299 lines
11 KiB
Python
299 lines
11 KiB
Python
"""Utilities to get the response values of a classifier or a regressor.
|
|
|
|
It allows to make uniform checks and validation.
|
|
"""
|
|
import numpy as np
|
|
|
|
from ..base import is_classifier
|
|
from .multiclass import type_of_target
|
|
from .validation import _check_response_method, check_is_fitted
|
|
|
|
|
|
def _process_predict_proba(*, y_pred, target_type, classes, pos_label):
|
|
"""Get the response values when the response method is `predict_proba`.
|
|
|
|
This function process the `y_pred` array in the binary and multi-label cases.
|
|
In the binary case, it selects the column corresponding to the positive
|
|
class. In the multi-label case, it stacks the predictions if they are not
|
|
in the "compressed" format `(n_samples, n_outputs)`.
|
|
|
|
Parameters
|
|
----------
|
|
y_pred : ndarray
|
|
Output of `estimator.predict_proba`. The shape depends on the target type:
|
|
|
|
- for binary classification, it is a 2d array of shape `(n_samples, 2)`;
|
|
- for multiclass classification, it is a 2d array of shape
|
|
`(n_samples, n_classes)`;
|
|
- for multilabel classification, it is either a list of 2d arrays of shape
|
|
`(n_samples, 2)` (e.g. `RandomForestClassifier` or `KNeighborsClassifier`) or
|
|
an array of shape `(n_samples, n_outputs)` (e.g. `MLPClassifier` or
|
|
`RidgeClassifier`).
|
|
|
|
target_type : {"binary", "multiclass", "multilabel-indicator"}
|
|
Type of the target.
|
|
|
|
classes : ndarray of shape (n_classes,) or list of such arrays
|
|
Class labels as reported by `estimator.classes_`.
|
|
|
|
pos_label : int, float, bool or str
|
|
Only used with binary and multiclass targets.
|
|
|
|
Returns
|
|
-------
|
|
y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or \
|
|
(n_samples, n_output)
|
|
Compressed predictions format as requested by the metrics.
|
|
"""
|
|
if target_type == "binary" and y_pred.shape[1] < 2:
|
|
# We don't handle classifiers trained on a single class.
|
|
raise ValueError(
|
|
f"Got predict_proba of shape {y_pred.shape}, but need "
|
|
"classifier with two classes."
|
|
)
|
|
|
|
if target_type == "binary":
|
|
col_idx = np.flatnonzero(classes == pos_label)[0]
|
|
return y_pred[:, col_idx]
|
|
elif target_type == "multilabel-indicator":
|
|
# Use a compress format of shape `(n_samples, n_output)`.
|
|
# Only `MLPClassifier` and `RidgeClassifier` return an array of shape
|
|
# `(n_samples, n_outputs)`.
|
|
if isinstance(y_pred, list):
|
|
# list of arrays of shape `(n_samples, 2)`
|
|
return np.vstack([p[:, -1] for p in y_pred]).T
|
|
else:
|
|
# array of shape `(n_samples, n_outputs)`
|
|
return y_pred
|
|
|
|
return y_pred
|
|
|
|
|
|
def _process_decision_function(*, y_pred, target_type, classes, pos_label):
|
|
"""Get the response values when the response method is `decision_function`.
|
|
|
|
This function process the `y_pred` array in the binary and multi-label cases.
|
|
In the binary case, it inverts the sign of the score if the positive label
|
|
is not `classes[1]`. In the multi-label case, it stacks the predictions if
|
|
they are not in the "compressed" format `(n_samples, n_outputs)`.
|
|
|
|
Parameters
|
|
----------
|
|
y_pred : ndarray
|
|
Output of `estimator.predict_proba`. The shape depends on the target type:
|
|
|
|
- for binary classification, it is a 1d array of shape `(n_samples,)` where the
|
|
sign is assuming that `classes[1]` is the positive class;
|
|
- for multiclass classification, it is a 2d array of shape
|
|
`(n_samples, n_classes)`;
|
|
- for multilabel classification, it is a 2d array of shape `(n_samples,
|
|
n_outputs)`.
