ai-content-maker/.venv/Lib/site-packages/sympy/stats/matrix_distributions.py

611 lines
21 KiB
Python

from math import prod
from sympy.core.basic import Basic
from sympy.core.numbers import pi
from sympy.core.singleton import S
from sympy.functions.elementary.exponential import exp
from sympy.functions.special.gamma_functions import multigamma
from sympy.core.sympify import sympify, _sympify
from sympy.matrices import (ImmutableMatrix, Inverse, Trace, Determinant,
MatrixSymbol, MatrixBase, Transpose, MatrixSet,
matrix2numpy)
from sympy.stats.rv import (_value_check, RandomMatrixSymbol, NamedArgsMixin, PSpace,
_symbol_converter, MatrixDomain, Distribution)
from sympy.external import import_module
################################################################################
#------------------------Matrix Probability Space------------------------------#
################################################################################
class MatrixPSpace(PSpace):
"""
Represents probability space for
Matrix Distributions.
"""
def __new__(cls, sym, distribution, dim_n, dim_m):
sym = _symbol_converter(sym)
dim_n, dim_m = _sympify(dim_n), _sympify(dim_m)
if not (dim_n.is_integer and dim_m.is_integer):
raise ValueError("Dimensions should be integers")
return Basic.__new__(cls, sym, distribution, dim_n, dim_m)
distribution = property(lambda self: self.args[1])
symbol = property(lambda self: self.args[0])
@property
def domain(self):
return MatrixDomain(self.symbol, self.distribution.set)
@property
def value(self):
return RandomMatrixSymbol(self.symbol, self.args[2], self.args[3], self)
@property
def values(self):
return {self.value}
def compute_density(self, expr, *args):
rms = expr.atoms(RandomMatrixSymbol)
if len(rms) > 1 or (not isinstance(expr, RandomMatrixSymbol)):
raise NotImplementedError("Currently, no algorithm has been "
"implemented to handle general expressions containing "
"multiple matrix distributions.")
return self.distribution.pdf(expr)
def sample(self, size=(), library='scipy', seed=None):
"""
Internal sample method
Returns dictionary mapping RandomMatrixSymbol to realization value.
"""
return {self.value: self.distribution.sample(size, library=library, seed=seed)}
def rv(symbol, cls, args):
args = list(map(sympify, args))
dist = cls(*args)
dist.check(*args)
dim = dist.dimension
pspace = MatrixPSpace(symbol, dist, dim[0], dim[1])
return pspace.value
class SampleMatrixScipy:
"""Returns the sample from scipy of the given distribution"""
def __new__(cls, dist, size, seed=None):
return cls._sample_scipy(dist, size, seed)
@classmethod
def _sample_scipy(cls, dist, size, seed):
"""Sample from SciPy."""
from scipy import stats as scipy_stats
import numpy
scipy_rv_map = {
'WishartDistribution': lambda dist, size, rand_state: scipy_stats.wishart.rvs(
df=int(dist.n), scale=matrix2numpy(dist.scale_matrix, float), size=size),
'MatrixNormalDistribution': lambda dist, size, rand_state: scipy_stats.matrix_normal.rvs(
mean=matrix2numpy(dist.location_matrix, float),
rowcov=matrix2numpy(dist.scale_matrix_1, float),
colcov=matrix2numpy(dist.scale_matrix_2, float), size=size, random_state=rand_state)
}
sample_shape = {
'WishartDistribution': lambda dist: dist.scale_matrix.shape,
'MatrixNormalDistribution' : lambda dist: dist.location_matrix.shape
}
dist_list = scipy_rv_map.keys()
if dist.__class__.__name__ not in dist_list:
return None
if seed is None or isinstance(seed, int):
rand_state = numpy.random.default_rng(seed=seed)
else:
rand_state = seed
samp = scipy_rv_map[dist.__class__.__name__](dist, prod(size), rand_state)
return samp.reshape(size + sample_shape[dist.__class__.__name__](dist))
class SampleMatrixNumpy:
"""Returns the sample from numpy of the given distribution"""
### TODO: Add tests after adding matrix distributions in numpy_rv_map
def __new__(cls, dist, size, seed=None):
return cls._sample_numpy(dist, size, seed)
@classmethod
def _sample_numpy(cls, dist, size, seed):
"""Sample from NumPy."""
