ai-content-maker/.venv/Lib/site-packages/sklearn/utils/_seq_dataset.pxd

105 lines
3.6 KiB
Cython

# WARNING: Do not edit this file directly.
# It is automatically generated from 'sklearn\\utils\\_seq_dataset.pxd.tp'.
# Changes must be made there.
"""Dataset abstractions for sequential data access."""
cimport numpy as cnp
# SequentialDataset and its two concrete subclasses are (optionally randomized)
# iterators over the rows of a matrix X and corresponding target values y.
#------------------------------------------------------------------------------
cdef class SequentialDataset64:
cdef int current_index
cdef int[::1] index
cdef int *index_data_ptr
cdef Py_ssize_t n_samples
cdef cnp.uint32_t seed
cdef void shuffle(self, cnp.uint32_t seed) noexcept nogil
cdef int _get_next_index(self) noexcept nogil
cdef int _get_random_index(self) noexcept nogil
cdef void _sample(self, double **x_data_ptr, int **x_ind_ptr,
int *nnz, double *y, double *sample_weight,
int current_index) noexcept nogil
cdef void next(self, double **x_data_ptr, int **x_ind_ptr,
int *nnz, double *y, double *sample_weight) noexcept nogil
cdef int random(self, double **x_data_ptr, int **x_ind_ptr,
int *nnz, double *y, double *sample_weight) noexcept nogil
cdef class ArrayDataset64(SequentialDataset64):
cdef const double[:, ::1] X
cdef const double[::1] Y
cdef const double[::1] sample_weights
cdef Py_ssize_t n_features
cdef cnp.npy_intp X_stride
cdef double *X_data_ptr
cdef double *Y_data_ptr
cdef const int[::1] feature_indices
cdef int *feature_indices_ptr
cdef double *sample_weight_data
cdef class CSRDataset64(SequentialDataset64):
cdef const double[::1] X_data
cdef const int[::1] X_indptr
cdef const int[::1] X_indices
cdef const double[::1] Y
cdef const double[::1] sample_weights
cdef double *X_data_ptr
cdef int *X_indptr_ptr
cdef int *X_indices_ptr
cdef double *Y_data_ptr
cdef double *sample_weight_data
#------------------------------------------------------------------------------
cdef class SequentialDataset32:
cdef int current_index
cdef int[::1] index
cdef int *index_data_ptr
cdef Py_ssize_t n_samples
cdef cnp.uint32_t seed
cdef void shuffle(self, cnp.uint32_t seed) noexcept nogil
cdef int _get_next_index(self) noexcept nogil
cdef int _get_random_index(self) noexcept nogil
cdef void _sample(self, float **x_data_ptr, int **x_ind_ptr,
int *nnz, float *y, float *sample_weight,
int current_index) noexcept nogil
cdef void next(self, float **x_data_ptr, int **x_ind_ptr,
int *nnz, float *y, float *sample_weight) noexcept nogil
cdef int random(self, float **x_data_ptr, int **x_ind_ptr,
int *nnz, float *y, float *sample_weight) noexcept nogil
cdef class ArrayDataset32(SequentialDataset32):
cdef const float[:, ::1] X
cdef const float[::1] Y
cdef const float[::1] sample_weights
cdef Py_ssize_t n_features
cdef cnp.npy_intp X_stride
cdef float *X_data_ptr
cdef float *Y_data_ptr
cdef const int[::1] feature_indices
cdef int *feature_indices_ptr
cdef float *sample_weight_data
cdef class CSRDataset32(SequentialDataset32):
cdef const float[::1] X_data
cdef const int[::1] X_indptr
cdef const int[::1] X_indices
cdef const float[::1] Y
cdef const float[::1] sample_weights
cdef float *X_data_ptr
cdef int *X_indptr_ptr
cdef int *X_indices_ptr
cdef float *Y_data_ptr
cdef float *sample_weight_data