|
|
|
|
target_type : {"binary", "multiclass", "multilabel-indicator"}
|
|
Type of the target.
|
|
|
|
classes : ndarray of shape (n_classes,) or list of such arrays
|
|
Class labels as reported by `estimator.classes_`.
|
|
|
|
pos_label : int, float, bool or str
|
|
Only used with binary and multiclass targets.
|
|
|
|
Returns
|
|
-------
|
|
y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or \
|
|
(n_samples, n_output)
|
|
Compressed predictions format as requested by the metrics.
|
|
"""
|
|
if target_type == "binary" and pos_label == classes[0]:
|
|
return -1 * y_pred
|
|
return y_pred
|
|
|
|
|
|
def _get_response_values(
|
|
estimator,
|
|
X,
|
|
response_method,
|
|
pos_label=None,
|
|
return_response_method_used=False,
|
|
):
|
|
"""Compute the response values of a classifier, an outlier detector, or a regressor.
|
|
|
|
The response values are predictions such that it follows the following shape:
|
|
|
|
- for binary classification, it is a 1d array of shape `(n_samples,)`;
|
|
- for multiclass classification, it is a 2d array of shape `(n_samples, n_classes)`;
|
|
- for multilabel classification, it is a 2d array of shape `(n_samples, n_outputs)`;
|
|
- for outlier detection, it is a 1d array of shape `(n_samples,)`;
|
|
- for regression, it is a 1d array of shape `(n_samples,)`.
|
|
|
|
If `estimator` is a binary classifier, also return the label for the
|
|
effective positive class.
|
|
|
|
This utility is used primarily in the displays and the scikit-learn scorers.
|
|
|
|
.. versionadded:: 1.3
|
|
|
|
Parameters
|
|
----------
|
|
estimator : estimator instance
|
|
Fitted classifier, outlier detector, or regressor or a
|
|
fitted :class:`~sklearn.pipeline.Pipeline` in which the last estimator is a
|
|
classifier, an outlier detector, or a regressor.
|
|
|
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
|
Input values.
|
|
|
|
response_method : {"predict_proba", "predict_log_proba", "decision_function", \
|
|
"predict"} or list of such str
|
|
Specifies the response method to use get prediction from an estimator
|
|
(i.e. :term:`predict_proba`, :term:`predict_log_proba`,
|
|
:term:`decision_function` or :term:`predict`). Possible choices are:
|
|
|
|
- if `str`, it corresponds to the name to the method to return;
|
|
- if a list of `str`, it provides the method names in order of
|
|
preference. The method returned corresponds to the first method in
|
|
the list and which is implemented by `estimator`.
|
|
|
|
pos_label : int, float, bool or str, default=None
|
|
The class considered as the positive class when computing
|
|
the metrics. If `None` and target is 'binary', `estimators.classes_[1]` is
|
|
considered as the positive class.
|
|
|
|
return_response_method_used : bool, default=False
|
|
Whether to return the response method used to compute the response
|
|
values.
|
|
|
|
.. versionadded:: 1.4
|
|
|
|
Returns
|
|
-------
|
|
y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or \
|
|
(n_samples, n_outputs)
|
|
Target scores calculated from the provided `response_method`
|
|
and `pos_label`.
|
|
|
|
pos_label : int, float, bool, str or None
|
|
The class considered as the positive class when computing
|
|
the metrics. Returns `None` if `estimator` is a regressor or an outlier
|
|
detector.
|
|
|
|
response_method_used : str
|
|
The response method used to compute the response values. Only returned
|
|
if `return_response_method_used` is `True`.
|
|
|
|
.. versionadded:: 1.4
|
|
|
|
Raises
|
|
------
|
|
ValueError
|
|
If `pos_label` is not a valid label.
|
|
If the shape of `y_pred` is not consistent for binary classifier.
|
|
If the response method can be applied to a classifier only and
|
|
`estimator` is a regressor.
