0, 0, 1, 1, 1],
"Factor": [1.1, 1.2, 1.3, 1.4, 1.5, 1.6],
}
b = DataFrame(b).set_index(["Cat", "Int"])["Factor"]
expected = merge(
a,
b.reset_index(),
left_on=["Cat1", "Int1"],
right_on=["Cat", "Int"],
how="left",
)
expected = expected.drop(["Cat", "Int"], axis=1)
result = a.join(b, on=["Cat1", "Int1"])
tm.assert_frame_equal(expected, result)
# Same test, but with ordered categorical
a = {
"Cat1": Categorical(
["a", "b", "a", "c", "a", "b"], ["b", "a", "c"], ordered=True
),
"Int1": [0, 1, 0, 1, 0, 0],
}
a = DataFrame(a)
b = {
"Cat": Categorical(
["a", "b", "c", "a", "b", "c"], ["b", "a", "c"], ordered=True
),
"Int": [0, 0, 0, 1, 1, 1],
"Factor": [1.1, 1.2, 1.3, 1.4, 1.5, 1.6],
}
b = DataFrame(b).set_index(["Cat", "Int"])["Factor"]
expected = merge(
a,
b.reset_index(),
left_on=["Cat1", "Int1"],
right_on=["Cat", "Int"],
how="left",
)
expected = expected.drop(["Cat", "Int"], axis=1)
result = a.join(b, on=["Cat1", "Int1"])
tm.assert_frame_equal(expected, result)
@pytest.mark.parametrize("func", ["merge", "merge_asof"])
@pytest.mark.parametrize(
("kwargs", "err_msg"),
[
({"left_on": "a", "left_index": True}, ["left_on", "left_index"]),
({"right_on": "a", "right_index": True}, ["right_on", "right_index"]),
],
)
def test_merge_join_cols_error_reporting_duplicates(func, kwargs, err_msg):
# GH: 16228
left = DataFrame({"a": [1, 2], "b": [3, 4]})
right = DataFrame({"a": [1, 1], "c": [5, 6]})
msg = rf'Can only pass argument "{err_msg[0]}" OR "{err_msg[1]}" not both\.'
with pytest.raises(MergeError, match=msg):
getattr(pd, func)(left, right, **kwargs)
@pytest.mark.parametrize("func", ["merge", "merge_asof"])
@pytest.mark.parametrize(
("kwargs", "err_msg"),
[
({"left_on": "a"}, ["right_on", "right_index"]),
({"right_on": "a"}, ["left_on", "left_index"]),
],
)
def test_merge_join_cols_error_reporting_missing(func, kwargs, err_msg):
# GH: 16228
left = DataFrame({"a": [1, 2], "b": [3, 4]})
right = DataFrame({"a": [1, 1], "c": [5, 6]})
msg = rf'Must pass "{err_msg[0]}" OR "{err_msg[1]}"\.'
with pytest.raises(MergeError, match=msg):
getattr(pd, func)(left, right, **kwargs)
@pytest.mark.parametrize("func", ["merge", "merge_asof"])
@pytest.mark.parametrize(
"kwargs",
[
{"right_index": True},
{"left_index": True},
],
)
def test_merge_join_cols_error_reporting_on_and_index(func, kwargs):
# GH: 16228
left = DataFrame({"a": [1, 2], "b": [3, 4]})
right = DataFrame({"a": [1, 1], "c": [5, 6]})
msg = (
r'Can only pass argument "on" OR "left_index" '
r'and "right_index", not a combination of both\.'
