ai-content-maker/.venv/Lib/site-packages/tensorboard/plugins/metrics/metrics_plugin.py

639 lines
22 KiB
Python

# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The TensorBoard metrics plugin."""
import collections
import imghdr
import json
from werkzeug import wrappers
from tensorboard import errors
from tensorboard import plugin_util
from tensorboard.backend import http_util
from tensorboard.data import provider
from tensorboard.plugins import base_plugin
from tensorboard.plugins.histogram import metadata as histogram_metadata
from tensorboard.plugins.image import metadata as image_metadata
from tensorboard.plugins.metrics import metadata
from tensorboard.plugins.scalar import metadata as scalar_metadata
_IMGHDR_TO_MIMETYPE = {
"bmp": "image/bmp",
"gif": "image/gif",
"jpeg": "image/jpeg",
"png": "image/png",
"svg": "image/svg+xml",
}
_DEFAULT_IMAGE_MIMETYPE = "application/octet-stream"
_SINGLE_RUN_PLUGINS = frozenset(
[histogram_metadata.PLUGIN_NAME, image_metadata.PLUGIN_NAME]
)
_SAMPLED_PLUGINS = frozenset([image_metadata.PLUGIN_NAME])
def _get_tag_description_info(mapping):
"""Gets maps from tags to descriptions, and descriptions to runs.
Args:
mapping: a nested map `d` such that `d[run][tag]` is a time series
produced by DataProvider's `list_*` methods.
Returns:
A tuple containing
tag_to_descriptions: A map from tag strings to a set of description
strings.
description_to_runs: A map from description strings to a set of run
strings.
"""
tag_to_descriptions = collections.defaultdict(set)
description_to_runs = collections.defaultdict(set)
for (run, tag_to_content) in mapping.items():
for (tag, metadatum) in tag_to_content.items():
description = metadatum.description
if len(description):
tag_to_descriptions[tag].add(description)
description_to_runs[description].add(run)
return tag_to_descriptions, description_to_runs
def _build_combined_description(descriptions, description_to_runs):
"""Creates a single description from a set of descriptions.
Descriptions may be composites when a single tag has different descriptions
across multiple runs.
Args:
descriptions: A list of description strings.
description_to_runs: A map from description strings to a set of run
strings.
Returns:
The combined description string.
"""
prefixed_descriptions = []
for description in descriptions:
runs = sorted(description_to_runs[description])
run_or_runs = "runs" if len(runs) > 1 else "run"
run_header = "## For " + run_or_runs + ": " + ", ".join(runs)
description_html = run_header + "\n" + description
prefixed_descriptions.append(description_html)
header = "# Multiple descriptions\n"
return header + "\n".join(prefixed_descriptions)
def _get_tag_to_description(mapping):
"""Returns a map of tags to descriptions.
Args:
mapping: a nested map `d` such that `d[run][tag]` is a time series
produced by DataProvider's `list_*` methods.
Returns:
A map from tag strings to description HTML strings. E.g.
{
"loss": "<h1>Multiple descriptions</h1><h2>For runs: test, train
</h2><p>...</p>",
"loss2": "<p>The lossy details</p>",
}
"""
tag_to_descriptions, description_to_runs = _get_tag_description_info(
mapping
)
result = {}
for tag in tag_to_descriptions:
descriptions = sorted(tag_to_descriptions[tag])
if len(descriptions) == 1:
description = descriptions[0]
else:
description = _build_combined_description(
descriptions, description_to_runs
)
result[tag] = plugin_util.markdown_to_safe_html(description)
return result
def _get_run_tag_info(mapping):
"""Returns a map of run names to a list of tag names.
Args:
mapping: a nested map `d` such that `d[run][tag]` is a time series
produced by DataProvider's `list_*` methods.
Returns:
A map from run strings to a list of tag strings. E.g.
{"loss001a": ["actor/loss", "critic/loss"], ...}
"""
return {run: sorted(mapping[run]) for run in mapping}
def _format_basic_mapping(mapping):
"""Prepares a scalar or histogram mapping for client consumption.
Args:
mapping: a nested map `d` such that `d[run][tag]` is a time series
produced by DataProvider's `list_*` methods.
Returns:
A dict with the following fields:
runTagInfo: the return type of `_get_run_tag_info`
tagDescriptions: the return type of `_get_tag_to_description`
"""
return {
"runTagInfo": _get_run_tag_info(mapping),
"tagDescriptions": _get_tag_to_description(mapping),
}
def _format_image_blob_sequence_datum(sorted_datum_list, sample):
"""Formats image metadata from a list of BlobSequenceDatum's for clients.
