400 lines
14 KiB
Python
400 lines
14 KiB
Python
"""This module contains related classes and functions for serialization."""
|
|
from __future__ import annotations
|
|
|
|
import dataclasses
|
|
from functools import partialmethod
|
|
from typing import TYPE_CHECKING, Any, Callable, TypeVar, Union, overload
|
|
|
|
from pydantic_core import PydanticUndefined, core_schema
|
|
from pydantic_core import core_schema as _core_schema
|
|
from typing_extensions import Annotated, Literal, TypeAlias
|
|
|
|
from . import PydanticUndefinedAnnotation
|
|
from ._internal import _decorators, _internal_dataclass
|
|
from .annotated_handlers import GetCoreSchemaHandler
|
|
|
|
|
|
@dataclasses.dataclass(**_internal_dataclass.slots_true, frozen=True)
|
|
class PlainSerializer:
|
|
"""Plain serializers use a function to modify the output of serialization.
|
|
|
|
This is particularly helpful when you want to customize the serialization for annotated types.
|
|
Consider an input of `list`, which will be serialized into a space-delimited string.
|
|
|
|
```python
|
|
from typing import List
|
|
|
|
from typing_extensions import Annotated
|
|
|
|
from pydantic import BaseModel, PlainSerializer
|
|
|
|
CustomStr = Annotated[
|
|
List, PlainSerializer(lambda x: ' '.join(x), return_type=str)
|
|
]
|
|
|
|
class StudentModel(BaseModel):
|
|
courses: CustomStr
|
|
|
|
student = StudentModel(courses=['Math', 'Chemistry', 'English'])
|
|
print(student.model_dump())
|
|
#> {'courses': 'Math Chemistry English'}
|
|
```
|
|
|
|
Attributes:
|
|
func: The serializer function.
|
|
return_type: The return type for the function. If omitted it will be inferred from the type annotation.
|
|
when_used: Determines when this serializer should be used. Accepts a string with values `'always'`,
|
|
`'unless-none'`, `'json'`, and `'json-unless-none'`. Defaults to 'always'.
|
|
"""
|
|
|
|
func: core_schema.SerializerFunction
|
|
return_type: Any = PydanticUndefined
|
|
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = 'always'
|
|
|
|
def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
|
|
"""Gets the Pydantic core schema.
|
|
|
|
Args:
|
|
source_type: The source type.
|
|
handler: The `GetCoreSchemaHandler` instance.
|
|
|
|
Returns:
|
|
The Pydantic core schema.
|
|
"""
|
|
schema = handler(source_type)
|
|
try:
|
|
return_type = _decorators.get_function_return_type(
|
|
self.func, self.return_type, handler._get_types_namespace()
|
|
)
|
|
except NameError as e:
|
|
raise PydanticUndefinedAnnotation.from_name_error(e) from e
|
|
return_schema = None if return_type is PydanticUndefined else handler.generate_schema(return_type)
|
|
schema['serialization'] = core_schema.plain_serializer_function_ser_schema(
|
|
function=self.func,
|
|
info_arg=_decorators.inspect_annotated_serializer(self.func, 'plain'),
|
|
return_schema=return_schema,
|
|
when_used=self.when_used,
|
|
)
|
|
return schema
|
|
|
|
|
|
@dataclasses.dataclass(**_internal_dataclass.slots_true, frozen=True)
|
|
class WrapSerializer:
|
|
"""Wrap serializers receive the raw inputs along with a handler function that applies the standard serialization
|
|
logic, and can modify the resulting value before returning it as the final output of serialization.
|
|
|
|
For example, here's a scenario in which a wrap serializer transforms timezones to UTC **and** utilizes the existing `datetime` serialization logic.
