ai-content-maker/.venv/Lib/site-packages/sympy/matrices/expressions/funcmatrix.py

119 lines
3.4 KiB
Python

from .matexpr import MatrixExpr
from sympy.core.function import FunctionClass, Lambda
from sympy.core.symbol import Dummy
from sympy.core.sympify import _sympify, sympify
from sympy.matrices import Matrix
from sympy.functions.elementary.complexes import re, im
class FunctionMatrix(MatrixExpr):
"""Represents a matrix using a function (``Lambda``) which gives
outputs according to the coordinates of each matrix entries.
Parameters
==========
rows : nonnegative integer. Can be symbolic.
cols : nonnegative integer. Can be symbolic.
lamda : Function, Lambda or str
If it is a SymPy ``Function`` or ``Lambda`` instance,
it should be able to accept two arguments which represents the
matrix coordinates.
If it is a pure string containing Python ``lambda`` semantics,
it is interpreted by the SymPy parser and casted into a SymPy
``Lambda`` instance.
Examples
========
Creating a ``FunctionMatrix`` from ``Lambda``:
>>> from sympy import FunctionMatrix, symbols, Lambda, MatPow
>>> i, j, n, m = symbols('i,j,n,m')
>>> FunctionMatrix(n, m, Lambda((i, j), i + j))
FunctionMatrix(n, m, Lambda((i, j), i + j))
Creating a ``FunctionMatrix`` from a SymPy function:
>>> from sympy import KroneckerDelta
>>> X = FunctionMatrix(3, 3, KroneckerDelta)
>>> X.as_explicit()
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
Creating a ``FunctionMatrix`` from a SymPy undefined function:
>>> from sympy import Function
>>> f = Function('f')
>>> X = FunctionMatrix(3, 3, f)
>>> X.as_explicit()
Matrix([
[f(0, 0), f(0, 1), f(0, 2)],
[f(1, 0), f(1, 1), f(1, 2)],
[f(2, 0), f(2, 1), f(2, 2)]])
Creating a ``FunctionMatrix`` from Python ``lambda``:
>>> FunctionMatrix(n, m, 'lambda i, j: i + j')
FunctionMatrix(n, m, Lambda((i, j), i + j))
Example of lazy evaluation of matrix product:
>>> Y = FunctionMatrix(1000, 1000, Lambda((i, j), i + j))
>>> isinstance(Y*Y, MatPow) # this is an expression object
True
>>> (Y**2)[10,10] # So this is evaluated lazily
342923500
Notes
=====
This class provides an alternative way to represent an extremely
dense matrix with entries in some form of a sequence, in a most
sparse way.
"""
def __new__(cls, rows, cols, lamda):
rows, cols = _sympify(rows), _sympify(cols)
cls._check_dim(rows)
cls._check_dim(cols)
lamda = sympify(lamda)
if not isinstance(lamda, (FunctionClass, Lambda)):
raise ValueError(
"{} should be compatible with SymPy function classes."
.format(lamda))
if 2 not in lamda.nargs:
raise ValueError(
'{} should be able to accept 2 arguments.'.format(lamda))
if not isinstance(lamda, Lambda):
i, j = Dummy('i'), Dummy('j')
lamda = Lambda((i, j), lamda(i, j))
return super().__new__(cls, rows, cols, lamda)
@property
def shape(self):
return self.args[0:2]
@property
def lamda(self):
return self.args[2]
def _entry(self, i, j, **kwargs):
return self.lamda(i, j)
def _eval_trace(self):
from sympy.matrices.expressions.trace import Trace
from sympy.concrete.summations import Sum
return Trace(self).rewrite(Sum).doit()
def _eval_as_real_imag(self):
return (re(Matrix(self)), im(Matrix(self)))