numpy_rv_map = {
}
sample_shape = {
}
dist_list = numpy_rv_map.keys()
if dist.__class__.__name__ not in dist_list:
return None
import numpy
if seed is None or isinstance(seed, int):
rand_state = numpy.random.default_rng(seed=seed)
else:
rand_state = seed
samp = numpy_rv_map[dist.__class__.__name__](dist, prod(size), rand_state)
return samp.reshape(size + sample_shape[dist.__class__.__name__](dist))
class SampleMatrixPymc:
"""Returns the sample from pymc of the given distribution"""
def __new__(cls, dist, size, seed=None):
return cls._sample_pymc(dist, size, seed)
@classmethod
def _sample_pymc(cls, dist, size, seed):
"""Sample from PyMC."""
try:
import pymc
except ImportError:
import pymc3 as pymc
pymc_rv_map = {
'MatrixNormalDistribution': lambda dist: pymc.MatrixNormal('X',
mu=matrix2numpy(dist.location_matrix, float),
rowcov=matrix2numpy(dist.scale_matrix_1, float),
colcov=matrix2numpy(dist.scale_matrix_2, float),
shape=dist.location_matrix.shape),
'WishartDistribution': lambda dist: pymc.WishartBartlett('X',
nu=int(dist.n), S=matrix2numpy(dist.scale_matrix, float))
}
sample_shape = {
'WishartDistribution': lambda dist: dist.scale_matrix.shape,
'MatrixNormalDistribution' : lambda dist: dist.location_matrix.shape
}
dist_list = pymc_rv_map.keys()
if dist.__class__.__name__ not in dist_list:
return None
import logging
logging.getLogger("pymc").setLevel(logging.ERROR)
with pymc.Model():
pymc_rv_map[dist.__class__.__name__](dist)
samps = pymc.sample(draws=prod(size), chains=1, progressbar=False, random_seed=seed, return_inferencedata=False, compute_convergence_checks=False)['X']
return samps.reshape(size + sample_shape[dist.__class__.__name__](dist))
_get_sample_class_matrixrv = {
'scipy': SampleMatrixScipy,
'pymc3': SampleMatrixPymc,
'pymc': SampleMatrixPymc,
'numpy': SampleMatrixNumpy
}
################################################################################
#-------------------------Matrix Distribution----------------------------------#
################################################################################
class MatrixDistribution(Distribution, NamedArgsMixin):
"""
Abstract class for Matrix Distribution.
"""
def __new__(cls, *args):
args = [ImmutableMatrix(arg) if isinstance(arg, list)
else _sympify(arg) for arg in args]
return Basic.__new__(cls, *args)
@staticmethod
def check(*args):
pass
def __call__(self, expr):
if isinstance(expr, list):
expr = ImmutableMatrix(expr)
return self.pdf(expr)
def sample(self, size=(), library='scipy', seed=None):
"""
Internal sample method
Returns dictionary mapping RandomSymbol to realization value.
"""
libraries = ['scipy', 'numpy', 'pymc3', 'pymc']
if library not in libraries:
raise NotImplementedError("Sampling from %s is not supported yet."
% str(library))
if not import_module(library):
raise ValueError("Failed to import %s" % library)
samps = _get_sample_class_matrixrv[library](self, size, seed)
if samps is not None:
return samps
raise NotImplementedError(
"Sampling for %s is not currently implemented from %s"
% (self.__class__.__name__, library)
)
################################################################################
#------------------------Matrix Distribution Types-----------------------------#
################################################################################
#-------------------------------------------------------------------------------
# Matrix Gamma distribution ----------------------------------------------------
class MatrixGammaDistribution(MatrixDistribution):
_argnames = ('alpha', 'beta', 'scale_matrix')
@staticmethod
def check(alpha, beta, scale_matrix):
if not isinstance(scale_matrix, MatrixSymbol):
_value_check(scale_matrix.is_positive_definite, "The shape "
"matrix must be positive definite.")
_value_check(scale_matrix.is_square, "Should "
"be square matrix")
_value_check(alpha.is_positive, "Shape parameter should be positive.")
_value_check(beta.is_positive, "Scale parameter should be positive.")
