ai-content-maker/.venv/Lib/site-packages/sympy/physics/mechanics/tests/test_jointsmethod.py

213 lines
8.7 KiB
Python

from sympy.core.function import expand
from sympy.core.symbol import symbols
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.matrices.dense import Matrix
from sympy.simplify.trigsimp import trigsimp
from sympy.physics.mechanics import (PinJoint, JointsMethod, Body, KanesMethod,
PrismaticJoint, LagrangesMethod, inertia)
from sympy.physics.vector import dynamicsymbols, ReferenceFrame
from sympy.testing.pytest import raises
from sympy.core.backend import zeros
from sympy.utilities.lambdify import lambdify
from sympy.solvers.solvers import solve
t = dynamicsymbols._t # type: ignore
def test_jointsmethod():
P = Body('P')
C = Body('C')
Pin = PinJoint('P1', P, C)
C_ixx, g = symbols('C_ixx g')
q, u = dynamicsymbols('q_P1, u_P1')
P.apply_force(g*P.y)
method = JointsMethod(P, Pin)
assert method.frame == P.frame
assert method.bodies == [C, P]
assert method.loads == [(P.masscenter, g*P.frame.y)]
assert method.q == Matrix([q])
assert method.u == Matrix([u])
assert method.kdes == Matrix([u - q.diff()])
soln = method.form_eoms()
assert soln == Matrix([[-C_ixx*u.diff()]])
assert method.forcing_full == Matrix([[u], [0]])
assert method.mass_matrix_full == Matrix([[1, 0], [0, C_ixx]])
assert isinstance(method.method, KanesMethod)
def test_jointmethod_duplicate_coordinates_speeds():
P = Body('P')
C = Body('C')
T = Body('T')
q, u = dynamicsymbols('q u')
P1 = PinJoint('P1', P, C, q)
P2 = PrismaticJoint('P2', C, T, q)
raises(ValueError, lambda: JointsMethod(P, P1, P2))
P1 = PinJoint('P1', P, C, speeds=u)
P2 = PrismaticJoint('P2', C, T, speeds=u)
raises(ValueError, lambda: JointsMethod(P, P1, P2))
P1 = PinJoint('P1', P, C, q, u)
P2 = PrismaticJoint('P2', C, T, q, u)
raises(ValueError, lambda: JointsMethod(P, P1, P2))
def test_complete_simple_double_pendulum():
q1, q2 = dynamicsymbols('q1 q2')
u1, u2 = dynamicsymbols('u1 u2')
m, l, g = symbols('m l g')
C = Body('C') # ceiling
PartP = Body('P', mass=m)
PartR = Body('R', mass=m)
J1 = PinJoint('J1', C, PartP, speeds=u1, coordinates=q1,
child_point=-l*PartP.x, joint_axis=C.z)
J2 = PinJoint('J2', PartP, PartR, speeds=u2, coordinates=q2,
child_point=-l*PartR.x, joint_axis=PartP.z)
PartP.apply_force(m*g*C.x)
PartR.apply_force(m*g*C.x)
method = JointsMethod(C, J1, J2)
method.form_eoms()
assert expand(method.mass_matrix_full) == Matrix([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 2*l**2*m*cos(q2) + 3*l**2*m, l**2*m*cos(q2) + l**2*m],
[0, 0, l**2*m*cos(q2) + l**2*m, l**2*m]])
assert trigsimp(method.forcing_full) == trigsimp(Matrix([[u1], [u2], [-g*l*m*(sin(q1 + q2) + sin(q1)) -
g*l*m*sin(q1) + l**2*m*(2*u1 + u2)*u2*sin(q2)],
[-g*l*m*sin(q1 + q2) - l**2*m*u1**2*sin(q2)]]))
def test_two_dof_joints():
q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
W = Body('W')
B1 = Body('B1', mass=m)
B2 = Body('B2', mass=m)
J1 = PrismaticJoint('J1', W, B1, coordinates=q1, speeds=u1)
J2 = PrismaticJoint('J2', B1, B2, coordinates=q2, speeds=u2)
W.apply_force(k1*q1*W.x, reaction_body=B1)
W.apply_force(c1*u1*W.x, reaction_body=B1)
B1.apply_force(k2*q2*W.x, reaction_body=B2)
B1.apply_force(c2*u2*W.x, reaction_body=B2)
method = JointsMethod(W, J1, J2)
method.form_eoms()
MM = method.mass_matrix
forcing = method.forcing
rhs = MM.LUsolve(forcing)
assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
c2 * u2) / m)
def test_simple_pedulum():
l, m, g = symbols('l m g')
C = Body('C')
b = Body('b', mass=m)
q = dynamicsymbols('q')
P = PinJoint('P', C, b, speeds=q.diff(t), coordinates=q,
child_point=-l * b.x, joint_axis=C.z)
b.potential_energy = - m * g * l * cos(q)
method = JointsMethod(C, P)
method.form_eoms(LagrangesMethod)
rhs = method.rhs()
assert rhs[1] == -g*sin(q)/l
def test_chaos_pendulum():