|
|
|
|
```python
|
|
from datetime import datetime, timezone
|
|
from typing import Any, Dict
|
|
|
|
from typing_extensions import Annotated
|
|
|
|
from pydantic import BaseModel, WrapSerializer
|
|
|
|
class EventDatetime(BaseModel):
|
|
start: datetime
|
|
end: datetime
|
|
|
|
def convert_to_utc(value: Any, handler, info) -> Dict[str, datetime]:
|
|
# Note that `helper` can actually help serialize the `value` for further custom serialization in case it's a subclass.
|
|
partial_result = handler(value, info)
|
|
if info.mode == 'json':
|
|
return {
|
|
k: datetime.fromisoformat(v).astimezone(timezone.utc)
|
|
for k, v in partial_result.items()
|
|
}
|
|
return {k: v.astimezone(timezone.utc) for k, v in partial_result.items()}
|
|
|
|
UTCEventDatetime = Annotated[EventDatetime, WrapSerializer(convert_to_utc)]
|
|
|
|
class EventModel(BaseModel):
|
|
event_datetime: UTCEventDatetime
|
|
|
|
dt = EventDatetime(
|
|
start='2024-01-01T07:00:00-08:00', end='2024-01-03T20:00:00+06:00'
|
|
)
|
|
event = EventModel(event_datetime=dt)
|
|
print(event.model_dump())
|
|
'''
|
|
{
|
|
'event_datetime': {
|
|
'start': datetime.datetime(
|
|
2024, 1, 1, 15, 0, tzinfo=datetime.timezone.utc
|
|
),
|
|
'end': datetime.datetime(
|
|
2024, 1, 3, 14, 0, tzinfo=datetime.timezone.utc
|
|
),
|
|
}
|
|
}
|
|
'''
|
|
|
|
print(event.model_dump_json())
|
|
'''
|
|
{"event_datetime":{"start":"2024-01-01T15:00:00Z","end":"2024-01-03T14:00:00Z"}}
|
|
'''
|
|
```
|
|
|
|
Attributes:
|
|
func: The serializer function to be wrapped.
|
|
return_type: The return type for the function. If omitted it will be inferred from the type annotation.
|
|
when_used: Determines when this serializer should be used. Accepts a string with values `'always'`,
|
|
`'unless-none'`, `'json'`, and `'json-unless-none'`. Defaults to 'always'.
|
|
"""
|
|
|
|
func: core_schema.WrapSerializerFunction
|
|
return_type: Any = PydanticUndefined
|
|
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = 'always'
|
|
|
|
def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
|
|
"""This method is used to get the Pydantic core schema of the class.
|
|
|
|
Args:
|
|
source_type: Source type.
|
|
handler: Core schema handler.
|
|
|
|
Returns:
|
|
The generated core schema of the class.
|
|
"""
|
|
schema = handler(source_type)
|
|
try:
|
|
return_type = _decorators.get_function_return_type(
|
|
self.func, self.return_type, handler._get_types_namespace()
|
|
)
|
|
except NameError as e:
|
|
raise PydanticUndefinedAnnotation.from_name_error(e) from e
|
|
return_schema = None if return_type is PydanticUndefined else handler.generate_schema(return_type)
|
|
schema['serialization'] = core_schema.wrap_serializer_function_ser_schema(
|
|
function=self.func,
|
|
info_arg=_decorators.inspect_annotated_serializer(self.func, 'wrap'),
|
|
return_schema=return_schema,
|
|
when_used=self.when_used,
|
|
)
|
|
return schema
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
_PartialClsOrStaticMethod: TypeAlias = Union[classmethod[Any, Any, Any], staticmethod[Any, Any], partialmethod[Any]]
|
|
_PlainSerializationFunction = Union[_core_schema.SerializerFunction, _PartialClsOrStaticMethod]
|
|
_WrapSerializationFunction = Union[_core_schema.WrapSerializerFunction, _PartialClsOrStaticMethod]
|
|
_PlainSerializeMethodType = TypeVar('_PlainSerializeMethodType', bound=_PlainSerializationFunction)
|
|
_WrapSerializeMethodType = TypeVar('_WrapSerializeMethodType', bound=_WrapSerializationFunction)
|
|
|
|
|
|
@overload
|
|
def field_serializer(
|
|
field: str,
|
|
/,
|
|
*fields: str,
|
|
return_type: Any = ...,
|
|
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = ...,
|
|
check_fields: bool | None = ...,
|
|
) -> Callable[[_PlainSerializeMethodType], _PlainSerializeMethodType]:
|
|
...