@property
def set(self):
k = self.scale_matrix.shape[0]
return MatrixSet(k, k, S.Reals)
@property
def dimension(self):
return self.scale_matrix.shape
def pdf(self, x):
alpha, beta, scale_matrix = self.alpha, self.beta, self.scale_matrix
p = scale_matrix.shape[0]
if isinstance(x, list):
x = ImmutableMatrix(x)
if not isinstance(x, (MatrixBase, MatrixSymbol)):
raise ValueError("%s should be an isinstance of Matrix "
"or MatrixSymbol" % str(x))
sigma_inv_x = - Inverse(scale_matrix)*x / beta
term1 = exp(Trace(sigma_inv_x))/((beta**(p*alpha)) * multigamma(alpha, p))
term2 = (Determinant(scale_matrix))**(-alpha)
term3 = (Determinant(x))**(alpha - S(p + 1)/2)
return term1 * term2 * term3
def MatrixGamma(symbol, alpha, beta, scale_matrix):
"""
Creates a random variable with Matrix Gamma Distribution.
The density of the said distribution can be found at [1].
Parameters
==========
alpha: Positive Real number
Shape Parameter
beta: Positive Real number
Scale Parameter
scale_matrix: Positive definite real square matrix
Scale Matrix
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import density, MatrixGamma
>>> from sympy import MatrixSymbol, symbols
>>> a, b = symbols('a b', positive=True)
>>> M = MatrixGamma('M', a, b, [[2, 1], [1, 2]])
>>> X = MatrixSymbol('X', 2, 2)
>>> density(M)(X).doit()
exp(Trace(Matrix([
[-2/3, 1/3],
[ 1/3, -2/3]])*X)/b)*Determinant(X)**(a - 3/2)/(3**a*sqrt(pi)*b**(2*a)*gamma(a)*gamma(a - 1/2))
>>> density(M)([[1, 0], [0, 1]]).doit()
exp(-4/(3*b))/(3**a*sqrt(pi)*b**(2*a)*gamma(a)*gamma(a - 1/2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Matrix_gamma_distribution
"""
if isinstance(scale_matrix, list):
scale_matrix = ImmutableMatrix(scale_matrix)
return rv(symbol, MatrixGammaDistribution, (alpha, beta, scale_matrix))
#-------------------------------------------------------------------------------
# Wishart Distribution ---------------------------------------------------------
class WishartDistribution(MatrixDistribution):
_argnames = ('n', 'scale_matrix')
@staticmethod
def check(n, scale_matrix):
if not isinstance(scale_matrix, MatrixSymbol):
_value_check(scale_matrix.is_positive_definite, "The shape "
"matrix must be positive definite.")
_value_check(scale_matrix.is_square, "Should "
"be square matrix")
_value_check(n.is_positive, "Shape parameter should be positive.")
@property
def set(self):
k = self.scale_matrix.shape[0]
return MatrixSet(k, k, S.Reals)
@property
def dimension(self):
return self.scale_matrix.shape
def pdf(self, x):
n, scale_matrix = self.n, self.scale_matrix
p = scale_matrix.shape[0]
if isinstance(x, list):
x = ImmutableMatrix(x)
if not isinstance(x, (MatrixBase, MatrixSymbol)):
raise ValueError("%s should be an isinstance of Matrix "
"or MatrixSymbol" % str(x))
sigma_inv_x = - Inverse(scale_matrix)*x / S(2)
term1 = exp(Trace(sigma_inv_x))/((2**(p*n/S(2))) * multigamma(n/S(2), p))
term2 = (Determinant(scale_matrix))**(-n/S(2))
term3 = (Determinant(x))**(S(n - p - 1)/2)
return term1 * term2 * term3
def Wishart(symbol, n, scale_matrix):
"""
Creates a random variable with Wishart Distribution.
The density of the said distribution can be found at [1].
