ai-content-maker/.venv/Lib/site-packages/thinc/layers/mish.py

77 lines
2.2 KiB
Python

from typing import Callable, Optional, Tuple, cast
from ..config import registry
from ..initializers import glorot_uniform_init, zero_init
from ..model import Model
from ..types import Floats1d, Floats2d
from ..util import get_width, partial
from .chain import chain
from .dropout import Dropout
from .layernorm import LayerNorm
InT = Floats2d
OutT = Floats2d
@registry.layers("Mish.v1")
def Mish(
nO: Optional[int] = None,
nI: Optional[int] = None,
*,
init_W: Optional[Callable] = None,
init_b: Optional[Callable] = None,
dropout: Optional[float] = None,
normalize: bool = False,
) -> Model[InT, OutT]:
"""Dense layer with mish activation.
https://arxiv.org/pdf/1908.08681.pdf
"""
if init_W is None:
init_W = glorot_uniform_init
if init_b is None:
init_b = zero_init
model: Model[InT, OutT] = Model(
"mish",
forward,
init=partial(init, init_W, init_b),
dims={"nO": nO, "nI": nI},
params={"W": None, "b": None},
)
if normalize:
model = chain(model, cast(Model[InT, OutT], LayerNorm(nI=nO)))
if dropout is not None:
model = chain(model, cast(Model[InT, OutT], Dropout(dropout)))
return model
def forward(model: Model[InT, OutT], X: InT, is_train: bool) -> Tuple[OutT, Callable]:
W = cast(Floats2d, model.get_param("W"))
b = cast(Floats1d, model.get_param("b"))
Y_pre_mish = model.ops.gemm(X, W, trans2=True)
Y_pre_mish += b
Y = model.ops.mish(Y_pre_mish)
def backprop(dY: OutT) -> InT:
dY_pre_mish = model.ops.backprop_mish(dY, Y_pre_mish)
model.inc_grad("W", model.ops.gemm(dY_pre_mish, X, trans1=True))
model.inc_grad("b", dY_pre_mish.sum(axis=0))
dX = model.ops.gemm(dY_pre_mish, W)
return dX
return Y, backprop
def init(
init_W: Callable,
init_b: Callable,
model: Model[InT, OutT],
X: Optional[InT] = None,
Y: Optional[OutT] = None,
) -> None:
if X is not None:
model.set_dim("nI", get_width(X))
if Y is not None:
model.set_dim("nO", get_width(Y))
model.set_param("W", init_W(model.ops, (model.get_dim("nO"), model.get_dim("nI"))))
model.set_param("b", init_b(model.ops, (model.get_dim("nO"),)))