)
with pytest.raises(MergeError, match=msg):
getattr(pd, func)(left, right, on="a", **kwargs)
def test_merge_right_left_index():
# GH#38616
left = DataFrame({"x": [1, 1], "z": ["foo", "foo"]})
right = DataFrame({"x": [1, 1], "z": ["foo", "foo"]})
result = merge(left, right, how="right", left_index=True, right_on="x")
expected = DataFrame(
{
"x": [1, 1],
"x_x": [1, 1],
"z_x": ["foo", "foo"],
"x_y": [1, 1],
"z_y": ["foo", "foo"],
}
)
tm.assert_frame_equal(result, expected)
def test_merge_result_empty_index_and_on():
# GH#33814
df1 = DataFrame({"a": [1], "b": [2]}).set_index(["a", "b"])
df2 = DataFrame({"b": [1]}).set_index(["b"])
expected = DataFrame({"a": [], "b": []}, dtype=np.int64).set_index(["a", "b"])
result = merge(df1, df2, left_on=["b"], right_index=True)
tm.assert_frame_equal(result, expected)
result = merge(df2, df1, left_index=True, right_on=["b"])
tm.assert_frame_equal(result, expected)
def test_merge_suffixes_produce_dup_columns_warns():
# GH#22818
left = DataFrame({"a": [1, 2, 3], "b": 1, "b_x": 2})
right = DataFrame({"a": [1, 2, 3], "b": 2})
expected = DataFrame(
[[1, 1, 2, 2], [2, 1, 2, 2], [3, 1, 2, 2]], columns=["a", "b_x", "b_x", "b_y"]
)
with tm.assert_produces_warning(FutureWarning):
result = merge(left, right, on="a")
tm.assert_frame_equal(result, expected)
with tm.assert_produces_warning(FutureWarning):
merge(right, left, on="a", suffixes=("_y", "_x"))
tm.assert_frame_equal(result, expected)
def test_merge_duplicate_columns_with_suffix_no_warning():
# GH#22818
# Do not raise warning when duplicates are caused by duplicates in origin
left = DataFrame([[1, 1, 1], [2, 2, 2]], columns=["a", "b", "b"])
right = DataFrame({"a": [1, 3], "b": 2})
result = merge(left, right, on="a")
expected = DataFrame([[1, 1, 1, 2]], columns=["a", "b_x", "b_x", "b_y"])
tm.assert_frame_equal(result, expected)
def test_merge_duplicate_columns_with_suffix_causing_another_duplicate():
# GH#22818
# This should raise warning because suffixes cause another collision
left = DataFrame([[1, 1, 1, 1], [2, 2, 2, 2]], columns=["a", "b", "b", "b_x"])
right = DataFrame({"a": [1, 3], "b": 2})
with tm.assert_produces_warning(FutureWarning):
result = merge(left, right, on="a")
expected = DataFrame([[1, 1, 1, 1, 2]], columns=["a", "b_x", "b_x", "b_x", "b_y"])
tm.assert_frame_equal(result, expected)
def test_merge_string_float_column_result():
# GH 13353
df1 = DataFrame([[1, 2], [3, 4]], columns=pd.Index(["a", 114.0]))
df2 = DataFrame([[9, 10], [11, 12]], columns=["x", "y"])
result = merge(df2, df1, how="inner", left_index=True, right_index=True)
expected = DataFrame(
[[9, 10, 1, 2], [11, 12, 3, 4]], columns=pd.Index(["x", "y", "a", 114.0])
)
tm.assert_frame_equal(result, expected)
def test_mergeerror_on_left_index_mismatched_dtypes():
# GH 22449
df_1 = DataFrame(data=["X"], columns=["C"], index=[22])
df_2 = DataFrame(data=["X"], columns=["C"], index=[999])
with pytest.raises(MergeError, match="Can only pass argument"):
merge(df_1, df_2, on=["C"], left_index=True)
@pytest.mark.parametrize("dtype", [None, "Int64"])
def test_merge_outer_with_NaN(dtype):
# GH#43550
left = DataFrame({"key": [1, 2], "col1": [1, 2]}, dtype=dtype)
right = DataFrame({"key": [np.nan, np.nan], "col2": [3, 4]}, dtype=dtype)
result = merge(left, right, on="key", how="outer")
expected = DataFrame(
{
"key": [1, 2, np.nan, np.nan],
"col1": [1, 2, np.nan, np.nan],
"col2": [np.nan, np.nan, 3, 4],
},
dtype=dtype,
)
tm.assert_frame_equal(result, expected)
# switch left and right
result = merge(right, left, on="key", how="outer")
expected = DataFrame(
{
"key": [np.nan, np.nan, 1, 2],
"col2": [3, 4, np.nan, np.nan],
"col1": [np.nan, np.nan, 1, 2],
},
dtype=dtype,
)
tm.assert_frame_equal(result, expected)
def test_merge_different_index_names():
# GH#45094
left = DataFrame({"a": [1]}, index=pd.Index([1], name="c"))
right = DataFrame({"a": [1]}, index=pd.Index([1], name="d"))
result = merge(left, right, left_on="c", right_on="d")
expected = DataFrame({"a_x": [1], "a_y": 1})
tm.assert_frame_equal(result, expected)