|
|
|
|
|
|
@overload
|
|
def field_serializer(
|
|
field: str,
|
|
/,
|
|
*fields: str,
|
|
mode: Literal['plain'],
|
|
return_type: Any = ...,
|
|
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = ...,
|
|
check_fields: bool | None = ...,
|
|
) -> Callable[[_PlainSerializeMethodType], _PlainSerializeMethodType]:
|
|
...
|
|
|
|
|
|
@overload
|
|
def field_serializer(
|
|
field: str,
|
|
/,
|
|
*fields: str,
|
|
mode: Literal['wrap'],
|
|
return_type: Any = ...,
|
|
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = ...,
|
|
check_fields: bool | None = ...,
|
|
) -> Callable[[_WrapSerializeMethodType], _WrapSerializeMethodType]:
|
|
...
|
|
|
|
|
|
def field_serializer(
|
|
*fields: str,
|
|
mode: Literal['plain', 'wrap'] = 'plain',
|
|
return_type: Any = PydanticUndefined,
|
|
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = 'always',
|
|
check_fields: bool | None = None,
|
|
) -> Callable[[Any], Any]:
|
|
"""Decorator that enables custom field serialization.
|
|
|
|
In the below example, a field of type `set` is used to mitigate duplication. A `field_serializer` is used to serialize the data as a sorted list.
|
|
|
|
```python
|
|
from typing import Set
|
|
|
|
from pydantic import BaseModel, field_serializer
|
|
|
|
class StudentModel(BaseModel):
|
|
name: str = 'Jane'
|
|
courses: Set[str]
|
|
|
|
@field_serializer('courses', when_used='json')
|
|
def serialize_courses_in_order(courses: Set[str]):
|
|
return sorted(courses)
|
|
|
|
student = StudentModel(courses={'Math', 'Chemistry', 'English'})
|
|
print(student.model_dump_json())
|
|
#> {"name":"Jane","courses":["Chemistry","English","Math"]}
|
|
```
|
|
|
|
See [Custom serializers](../concepts/serialization.md#custom-serializers) for more information.
|
|
|
|
Four signatures are supported:
|
|
|
|
- `(self, value: Any, info: FieldSerializationInfo)`
|
|
- `(self, value: Any, nxt: SerializerFunctionWrapHandler, info: FieldSerializationInfo)`
|
|
- `(value: Any, info: SerializationInfo)`
|
|
- `(value: Any, nxt: SerializerFunctionWrapHandler, info: SerializationInfo)`
|
|
|
|
Args:
|
|
fields: Which field(s) the method should be called on.
|
|
mode: The serialization mode.
|
|
|
|
- `plain` means the function will be called instead of the default serialization logic,
|
|
- `wrap` means the function will be called with an argument to optionally call the
|
|
default serialization logic.
|
|
return_type: Optional return type for the function, if omitted it will be inferred from the type annotation.
|
|
when_used: Determines the serializer will be used for serialization.
|
|
check_fields: Whether to check that the fields actually exist on the model.
|
|
|
|
Returns:
|
|
The decorator function.
|
|
"""
|
|
|
|
def dec(
|
|
f: Callable[..., Any] | staticmethod[Any, Any] | classmethod[Any, Any, Any],
|
|
) -> _decorators.PydanticDescriptorProxy[Any]:
|
|
dec_info = _decorators.FieldSerializerDecoratorInfo(
|
|
fields=fields,
|
|
mode=mode,
|
|
return_type=return_type,
|
|
when_used=when_used,
|
|
check_fields=check_fields,
|
|
)
|
|
return _decorators.PydanticDescriptorProxy(f, dec_info)
|
|
|
|
return dec
|
|
|
|
|
|
FuncType = TypeVar('FuncType', bound=Callable[..., Any])
|
|
|
|
|
|
@overload
|
|
def model_serializer(__f: FuncType) -> FuncType:
|
|
...
