125 lines
4.0 KiB
Python
125 lines
4.0 KiB
Python
# -*- coding: utf-8 -*-
|
||
"""最大正向匹配分词"""
|
||
from pypinyin.constants import PHRASES_DICT
|
||
|
||
|
||
class Seg(object):
|
||
"""正向最大匹配分词
|
||
|
||
:type prefix_set: PrefixSet
|
||
:param no_non_phrases: 是否严格按照词语分词,不允许把非词语的词当做词语进行分词
|
||
:type no_non_phrases: bool
|
||
"""
|
||
|
||
def __init__(self, prefix_set, no_non_phrases=False):
|
||
self._prefix_set = prefix_set
|
||
self._no_non_phrases = no_non_phrases
|
||
|
||
def cut(self, text):
|
||
"""分词
|
||
|
||
:param text: 待分词的文本
|
||
:yield: 单个词语
|
||
"""
|
||
remain = text
|
||
while remain:
|
||
matched = ''
|
||
# 一次加一个字的匹配
|
||
for index in range(len(remain)):
|
||
word = remain[:index + 1]
|
||
if word in self._prefix_set:
|
||
matched = word
|
||
else:
|
||
# 前面的字符串是个词语
|
||
if (matched and (
|
||
(not self._no_non_phrases) or
|
||
matched in PHRASES_DICT
|
||
)
|
||
):
|
||
yield matched
|
||
matched = ''
|
||
remain = remain[index:]
|
||
else: # 前面为空或不是真正的词语
|
||
# 严格按照词语分词的情况下,不是词语的词拆分为单个汉字
|
||
# 先返回第一个字,后面的重新参与分词,
|
||
# 处理前缀匹配导致无法识别输入尾部的词语,
|
||
# 支持简单的逆向匹配分词:
|
||
# 已有词语:金融寡头 行业
|
||
# 输入:金融行业
|
||
# 输出:金 融 行业
|
||
if self._no_non_phrases:
|
||
yield word[0]
|
||
remain = remain[index + 2 - len(word):]
|
||
else:
|
||
yield word
|
||
remain = remain[index + 1:]
|
||
# 有结果了,剩余的重新开始匹配
|
||
matched = ''
|
||
break
|
||
else: # 整个文本就是一个词语,或者不包含任何词语
|
||
if self._no_non_phrases and remain not in PHRASES_DICT:
|
||
for x in remain:
|
||
yield x
|
||
else:
|
||
yield remain
|
||
break
|
||
|
||
def train(self, words):
|
||
"""训练分词器
|
||
|
||
:param words: 词语列表
|
||
"""
|
||
self._prefix_set.train(words)
|
||
|
||
|
||
class PrefixSet(object):
|
||
def __init__(self):
|
||
self._set = set()
|
||
|
||
def train(self, word_s):
|
||
"""更新 prefix set
|
||
|
||
:param word_s: 词语库列表
|
||
:type word_s: iterable
|
||
:return: None
|
||
"""
|
||
for word in word_s:
|
||
# 把词语的每个前缀更新到 prefix_set 中
|
||
for index in range(len(word)):
|
||
self._set.add(word[:index + 1])
|
||
|
||
def __contains__(self, key):
|
||
return key in self._set
|
||
|
||
|
||
p_set = PrefixSet()
|
||
p_set.train(PHRASES_DICT.keys())
|
||
|
||
#: 基于内置词库的最大正向匹配分词器。使用:
|
||
#:
|
||
#: .. code-block:: python
|
||
#:
|
||
#: >>> from pypinyin.contrib.mmseg import seg
|
||
#: >>> text = '你好,我是中国人,我爱我的祖国'
|
||
#: >>> seg.cut(text)
|
||
#: <generator object Seg.cut at 0x10b2df2b0>
|
||
#: >>> list(seg.cut(text))
|
||
#: ['你好', ',', '我', '是', '中国人', ',', '我', '爱',
|
||
#: '我的', '祖', '国']
|
||
#: >>> seg.train(['祖国', '我是'])
|
||
#: >>> list(seg.cut(text))
|
||
#: ['你好', ',', '我是', '中国人', ',', '我', '爱',
|
||
#: '我的', '祖国']
|
||
#: >>>
|
||
seg = Seg(p_set, no_non_phrases=True)
|
||
|
||
|
||
def retrain(seg_instance):
|
||
"""重新使用内置词典训练 seg_instance。
|
||
|
||
比如在增加自定义词语信息后需要调用这个模块重新训练分词器
|
||
|
||
:type seg_instance: Seg
|
||
"""
|
||
seg_instance.train(PHRASES_DICT.keys())
|