Parameters
==========
n: Positive Real number
Represents degrees of freedom
scale_matrix: Positive definite real square matrix
Scale Matrix
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import density, Wishart
>>> from sympy import MatrixSymbol, symbols
>>> n = symbols('n', positive=True)
>>> W = Wishart('W', n, [[2, 1], [1, 2]])
>>> X = MatrixSymbol('X', 2, 2)
>>> density(W)(X).doit()
exp(Trace(Matrix([
[-1/3, 1/6],
[ 1/6, -1/3]])*X))*Determinant(X)**(n/2 - 3/2)/(2**n*3**(n/2)*sqrt(pi)*gamma(n/2)*gamma(n/2 - 1/2))
>>> density(W)([[1, 0], [0, 1]]).doit()
exp(-2/3)/(2**n*3**(n/2)*sqrt(pi)*gamma(n/2)*gamma(n/2 - 1/2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Wishart_distribution
"""
if isinstance(scale_matrix, list):
scale_matrix = ImmutableMatrix(scale_matrix)
return rv(symbol, WishartDistribution, (n, scale_matrix))
#-------------------------------------------------------------------------------
# Matrix Normal distribution ---------------------------------------------------
class MatrixNormalDistribution(MatrixDistribution):
_argnames = ('location_matrix', 'scale_matrix_1', 'scale_matrix_2')
@staticmethod
def check(location_matrix, scale_matrix_1, scale_matrix_2):
if not isinstance(scale_matrix_1, MatrixSymbol):
_value_check(scale_matrix_1.is_positive_definite, "The shape "
"matrix must be positive definite.")
if not isinstance(scale_matrix_2, MatrixSymbol):
_value_check(scale_matrix_2.is_positive_definite, "The shape "
"matrix must be positive definite.")
_value_check(scale_matrix_1.is_square, "Scale matrix 1 should be "
"be square matrix")
_value_check(scale_matrix_2.is_square, "Scale matrix 2 should be "
"be square matrix")
n = location_matrix.shape[0]
p = location_matrix.shape[1]
_value_check(scale_matrix_1.shape[0] == n, "Scale matrix 1 should be"
" of shape %s x %s"% (str(n), str(n)))
_value_check(scale_matrix_2.shape[0] == p, "Scale matrix 2 should be"
" of shape %s x %s"% (str(p), str(p)))
@property
def set(self):
n, p = self.location_matrix.shape
return MatrixSet(n, p, S.Reals)
@property
def dimension(self):
return self.location_matrix.shape
def pdf(self, x):
M, U, V = self.location_matrix, self.scale_matrix_1, self.scale_matrix_2
n, p = M.shape
if isinstance(x, list):
x = ImmutableMatrix(x)
if not isinstance(x, (MatrixBase, MatrixSymbol)):
raise ValueError("%s should be an isinstance of Matrix "
"or MatrixSymbol" % str(x))
term1 = Inverse(V)*Transpose(x - M)*Inverse(U)*(x - M)
num = exp(-Trace(term1)/S(2))
den = (2*pi)**(S(n*p)/2) * Determinant(U)**(S(p)/2) * Determinant(V)**(S(n)/2)
return num/den
def MatrixNormal(symbol, location_matrix, scale_matrix_1, scale_matrix_2):
"""
Creates a random variable with Matrix Normal Distribution.
The density of the said distribution can be found at [1].
Parameters
==========
location_matrix: Real ``n x p`` matrix
Represents degrees of freedom
scale_matrix_1: Positive definite matrix
Scale Matrix of shape ``n x n``
scale_matrix_2: Positive definite matrix
Scale Matrix of shape ``p x p``
Returns
=======
RandomSymbol
Examples
========
>>> from sympy import MatrixSymbol
>>> from sympy.stats import density, MatrixNormal
>>> M = MatrixNormal('M', [[1, 2]], [1], [[1, 0], [0, 1]])
>>> X = MatrixSymbol('X', 1, 2)
>>> density(M)(X).doit()
exp(-Trace((Matrix([
[-1],
[-2]]) + X.T)*(Matrix([[-1, -2]]) + X))/2)/(2*pi)
>>> density(M)([[3, 4]]).doit()
exp(-4)/(2*pi)
References
==========
.. [1] https://en.wikipedia.org/wiki/Matrix_normal_distribution
"""
if isinstance(location_matrix, list):
location_matrix = ImmutableMatrix(location_matrix)
if isinstance(scale_matrix_1, list):
scale_matrix_1 = ImmutableMatrix(scale_matrix_1)
if isinstance(scale_matrix_2, list):
scale_matrix_2 = ImmutableMatrix(scale_matrix_2)
args = (location_matrix, scale_matrix_1, scale_matrix_2)
return rv(symbol, MatrixNormalDistribution, args)
#-------------------------------------------------------------------------------
# Matrix Student's T distribution ---------------------------------------------------
class MatrixStudentTDistribution(MatrixDistribution):
_argnames = ('nu', 'location_matrix', 'scale_matrix_1', 'scale_matrix_2')
@staticmethod
def check(nu, location_matrix, scale_matrix_1, scale_matrix_2):
if not isinstance(scale_matrix_1, MatrixSymbol):
_value_check(scale_matrix_1.is_positive_definite != False, "The shape "
"matrix must be positive definite.")
