ai-content-maker/.venv/Lib/site-packages/sympy/plotting/pygletplot/plot_modes.py

210 lines
5.2 KiB
Python

from sympy.utilities.lambdify import lambdify
from sympy.core.numbers import pi
from sympy.functions import sin, cos
from sympy.plotting.pygletplot.plot_curve import PlotCurve
from sympy.plotting.pygletplot.plot_surface import PlotSurface
from math import sin as p_sin
from math import cos as p_cos
def float_vec3(f):
def inner(*args):
v = f(*args)
return float(v[0]), float(v[1]), float(v[2])
return inner
class Cartesian2D(PlotCurve):
i_vars, d_vars = 'x', 'y'
intervals = [[-5, 5, 100]]
aliases = ['cartesian']
is_default = True
def _get_sympy_evaluator(self):
fy = self.d_vars[0]
x = self.t_interval.v
@float_vec3
def e(_x):
return (_x, fy.subs(x, _x), 0.0)
return e
def _get_lambda_evaluator(self):
fy = self.d_vars[0]
x = self.t_interval.v
return lambdify([x], [x, fy, 0.0])
class Cartesian3D(PlotSurface):
i_vars, d_vars = 'xy', 'z'
intervals = [[-1, 1, 40], [-1, 1, 40]]
aliases = ['cartesian', 'monge']
is_default = True
def _get_sympy_evaluator(self):
fz = self.d_vars[0]
x = self.u_interval.v
y = self.v_interval.v
@float_vec3
def e(_x, _y):
return (_x, _y, fz.subs(x, _x).subs(y, _y))
return e
def _get_lambda_evaluator(self):
fz = self.d_vars[0]
x = self.u_interval.v
y = self.v_interval.v
return lambdify([x, y], [x, y, fz])
class ParametricCurve2D(PlotCurve):
i_vars, d_vars = 't', 'xy'
intervals = [[0, 2*pi, 100]]
aliases = ['parametric']
is_default = True
def _get_sympy_evaluator(self):
fx, fy = self.d_vars
t = self.t_interval.v
@float_vec3
def e(_t):
return (fx.subs(t, _t), fy.subs(t, _t), 0.0)
return e
def _get_lambda_evaluator(self):
fx, fy = self.d_vars
t = self.t_interval.v
return lambdify([t], [fx, fy, 0.0])
class ParametricCurve3D(PlotCurve):
i_vars, d_vars = 't', 'xyz'
intervals = [[0, 2*pi, 100]]
aliases = ['parametric']
is_default = True
def _get_sympy_evaluator(self):
fx, fy, fz = self.d_vars
t = self.t_interval.v
@float_vec3
def e(_t):
return (fx.subs(t, _t), fy.subs(t, _t), fz.subs(t, _t))
return e
def _get_lambda_evaluator(self):
fx, fy, fz = self.d_vars
t = self.t_interval.v
return lambdify([t], [fx, fy, fz])
class ParametricSurface(PlotSurface):
i_vars, d_vars = 'uv', 'xyz'
intervals = [[-1, 1, 40], [-1, 1, 40]]
aliases = ['parametric']
is_default = True
def _get_sympy_evaluator(self):
fx, fy, fz = self.d_vars
u = self.u_interval.v
v = self.v_interval.v
@float_vec3
def e(_u, _v):
return (fx.subs(u, _u).subs(v, _v),
fy.subs(u, _u).subs(v, _v),
fz.subs(u, _u).subs(v, _v))
return e
def _get_lambda_evaluator(self):
fx, fy, fz = self.d_vars
u = self.u_interval.v
v = self.v_interval.v
return lambdify([u, v], [fx, fy, fz])
class Polar(PlotCurve):
i_vars, d_vars = 't', 'r'
intervals = [[0, 2*pi, 100]]
aliases = ['polar']
is_default = False
def _get_sympy_evaluator(self):
fr = self.d_vars[0]
t = self.t_interval.v
def e(_t):
_r = float(fr.subs(t, _t))
return (_r*p_cos(_t), _r*p_sin(_t), 0.0)
return e
def _get_lambda_evaluator(self):
fr = self.d_vars[0]
t = self.t_interval.v
fx, fy = fr*cos(t), fr*sin(t)
return lambdify([t], [fx, fy, 0.0])
class Cylindrical(PlotSurface):
i_vars, d_vars = 'th', 'r'
intervals = [[0, 2*pi, 40], [-1, 1, 20]]
aliases = ['cylindrical', 'polar']
is_default = False
def _get_sympy_evaluator(self):
fr = self.d_vars[0]
t = self.u_interval.v
h = self.v_interval.v
def e(_t, _h):
_r = float(fr.subs(t, _t).subs(h, _h))
return (_r*p_cos(_t), _r*p_sin(_t), _h)
return e
def _get_lambda_evaluator(self):
fr = self.d_vars[0]
t = self.u_interval.v
h = self.v_interval.v
fx, fy = fr*cos(t), fr*sin(t)
return lambdify([t, h], [fx, fy, h])
class Spherical(PlotSurface):
i_vars, d_vars = 'tp', 'r'
intervals = [[0, 2*pi, 40], [0, pi, 20]]
aliases = ['spherical']
is_default = False
def _get_sympy_evaluator(self):
fr = self.d_vars[0]
t = self.u_interval.v
p = self.v_interval.v
def e(_t, _p):
_r = float(fr.subs(t, _t).subs(p, _p))
return (_r*p_cos(_t)*p_sin(_p),
_r*p_sin(_t)*p_sin(_p),
_r*p_cos(_p))
return e
def _get_lambda_evaluator(self):
fr = self.d_vars[0]
t = self.u_interval.v
p = self.v_interval.v
fx = fr * cos(t) * sin(p)
fy = fr * sin(t) * sin(p)
fz = fr * cos(p)
return lambdify([t, p], [fx, fy, fz])
Cartesian2D._register()
Cartesian3D._register()
ParametricCurve2D._register()
ParametricCurve3D._register()
ParametricSurface._register()
Polar._register()
Cylindrical._register()
Spherical._register()