#https://www.pydy.org/examples/chaos_pendulum.html
mA, mB, lA, lB, IAxx, IBxx, IByy, IBzz, g = symbols('mA, mB, lA, lB, IAxx, IBxx, IByy, IBzz, g')
theta, phi, omega, alpha = dynamicsymbols('theta phi omega alpha')
A = ReferenceFrame('A')
B = ReferenceFrame('B')
rod = Body('rod', mass=mA, frame=A, central_inertia=inertia(A, IAxx, IAxx, 0))
plate = Body('plate', mass=mB, frame=B, central_inertia=inertia(B, IBxx, IByy, IBzz))
C = Body('C')
J1 = PinJoint('J1', C, rod, coordinates=theta, speeds=omega,
child_point=-lA * rod.z, joint_axis=C.y)
J2 = PinJoint('J2', rod, plate, coordinates=phi, speeds=alpha,
parent_point=(lB - lA) * rod.z, joint_axis=rod.z)
rod.apply_force(mA*g*C.z)
plate.apply_force(mB*g*C.z)
method = JointsMethod(C, J1, J2)
method.form_eoms()
MM = method.mass_matrix
forcing = method.forcing
rhs = MM.LUsolve(forcing)
xd = (-2 * IBxx * alpha * omega * sin(phi) * cos(phi) + 2 * IByy * alpha * omega * sin(phi) *
cos(phi) - g * lA * mA * sin(theta) - g * lB * mB * sin(theta)) / (IAxx + IBxx *
sin(phi)**2 + IByy * cos(phi)**2 + lA**2 * mA + lB**2 * mB)
assert (rhs[0] - xd).simplify() == 0
xd = (IBxx - IByy) * omega**2 * sin(phi) * cos(phi) / IBzz
assert (rhs[1] - xd).simplify() == 0
def test_four_bar_linkage_with_manual_constraints():
q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1:4, u1:4')
l1, l2, l3, l4, rho = symbols('l1:5, rho')
N = ReferenceFrame('N')
inertias = [inertia(N, 0, 0, rho * l ** 3 / 12) for l in (l1, l2, l3, l4)]
link1 = Body('Link1', frame=N, mass=rho * l1, central_inertia=inertias[0])
link2 = Body('Link2', mass=rho * l2, central_inertia=inertias[1])
link3 = Body('Link3', mass=rho * l3, central_inertia=inertias[2])
link4 = Body('Link4', mass=rho * l4, central_inertia=inertias[3])
joint1 = PinJoint(
'J1', link1, link2, coordinates=q1, speeds=u1, joint_axis=link1.z,
parent_point=l1 / 2 * link1.x, child_point=-l2 / 2 * link2.x)
joint2 = PinJoint(
'J2', link2, link3, coordinates=q2, speeds=u2, joint_axis=link2.z,
parent_point=l2 / 2 * link2.x, child_point=-l3 / 2 * link3.x)
joint3 = PinJoint(
'J3', link3, link4, coordinates=q3, speeds=u3, joint_axis=link3.z,
parent_point=l3 / 2 * link3.x, child_point=-l4 / 2 * link4.x)
loop = link4.masscenter.pos_from(link1.masscenter) \
+ l1 / 2 * link1.x + l4 / 2 * link4.x
fh = Matrix([loop.dot(link1.x), loop.dot(link1.y)])
method = JointsMethod(link1, joint1, joint2, joint3)
t = dynamicsymbols._t
qdots = solve(method.kdes, [q1.diff(t), q2.diff(t), q3.diff(t)])
fhd = fh.diff(t).subs(qdots)
kane = KanesMethod(method.frame, q_ind=[q1], u_ind=[u1],
q_dependent=[q2, q3], u_dependent=[u2, u3],
kd_eqs=method.kdes, configuration_constraints=fh,
velocity_constraints=fhd, forcelist=method.loads,
bodies=method.bodies)
fr, frs = kane.kanes_equations()
assert fr == zeros(1)
# Numerically check the mass- and forcing-matrix
p = Matrix([l1, l2, l3, l4, rho])
q = Matrix([q1, q2, q3])
u = Matrix([u1, u2, u3])
eval_m = lambdify((q, p), kane.mass_matrix)
eval_f = lambdify((q, u, p), kane.forcing)
eval_fhd = lambdify((q, u, p), fhd)
p_vals = [0.13, 0.24, 0.21, 0.34, 997]
q_vals = [2.1, 0.6655470375077588, 2.527408138024188] # Satisfies fh
u_vals = [0.2, -0.17963733938852067, 0.1309060540601612] # Satisfies fhd
mass_check = Matrix([[3.452709815256506e+01, 7.003948798374735e+00,
-4.939690970641498e+00],
[-2.203792703880936e-14, 2.071702479957077e-01,
2.842917573033711e-01],
[-1.300000000000123e-01, -8.836934896046506e-03,
1.864891330060847e-01]])
forcing_check = Matrix([[-0.031211821321648],
[-0.00066022608181],
[0.001813559741243]])
eps = 1e-10
assert all(abs(x) < eps for x in eval_fhd(q_vals, u_vals, p_vals))
assert all(abs(x) < eps for x in
(Matrix(eval_m(q_vals, p_vals)) - mass_check))
assert all(abs(x) < eps for x in
(Matrix(eval_f(q_vals, u_vals, p_vals)) - forcing_check))