This expects that frontend clients need to access images based on the
run+tag+sample.
Args:
sorted_datum_list: a list of DataProvider's `BlobSequenceDatum`, sorted by
step. This can be produced via DataProvider's `read_blob_sequences`.
sample: zero-indexed integer for the requested sample.
Returns:
A list of `ImageStepDatum` (see http_api.md).
"""
# For images, ignore the first 2 items of a BlobSequenceDatum's values, which
# correspond to width, height.
index = sample + 2
step_data = []
for datum in sorted_datum_list:
if len(datum.values) <= index:
continue
step_data.append(
{
"step": datum.step,
"wallTime": datum.wall_time,
"imageId": datum.values[index].blob_key,
}
)
return step_data
def _get_tag_run_image_info(mapping):
"""Returns a map of tag names to run information.
Args:
mapping: the result of DataProvider's `list_blob_sequences`.
Returns:
A nested map from run strings to tag string to image info, where image
info is an object of form {"maxSamplesPerStep": num}. For example,
{
"reshaped": {
"test": {"maxSamplesPerStep": 1},
"train": {"maxSamplesPerStep": 1}
},
"convolved": {"test": {"maxSamplesPerStep": 50}},
}
"""
tag_run_image_info = collections.defaultdict(dict)
for (run, tag_to_content) in mapping.items():
for (tag, metadatum) in tag_to_content.items():
tag_run_image_info[tag][run] = {
"maxSamplesPerStep": metadatum.max_length - 2 # width, height
}
return dict(tag_run_image_info)
def _format_image_mapping(mapping):
"""Prepares an image mapping for client consumption.
Args:
mapping: the result of DataProvider's `list_blob_sequences`.
Returns:
A dict with the following fields:
tagRunSampledInfo: the return type of `_get_tag_run_image_info`
tagDescriptions: the return type of `_get_tag_description_info`
"""
return {
"tagDescriptions": _get_tag_to_description(mapping),
"tagRunSampledInfo": _get_tag_run_image_info(mapping),
}
class MetricsPlugin(base_plugin.TBPlugin):
"""Metrics Plugin for TensorBoard."""
plugin_name = metadata.PLUGIN_NAME
def __init__(self, context):
"""Instantiates MetricsPlugin.
Args:
context: A base_plugin.TBContext instance. MetricsLoader checks that
it contains a valid `data_provider`.
"""
self._data_provider = context.data_provider
# For histograms, use a round number + 1 since sampling includes both start
# and end steps, so N+1 samples corresponds to dividing the step sequence
# into N intervals.
sampling_hints = context.sampling_hints or {}
self._plugin_downsampling = {
"scalars": sampling_hints.get(scalar_metadata.PLUGIN_NAME, 1000),
"histograms": sampling_hints.get(
histogram_metadata.PLUGIN_NAME, 51
),
"images": sampling_hints.get(image_metadata.PLUGIN_NAME, 10),
}
self._scalar_version_checker = plugin_util._MetadataVersionChecker(
data_kind="scalar time series",
latest_known_version=0,
)
self._histogram_version_checker = plugin_util._MetadataVersionChecker(
data_kind="histogram time series",
latest_known_version=0,
)
self._image_version_checker = plugin_util._MetadataVersionChecker(
data_kind="image time series",
latest_known_version=0,
)
def frontend_metadata(self):
return base_plugin.FrontendMetadata(
is_ng_component=True, tab_name="Time Series"
)
def get_plugin_apps(self):
return {
"/tags": self._serve_tags,
"/timeSeries": self._serve_time_series,
"/imageData": self._serve_image_data,
}
def data_plugin_names(self):
return (
scalar_metadata.PLUGIN_NAME,
histogram_metadata.PLUGIN_NAME,
image_metadata.PLUGIN_NAME,
)
def is_active(self):
return False # 'data_plugin_names' suffices.
@wrappers.Request.application
def _serve_tags(self, request):
ctx = plugin_util.context(request.environ)
experiment = plugin_util.experiment_id(request.environ)
index = self._tags_impl(ctx, experiment=experiment)
return http_util.Respond(request, index, "application/json")
def _tags_impl(self, ctx, experiment=None):
"""Returns tag metadata for a given experiment's logged metrics.
Args:
ctx: A `tensorboard.context.RequestContext` value.
experiment: optional string ID of the request's experiment.
Returns:
A nested dict 'd' with keys in ("scalars", "histograms", "images")
and values being the return type of _format_*mapping.
