ai-content-maker/.venv/Lib/site-packages/thinc/layers/softmax.py

116 lines
3.2 KiB
Python

from typing import Callable, Optional, Tuple, cast
from ..config import registry
from ..initializers import zero_init
from ..model import Model
from ..types import Floats1d, Floats2d
from ..util import ArrayInfo, get_width, partial
InT = Floats2d
OutT = Floats2d
@registry.layers("Softmax.v1")
def Softmax(
nO: Optional[int] = None,
nI: Optional[int] = None,
*,
init_W: Optional[Callable] = None,
init_b: Optional[Callable] = None,
) -> Model[InT, OutT]:
if init_W is None:
init_W = zero_init
if init_b is None:
init_b = zero_init
return Model(
"softmax",
forward,
init=partial(init, init_W, init_b),
dims={"nO": nO, "nI": nI},
params={"W": None, "b": None},
attrs={"softmax_normalize": True, "softmax_temperature": 1.0},
)
@registry.layers("Softmax.v2")
def Softmax_v2(
nO: Optional[int] = None,
nI: Optional[int] = None,
*,
init_W: Optional[Callable] = None,
init_b: Optional[Callable] = None,
normalize_outputs: bool = True,
temperature: float = 1.0,
) -> Model[InT, OutT]:
if init_W is None:
init_W = zero_init
if init_b is None:
init_b = zero_init
validate_temperature(temperature)
return Model(
"softmax",
forward,
init=partial(init, init_W, init_b),
dims={"nO": nO, "nI": nI},
params={"W": None, "b": None},
attrs={
"softmax_normalize": normalize_outputs,
"softmax_temperature": temperature,
},
)
def forward(model: Model[InT, OutT], X: InT, is_train: bool) -> Tuple[OutT, Callable]:
normalize = model.attrs["softmax_normalize"] or is_train
temperature = model.attrs["softmax_temperature"]
validate_temperature(temperature)
W = cast(Floats2d, model.get_param("W"))
b = cast(Floats1d, model.get_param("b"))
Y = model.ops.affine(X, W, b)
if normalize:
Y = model.ops.softmax(Y, temperature=temperature)
array_info = ArrayInfo.from_array(Y)
def backprop(dY: InT) -> OutT:
array_info.check_consistency(dY)
if temperature != 1.0:
dY = dY / temperature
model.inc_grad("b", dY.sum(axis=0))
model.inc_grad("W", model.ops.gemm(dY, X, trans1=True))
return model.ops.gemm(dY, W)
def backprop_unnormalized(dY: InT):
msg = "backprop is not supported for an unnormalized Softmax layer"
raise ValueError(msg)
if normalize:
return Y, backprop
else:
return Y, backprop_unnormalized
def init(
init_W: Callable,
init_b: Callable,
model: Model[InT, OutT],
X: Optional[InT] = None,
Y: Optional[OutT] = None,
) -> None:
if X is not None and model.has_dim("nI") is None:
model.set_dim("nI", get_width(X))
if Y is not None and model.has_dim("nO") is None:
model.set_dim("nO", get_width(Y))
model.set_param("W", init_W(model.ops, (model.get_dim("nO"), model.get_dim("nI"))))
model.set_param("b", init_b(model.ops, (model.get_dim("nO"),)))
def validate_temperature(temperature):
if temperature <= 0.0:
msg = "softmax temperature must not be zero or negative"
raise ValueError(msg)