ai-content-maker/.venv/Lib/site-packages/sympy/matrices/normalforms.py

128 lines
3.7 KiB
Python

'''Functions returning normal forms of matrices'''
from sympy.polys.domains.integerring import ZZ
from sympy.polys.polytools import Poly
from sympy.polys.matrices import DomainMatrix
from sympy.polys.matrices.normalforms import (
smith_normal_form as _snf,
invariant_factors as _invf,
hermite_normal_form as _hnf,
)
def _to_domain(m, domain=None):
"""Convert Matrix to DomainMatrix"""
# XXX: deprecated support for RawMatrix:
ring = getattr(m, "ring", None)
m = m.applyfunc(lambda e: e.as_expr() if isinstance(e, Poly) else e)
dM = DomainMatrix.from_Matrix(m)
domain = domain or ring
if domain is not None:
dM = dM.convert_to(domain)
return dM
def smith_normal_form(m, domain=None):
'''
Return the Smith Normal Form of a matrix `m` over the ring `domain`.
This will only work if the ring is a principal ideal domain.
Examples
========
>>> from sympy import Matrix, ZZ
>>> from sympy.matrices.normalforms import smith_normal_form
>>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]])
>>> print(smith_normal_form(m, domain=ZZ))
Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]])
'''
dM = _to_domain(m, domain)
return _snf(dM).to_Matrix()
def invariant_factors(m, domain=None):
'''
Return the tuple of abelian invariants for a matrix `m`
(as in the Smith-Normal form)
References
==========
.. [1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm
.. [2] https://web.archive.org/web/20200331143852/https://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf
'''
dM = _to_domain(m, domain)
factors = _invf(dM)
factors = tuple(dM.domain.to_sympy(f) for f in factors)
# XXX: deprecated.
if hasattr(m, "ring"):
if m.ring.is_PolynomialRing:
K = m.ring
to_poly = lambda f: Poly(f, K.symbols, domain=K.domain)
factors = tuple(to_poly(f) for f in factors)
return factors
def hermite_normal_form(A, *, D=None, check_rank=False):
r"""
Compute the Hermite Normal Form of a Matrix *A* of integers.
Examples
========
>>> from sympy import Matrix
>>> from sympy.matrices.normalforms import hermite_normal_form
>>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]])
>>> print(hermite_normal_form(m))
Matrix([[10, 0, 2], [0, 15, 3], [0, 0, 2]])
Parameters
==========
A : $m \times n$ ``Matrix`` of integers.
D : int, optional
Let $W$ be the HNF of *A*. If known in advance, a positive integer *D*
being any multiple of $\det(W)$ may be provided. In this case, if *A*
also has rank $m$, then we may use an alternative algorithm that works
mod *D* in order to prevent coefficient explosion.
check_rank : boolean, optional (default=False)
The basic assumption is that, if you pass a value for *D*, then
you already believe that *A* has rank $m$, so we do not waste time
checking it for you. If you do want this to be checked (and the
ordinary, non-modulo *D* algorithm to be used if the check fails), then
set *check_rank* to ``True``.
Returns
=======
``Matrix``
The HNF of matrix *A*.
Raises
======
DMDomainError
If the domain of the matrix is not :ref:`ZZ`.
DMShapeError
If the mod *D* algorithm is used but the matrix has more rows than
columns.
References
==========
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
(See Algorithms 2.4.5 and 2.4.8.)
"""
# Accept any of Python int, SymPy Integer, and ZZ itself:
if D is not None and not ZZ.of_type(D):
D = ZZ(int(D))
return _hnf(A._rep, D=D, check_rank=check_rank).to_Matrix()