|
|
"""
|
|
from sklearn.base import is_classifier, is_outlier_detector # noqa
|
|
|
|
if is_classifier(estimator):
|
|
prediction_method = _check_response_method(estimator, response_method)
|
|
classes = estimator.classes_
|
|
target_type = type_of_target(classes)
|
|
|
|
if target_type in ("binary", "multiclass"):
|
|
if pos_label is not None and pos_label not in classes.tolist():
|
|
raise ValueError(
|
|
f"pos_label={pos_label} is not a valid label: It should be "
|
|
f"one of {classes}"
|
|
)
|
|
elif pos_label is None and target_type == "binary":
|
|
pos_label = classes[-1]
|
|
|
|
y_pred = prediction_method(X)
|
|
|
|
if prediction_method.__name__ in ("predict_proba", "predict_log_proba"):
|
|
y_pred = _process_predict_proba(
|
|
y_pred=y_pred,
|
|
target_type=target_type,
|
|
classes=classes,
|
|
pos_label=pos_label,
|
|
)
|
|
elif prediction_method.__name__ == "decision_function":
|
|
y_pred = _process_decision_function(
|
|
y_pred=y_pred,
|
|
target_type=target_type,
|
|
classes=classes,
|
|
pos_label=pos_label,
|
|
)
|
|
elif is_outlier_detector(estimator):
|
|
prediction_method = _check_response_method(estimator, response_method)
|
|
y_pred, pos_label = prediction_method(X), None
|
|
else: # estimator is a regressor
|
|
if response_method != "predict":
|
|
raise ValueError(
|
|
f"{estimator.__class__.__name__} should either be a classifier to be "
|
|
f"used with response_method={response_method} or the response_method "
|
|
"should be 'predict'. Got a regressor with response_method="
|
|
f"{response_method} instead."
|
|
)
|
|
prediction_method = estimator.predict
|
|
y_pred, pos_label = prediction_method(X), None
|
|
|
|
if return_response_method_used:
|
|
return y_pred, pos_label, prediction_method.__name__
|
|
return y_pred, pos_label
|
|
|
|
|
|
def _get_response_values_binary(estimator, X, response_method, pos_label=None):
|
|
"""Compute the response values of a binary classifier.
|
|
|
|
Parameters
|
|
----------
|
|
estimator : estimator instance
|
|
Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
|
|
in which the last estimator is a binary classifier.
|
|
|
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
|
Input values.
|
|
|
|
response_method : {'auto', 'predict_proba', 'decision_function'}
|
|
Specifies whether to use :term:`predict_proba` or
|
|
:term:`decision_function` as the target response. If set to 'auto',
|
|
:term:`predict_proba` is tried first and if it does not exist
|
|
:term:`decision_function` is tried next.
|
|
|
|
pos_label : int, float, bool or str, default=None
|
|
The class considered as the positive class when computing
|
|
the metrics. By default, `estimators.classes_[1]` is
|
|
considered as the positive class.
|
|
|
|
Returns
|
|
-------
|
|
y_pred : ndarray of shape (n_samples,)
|
|
Target scores calculated from the provided response_method
|
|
and pos_label.
|
|
|
|
pos_label : int, float, bool or str
|
|
The class considered as the positive class when computing
|
|
the metrics.
|
|
"""
|
|
classification_error = "Expected 'estimator' to be a binary classifier."
|
|
|
|
check_is_fitted(estimator)
|
|
if not is_classifier(estimator):
|
|
raise ValueError(
|
|
classification_error + f" Got {estimator.__class__.__name__} instead."
|
|
)
|
|
elif len(estimator.classes_) != 2:
|
|
raise ValueError(
|
|
classification_error + f" Got {len(estimator.classes_)} classes instead."
|
|
)
|
|
|
|
if response_method == "auto":
|
|
response_method = ["predict_proba", "decision_function"]
|
|
|
|
return _get_response_values(
|
|
estimator,
|
|
X,
|
|
response_method,
|
|
pos_label=pos_label,
|
|
)
|