"""
scalar_mapping = self._data_provider.list_scalars(
ctx,
experiment_id=experiment,
plugin_name=scalar_metadata.PLUGIN_NAME,
)
scalar_mapping = self._filter_by_version(
scalar_mapping,
scalar_metadata.parse_plugin_metadata,
self._scalar_version_checker,
)
histogram_mapping = self._data_provider.list_tensors(
ctx,
experiment_id=experiment,
plugin_name=histogram_metadata.PLUGIN_NAME,
)
if histogram_mapping is None:
histogram_mapping = {}
histogram_mapping = self._filter_by_version(
histogram_mapping,
histogram_metadata.parse_plugin_metadata,
self._histogram_version_checker,
)
image_mapping = self._data_provider.list_blob_sequences(
ctx,
experiment_id=experiment,
plugin_name=image_metadata.PLUGIN_NAME,
)
if image_mapping is None:
image_mapping = {}
image_mapping = self._filter_by_version(
image_mapping,
image_metadata.parse_plugin_metadata,
self._image_version_checker,
)
result = {}
result["scalars"] = _format_basic_mapping(scalar_mapping)
result["histograms"] = _format_basic_mapping(histogram_mapping)
result["images"] = _format_image_mapping(image_mapping)
return result
def _filter_by_version(self, mapping, parse_metadata, version_checker):
"""Filter `DataProvider.list_*` output by summary metadata version."""
result = {run: {} for run in mapping}
for (run, tag_to_content) in mapping.items():
for (tag, metadatum) in tag_to_content.items():
md = parse_metadata(metadatum.plugin_content)
if not version_checker.ok(md.version, run, tag):
continue
result[run][tag] = metadatum
return result
@wrappers.Request.application
def _serve_time_series(self, request):
ctx = plugin_util.context(request.environ)
experiment = plugin_util.experiment_id(request.environ)
if request.method == "POST":
series_requests_string = request.form.get("requests")
else:
series_requests_string = request.args.get("requests")
if not series_requests_string:
raise errors.InvalidArgumentError("Missing 'requests' field")
try:
series_requests = json.loads(series_requests_string)
except ValueError:
raise errors.InvalidArgumentError(
"Unable to parse 'requests' as JSON"
)
response = self._time_series_impl(ctx, experiment, series_requests)
return http_util.Respond(request, response, "application/json")
def _time_series_impl(self, ctx, experiment, series_requests):
"""Constructs a list of responses from a list of series requests.
Args:
ctx: A `tensorboard.context.RequestContext` value.
experiment: string ID of the request's experiment.
series_requests: a list of `TimeSeriesRequest` dicts (see http_api.md).
Returns:
A list of `TimeSeriesResponse` dicts (see http_api.md).
"""
responses = [
self._get_time_series(ctx, experiment, request)
for request in series_requests
]
return responses
def _create_base_response(self, series_request):
tag = series_request.get("tag")
run = series_request.get("run")
plugin = series_request.get("plugin")
sample = series_request.get("sample")
response = {"plugin": plugin, "tag": tag}
if isinstance(run, str):
response["run"] = run
if isinstance(sample, int):
response["sample"] = sample
return response
def _get_invalid_request_error(self, series_request):
tag = series_request.get("tag")
plugin = series_request.get("plugin")
run = series_request.get("run")
sample = series_request.get("sample")
if not isinstance(tag, str):
return "Missing tag"
if (
plugin != scalar_metadata.PLUGIN_NAME
and plugin != histogram_metadata.PLUGIN_NAME
and plugin != image_metadata.PLUGIN_NAME
):
return "Invalid plugin"
if plugin in _SINGLE_RUN_PLUGINS and not isinstance(run, str):
return "Missing run"
if plugin in _SAMPLED_PLUGINS and not isinstance(sample, int):
return "Missing sample"
return None
def _get_time_series(self, ctx, experiment, series_request):
"""Returns time series data for a given tag, plugin.
Args:
ctx: A `tensorboard.context.RequestContext` value.
experiment: string ID of the request's experiment.
series_request: a `TimeSeriesRequest` (see http_api.md).
Returns:
A `TimeSeriesResponse` dict (see http_api.md).
"""
tag = series_request.get("tag")
run = series_request.get("run")
plugin = series_request.get("plugin")
sample = series_request.get("sample")
response = self._create_base_response(series_request)
request_error = self._get_invalid_request_error(series_request)
if request_error:
response["error"] = request_error
return response
runs = [run] if run else None
run_to_series = None
if plugin == scalar_metadata.PLUGIN_NAME:
run_to_series = self._get_run_to_scalar_series(
ctx, experiment, tag, runs
)
if plugin == histogram_metadata.PLUGIN_NAME:
run_to_series = self._get_run_to_histogram_series(
ctx, experiment, tag, runs
)
if plugin == image_metadata.PLUGIN_NAME:
run_to_series = self._get_run_to_image_series(
ctx, experiment, tag, sample, runs
)
response["runToSeries"] = run_to_series
return response
def _get_run_to_scalar_series(self, ctx, experiment, tag, runs):
"""Builds a run-to-scalar-series dict for client consumption.