|
|
|
|
|
|
@overload
|
|
def model_serializer(
|
|
*,
|
|
mode: Literal['plain', 'wrap'] = ...,
|
|
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = 'always',
|
|
return_type: Any = ...,
|
|
) -> Callable[[FuncType], FuncType]:
|
|
...
|
|
|
|
|
|
def model_serializer(
|
|
f: Callable[..., Any] | None = None,
|
|
/,
|
|
*,
|
|
mode: Literal['plain', 'wrap'] = 'plain',
|
|
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = 'always',
|
|
return_type: Any = PydanticUndefined,
|
|
) -> Callable[[Any], Any]:
|
|
"""Decorator that enables custom model serialization.
|
|
|
|
This is useful when a model need to be serialized in a customized manner, allowing for flexibility beyond just specific fields.
|
|
|
|
An example would be to serialize temperature to the same temperature scale, such as degrees Celsius.
|
|
|
|
```python
|
|
from typing import Literal
|
|
|
|
from pydantic import BaseModel, model_serializer
|
|
|
|
class TemperatureModel(BaseModel):
|
|
unit: Literal['C', 'F']
|
|
value: int
|
|
|
|
@model_serializer()
|
|
def serialize_model(self):
|
|
if self.unit == 'F':
|
|
return {'unit': 'C', 'value': int((self.value - 32) / 1.8)}
|
|
return {'unit': self.unit, 'value': self.value}
|
|
|
|
temperature = TemperatureModel(unit='F', value=212)
|
|
print(temperature.model_dump())
|
|
#> {'unit': 'C', 'value': 100}
|
|
```
|
|
|
|
See [Custom serializers](../concepts/serialization.md#custom-serializers) for more information.
|
|
|
|
Args:
|
|
f: The function to be decorated.
|
|
mode: The serialization mode.
|
|
|
|
- `'plain'` means the function will be called instead of the default serialization logic
|
|
- `'wrap'` means the function will be called with an argument to optionally call the default
|
|
serialization logic.
|
|
when_used: Determines when this serializer should be used.
|
|
return_type: The return type for the function. If omitted it will be inferred from the type annotation.
|
|
|
|
Returns:
|
|
The decorator function.
|
|
"""
|
|
|
|
def dec(f: Callable[..., Any]) -> _decorators.PydanticDescriptorProxy[Any]:
|
|
dec_info = _decorators.ModelSerializerDecoratorInfo(mode=mode, return_type=return_type, when_used=when_used)
|
|
return _decorators.PydanticDescriptorProxy(f, dec_info)
|
|
|
|
if f is None:
|
|
return dec
|
|
else:
|
|
return dec(f) # type: ignore
|
|
|
|
|
|
AnyType = TypeVar('AnyType')
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
SerializeAsAny = Annotated[AnyType, ...] # SerializeAsAny[list[str]] will be treated by type checkers as list[str]
|
|
"""Force serialization to ignore whatever is defined in the schema and instead ask the object
|
|
itself how it should be serialized.
|
|
In particular, this means that when model subclasses are serialized, fields present in the subclass
|
|
but not in the original schema will be included.
|
|
"""
|
|
else:
|
|
|
|
@dataclasses.dataclass(**_internal_dataclass.slots_true)
|
|
class SerializeAsAny: # noqa: D101
|
|
def __class_getitem__(cls, item: Any) -> Any:
|
|
return Annotated[item, SerializeAsAny()]
|
|
|
|
def __get_pydantic_core_schema__(
|
|
self, source_type: Any, handler: GetCoreSchemaHandler
|
|
) -> core_schema.CoreSchema:
|
|
schema = handler(source_type)
|
|
schema_to_update = schema
|
|
while schema_to_update['type'] == 'definitions':
|
|
schema_to_update = schema_to_update.copy()
|
|
schema_to_update = schema_to_update['schema']
|
|
schema_to_update['serialization'] = core_schema.wrap_serializer_function_ser_schema(
|
|
lambda x, h: h(x), schema=core_schema.any_schema()
|
|
)
|
|
return schema
|
|
|
|
__hash__ = object.__hash__
|