ai-content-maker/.venv/Lib/site-packages/scipy/linalg/tests/test_decomp_cossin.py

158 lines
5.8 KiB
Python

import pytest
import numpy as np
from numpy.random import default_rng
from numpy.testing import assert_allclose
from scipy.linalg.lapack import _compute_lwork
from scipy.stats import ortho_group, unitary_group
from scipy.linalg import cossin, get_lapack_funcs
REAL_DTYPES = (np.float32, np.float64)
COMPLEX_DTYPES = (np.complex64, np.complex128)
DTYPES = REAL_DTYPES + COMPLEX_DTYPES
@pytest.mark.parametrize('dtype_', DTYPES)
@pytest.mark.parametrize('m, p, q',
[
(2, 1, 1),
(3, 2, 1),
(3, 1, 2),
(4, 2, 2),
(4, 1, 2),
(40, 12, 20),
(40, 30, 1),
(40, 1, 30),
(100, 50, 1),
(100, 50, 50),
])
@pytest.mark.parametrize('swap_sign', [True, False])
def test_cossin(dtype_, m, p, q, swap_sign):
rng = default_rng(1708093570726217)
if dtype_ in COMPLEX_DTYPES:
x = np.array(unitary_group.rvs(m, random_state=rng), dtype=dtype_)
else:
x = np.array(ortho_group.rvs(m, random_state=rng), dtype=dtype_)
u, cs, vh = cossin(x, p, q,
swap_sign=swap_sign)
assert_allclose(x, u @ cs @ vh, rtol=0., atol=m*1e3*np.finfo(dtype_).eps)
assert u.dtype == dtype_
# Test for float32 or float 64
assert cs.dtype == np.real(u).dtype
assert vh.dtype == dtype_
u, cs, vh = cossin([x[:p, :q], x[:p, q:], x[p:, :q], x[p:, q:]],
swap_sign=swap_sign)
assert_allclose(x, u @ cs @ vh, rtol=0., atol=m*1e3*np.finfo(dtype_).eps)
assert u.dtype == dtype_
assert cs.dtype == np.real(u).dtype
assert vh.dtype == dtype_
_, cs2, vh2 = cossin(x, p, q,
compute_u=False,
swap_sign=swap_sign)
assert_allclose(cs, cs2, rtol=0., atol=10*np.finfo(dtype_).eps)
assert_allclose(vh, vh2, rtol=0., atol=10*np.finfo(dtype_).eps)
u2, cs2, _ = cossin(x, p, q,
compute_vh=False,
swap_sign=swap_sign)
assert_allclose(u, u2, rtol=0., atol=10*np.finfo(dtype_).eps)
assert_allclose(cs, cs2, rtol=0., atol=10*np.finfo(dtype_).eps)
_, cs2, _ = cossin(x, p, q,
compute_u=False,
compute_vh=False,
swap_sign=swap_sign)
assert_allclose(cs, cs2, rtol=0., atol=10*np.finfo(dtype_).eps)
def test_cossin_mixed_types():
rng = default_rng(1708093736390459)
x = np.array(ortho_group.rvs(4, random_state=rng), dtype=np.float64)
u, cs, vh = cossin([x[:2, :2],
np.array(x[:2, 2:], dtype=np.complex128),
x[2:, :2],
x[2:, 2:]])
assert u.dtype == np.complex128
assert cs.dtype == np.float64
assert vh.dtype == np.complex128
assert_allclose(x, u @ cs @ vh, rtol=0.,
atol=1e4 * np.finfo(np.complex128).eps)
def test_cossin_error_incorrect_subblocks():
with pytest.raises(ValueError, match="be due to missing p, q arguments."):
cossin(([1, 2], [3, 4, 5], [6, 7], [8, 9, 10]))
def test_cossin_error_empty_subblocks():
with pytest.raises(ValueError, match="x11.*empty"):
cossin(([], [], [], []))
with pytest.raises(ValueError, match="x12.*empty"):
cossin(([1, 2], [], [6, 7], [8, 9, 10]))
with pytest.raises(ValueError, match="x21.*empty"):
cossin(([1, 2], [3, 4, 5], [], [8, 9, 10]))
with pytest.raises(ValueError, match="x22.*empty"):
cossin(([1, 2], [3, 4, 5], [2], []))
def test_cossin_error_missing_partitioning():
with pytest.raises(ValueError, match=".*exactly four arrays.* got 2"):
cossin(unitary_group.rvs(2))
with pytest.raises(ValueError, match=".*might be due to missing p, q"):
cossin(unitary_group.rvs(4))
def test_cossin_error_non_iterable():
with pytest.raises(ValueError, match="containing the subblocks of X"):
cossin(12j)
def test_cossin_error_non_square():
with pytest.raises(ValueError, match="only supports square"):
cossin(np.array([[1, 2]]), 1, 1)
def test_cossin_error_partitioning():
x = np.array(ortho_group.rvs(4), dtype=np.float64)
with pytest.raises(ValueError, match="invalid p=0.*0<p<4.*"):
cossin(x, 0, 1)
with pytest.raises(ValueError, match="invalid p=4.*0<p<4.*"):
cossin(x, 4, 1)
with pytest.raises(ValueError, match="invalid q=-2.*0<q<4.*"):
cossin(x, 1, -2)
with pytest.raises(ValueError, match="invalid q=5.*0<q<4.*"):
cossin(x, 1, 5)
@pytest.mark.parametrize("dtype_", DTYPES)
def test_cossin_separate(dtype_):
rng = default_rng(1708093590167096)
m, p, q = 98, 37, 61
pfx = 'or' if dtype_ in REAL_DTYPES else 'un'
X = (ortho_group.rvs(m, random_state=rng) if pfx == 'or'
else unitary_group.rvs(m, random_state=rng))
X = np.array(X, dtype=dtype_)
drv, dlw = get_lapack_funcs((pfx + 'csd', pfx + 'csd_lwork'), [X])
lwval = _compute_lwork(dlw, m, p, q)
lwvals = {'lwork': lwval} if pfx == 'or' else dict(zip(['lwork',
'lrwork'],
lwval))
*_, theta, u1, u2, v1t, v2t, _ = \
drv(X[:p, :q], X[:p, q:], X[p:, :q], X[p:, q:], **lwvals)
(u1_2, u2_2), theta2, (v1t_2, v2t_2) = cossin(X, p, q, separate=True)
assert_allclose(u1_2, u1, rtol=0., atol=10*np.finfo(dtype_).eps)
assert_allclose(u2_2, u2, rtol=0., atol=10*np.finfo(dtype_).eps)
assert_allclose(v1t_2, v1t, rtol=0., atol=10*np.finfo(dtype_).eps)
assert_allclose(v2t_2, v2t, rtol=0., atol=10*np.finfo(dtype_).eps)
assert_allclose(theta2, theta, rtol=0., atol=10*np.finfo(dtype_).eps)