Args:
ctx: A `tensorboard.context.RequestContext` value.
experiment: a string experiment id.
tag: string of the requested tag.
runs: optional list of run names as strings.
Returns:
A map from string run names to `ScalarStepDatum` (see http_api.md).
"""
mapping = self._data_provider.read_scalars(
ctx,
experiment_id=experiment,
plugin_name=scalar_metadata.PLUGIN_NAME,
downsample=self._plugin_downsampling["scalars"],
run_tag_filter=provider.RunTagFilter(runs=runs, tags=[tag]),
)
run_to_series = {}
for (result_run, tag_data) in mapping.items():
if tag not in tag_data:
continue
values = [
{
"wallTime": datum.wall_time,
"step": datum.step,
"value": datum.value,
}
for datum in tag_data[tag]
]
run_to_series[result_run] = values
return run_to_series
def _format_histogram_datum_bins(self, datum):
"""Formats a histogram datum's bins for client consumption.
Args:
datum: a DataProvider's TensorDatum.
Returns:
A list of `HistogramBin`s (see http_api.md).
"""
numpy_list = datum.numpy.tolist()
bins = [{"min": x[0], "max": x[1], "count": x[2]} for x in numpy_list]
return bins
def _get_run_to_histogram_series(self, ctx, experiment, tag, runs):
"""Builds a run-to-histogram-series dict for client consumption.
Args:
ctx: A `tensorboard.context.RequestContext` value.
experiment: a string experiment id.
tag: string of the requested tag.
runs: optional list of run names as strings.
Returns:
A map from string run names to `HistogramStepDatum` (see http_api.md).
"""
mapping = self._data_provider.read_tensors(
ctx,
experiment_id=experiment,
plugin_name=histogram_metadata.PLUGIN_NAME,
downsample=self._plugin_downsampling["histograms"],
run_tag_filter=provider.RunTagFilter(runs=runs, tags=[tag]),
)
run_to_series = {}
for (result_run, tag_data) in mapping.items():
if tag not in tag_data:
continue
values = [
{
"wallTime": datum.wall_time,
"step": datum.step,
"bins": self._format_histogram_datum_bins(datum),
}
for datum in tag_data[tag]
]
run_to_series[result_run] = values
return run_to_series
def _get_run_to_image_series(self, ctx, experiment, tag, sample, runs):
"""Builds a run-to-image-series dict for client consumption.
Args:
ctx: A `tensorboard.context.RequestContext` value.
experiment: a string experiment id.
tag: string of the requested tag.
sample: zero-indexed integer for the requested sample.
runs: optional list of run names as strings.
Returns:
A `RunToSeries` dict (see http_api.md).
"""
mapping = self._data_provider.read_blob_sequences(
ctx,
experiment_id=experiment,
plugin_name=image_metadata.PLUGIN_NAME,
downsample=self._plugin_downsampling["images"],
run_tag_filter=provider.RunTagFilter(runs, tags=[tag]),
)
run_to_series = {}
for (result_run, tag_data) in mapping.items():
if tag not in tag_data:
continue
blob_sequence_datum_list = tag_data[tag]
series = _format_image_blob_sequence_datum(
blob_sequence_datum_list, sample
)
if series:
run_to_series[result_run] = series
return run_to_series
@wrappers.Request.application
def _serve_image_data(self, request):
"""Serves an individual image."""
ctx = plugin_util.context(request.environ)
blob_key = request.args["imageId"]
if not blob_key:
raise errors.InvalidArgumentError("Missing 'imageId' field")
(data, content_type) = self._image_data_impl(ctx, blob_key)
return http_util.Respond(request, data, content_type)
def _image_data_impl(self, ctx, blob_key):
"""Gets the image data for a blob key.
Args:
ctx: A `tensorboard.context.RequestContext` value.
blob_key: a string identifier for a DataProvider blob.
Returns:
A tuple containing:
data: a raw bytestring of the requested image's contents.
content_type: a string HTTP content type.
"""
data = self._data_provider.read_blob(ctx, blob_key=blob_key)
image_type = imghdr.what(None, data)
content_type = _IMGHDR_TO_MIMETYPE.get(
image_type, _DEFAULT_IMAGE_MIMETYPE
)
return (data, content_type)