if not isinstance(scale_matrix_2, MatrixSymbol):
_value_check(scale_matrix_2.is_positive_definite != False, "The shape "
"matrix must be positive definite.")
_value_check(scale_matrix_1.is_square != False, "Scale matrix 1 should be "
"be square matrix")
_value_check(scale_matrix_2.is_square != False, "Scale matrix 2 should be "
"be square matrix")
n = location_matrix.shape[0]
p = location_matrix.shape[1]
_value_check(scale_matrix_1.shape[0] == p, "Scale matrix 1 should be"
" of shape %s x %s" % (str(p), str(p)))
_value_check(scale_matrix_2.shape[0] == n, "Scale matrix 2 should be"
" of shape %s x %s" % (str(n), str(n)))
_value_check(nu.is_positive != False, "Degrees of freedom must be positive")
@property
def set(self):
n, p = self.location_matrix.shape
return MatrixSet(n, p, S.Reals)
@property
def dimension(self):
return self.location_matrix.shape
def pdf(self, x):
from sympy.matrices.dense import eye
if isinstance(x, list):
x = ImmutableMatrix(x)
if not isinstance(x, (MatrixBase, MatrixSymbol)):
raise ValueError("%s should be an isinstance of Matrix "
"or MatrixSymbol" % str(x))
nu, M, Omega, Sigma = self.nu, self.location_matrix, self.scale_matrix_1, self.scale_matrix_2
n, p = M.shape
K = multigamma((nu + n + p - 1)/2, p) * Determinant(Omega)**(-n/2) * Determinant(Sigma)**(-p/2) \
/ ((pi)**(n*p/2) * multigamma((nu + p - 1)/2, p))
return K * (Determinant(eye(n) + Inverse(Sigma)*(x - M)*Inverse(Omega)*Transpose(x - M))) \
**(-(nu + n + p -1)/2)
def MatrixStudentT(symbol, nu, location_matrix, scale_matrix_1, scale_matrix_2):
"""
Creates a random variable with Matrix Gamma Distribution.
The density of the said distribution can be found at [1].
Parameters
==========
nu: Positive Real number
degrees of freedom
location_matrix: Positive definite real square matrix
Location Matrix of shape ``n x p``
scale_matrix_1: Positive definite real square matrix
Scale Matrix of shape ``p x p``
scale_matrix_2: Positive definite real square matrix
Scale Matrix of shape ``n x n``
Returns
=======
RandomSymbol
Examples
========
>>> from sympy import MatrixSymbol,symbols
>>> from sympy.stats import density, MatrixStudentT
>>> v = symbols('v',positive=True)
>>> M = MatrixStudentT('M', v, [[1, 2]], [[1, 0], [0, 1]], [1])
>>> X = MatrixSymbol('X', 1, 2)
>>> density(M)(X)
gamma(v/2 + 1)*Determinant((Matrix([[-1, -2]]) + X)*(Matrix([
[-1],
[-2]]) + X.T) + Matrix([[1]]))**(-v/2 - 1)/(pi**1.0*gamma(v/2)*Determinant(Matrix([[1]]))**1.0*Determinant(Matrix([
[1, 0],
[0, 1]]))**0.5)
References
==========
.. [1] https://en.wikipedia.org/wiki/Matrix_t-distribution
"""
if isinstance(location_matrix, list):
location_matrix = ImmutableMatrix(location_matrix)
if isinstance(scale_matrix_1, list):
scale_matrix_1 = ImmutableMatrix(scale_matrix_1)
if isinstance(scale_matrix_2, list):
scale_matrix_2 = ImmutableMatrix(scale_matrix_2)
args = (nu, location_matrix, scale_matrix_1, scale_matrix_2)
return rv(symbol, MatrixStudentTDistribution, args)