84 lines
2.6 KiB
Python
84 lines
2.6 KiB
Python
from typing import Callable, Dict, Optional, Tuple, TypeVar, Union, cast
|
|
|
|
from ..config import registry
|
|
from ..initializers import uniform_init
|
|
from ..model import Model
|
|
from ..types import Floats1d, Floats2d, Ints1d, Ints2d
|
|
from ..util import get_width, partial
|
|
from .array_getitem import ints_getitem
|
|
from .chain import chain
|
|
|
|
InT = TypeVar("InT", bound=Union[Ints1d, Ints2d])
|
|
OutT = Floats2d
|
|
|
|
|
|
@registry.layers("Embed.v1")
|
|
def Embed(
|
|
nO: Optional[int] = None,
|
|
nV: Optional[int] = None,
|
|
*,
|
|
column: Optional[int] = None,
|
|
initializer: Optional[Callable] = None,
|
|
dropout: Optional[float] = None
|
|
) -> Model[InT, OutT]:
|
|
"""Map integers to vectors, using a fixed-size lookup table."""
|
|
attrs: Dict[str, Union[None, int, float]] = {}
|
|
if initializer is None:
|
|
initializer = uniform_init
|
|
if dropout is not None:
|
|
attrs["dropout_rate"] = dropout
|
|
model: Model = Model(
|
|
"embed",
|
|
forward,
|
|
init=partial(init, initializer),
|
|
attrs=attrs,
|
|
dims={"nO": nO, "nV": nV},
|
|
params={"E": None},
|
|
)
|
|
if column is not None:
|
|
# This is equivalent to array[:, column]. What you're actually doing
|
|
# there is passing in a tuple: array[(:, column)], except in the context
|
|
# of array indexing, the ":" creates an object slice(0, None).
|
|
# So array[:, column] is array.__getitem__(slice(0), column).
|
|
model = chain(ints_getitem((slice(0, None), column)), model)
|
|
model.attrs["column"] = column
|
|
return cast(Model[InT, OutT], model)
|
|
|
|
|
|
def forward(
|
|
model: Model[Ints1d, OutT], ids: Ints1d, is_train: bool
|
|
) -> Tuple[OutT, Callable]:
|
|
vectors = cast(Floats2d, model.get_param("E"))
|
|
nO = vectors.shape[1]
|
|
nN = ids.shape[0]
|
|
dropout: Optional[float] = model.attrs.get("dropout_rate")
|
|
output = vectors[ids]
|
|
drop_mask = None
|
|
if is_train:
|
|
drop_mask = cast(Floats1d, model.ops.get_dropout_mask((nO,), dropout))
|
|
if drop_mask is not None:
|
|
output *= drop_mask
|
|
|
|
def backprop(d_output: OutT) -> Ints1d:
|
|
if drop_mask is not None:
|
|
d_output *= drop_mask
|
|
d_vectors = model.ops.alloc2f(*vectors.shape)
|
|
model.ops.scatter_add(d_vectors, ids, d_output)
|
|
model.inc_grad("E", d_vectors)
|
|
dX = model.ops.alloc1i(nN)
|
|
return dX
|
|
|
|
return output, backprop
|
|
|
|
|
|
def init(
|
|
initializer: Callable,
|
|
model: Model[Ints1d, OutT],
|
|
X: Optional[Ints1d] = None,
|
|
Y: Optional[OutT] = None,
|
|
) -> None:
|
|
if Y is not None:
|
|
model.set_dim("nO", get_width(Y))
|
|
shape = (model.get_dim("nV"), model.get_dim("nO"))
|
|
model.set_param("E", initializer(model.ops, shape))
|