116 lines
3.2 KiB
Python
116 lines
3.2 KiB
Python
from typing import Callable, Optional, Tuple, cast
|
|
|
|
from ..config import registry
|
|
from ..initializers import zero_init
|
|
from ..model import Model
|
|
from ..types import Floats1d, Floats2d
|
|
from ..util import ArrayInfo, get_width, partial
|
|
|
|
InT = Floats2d
|
|
OutT = Floats2d
|
|
|
|
|
|
@registry.layers("Softmax.v1")
|
|
def Softmax(
|
|
nO: Optional[int] = None,
|
|
nI: Optional[int] = None,
|
|
*,
|
|
init_W: Optional[Callable] = None,
|
|
init_b: Optional[Callable] = None,
|
|
) -> Model[InT, OutT]:
|
|
if init_W is None:
|
|
init_W = zero_init
|
|
if init_b is None:
|
|
init_b = zero_init
|
|
return Model(
|
|
"softmax",
|
|
forward,
|
|
init=partial(init, init_W, init_b),
|
|
dims={"nO": nO, "nI": nI},
|
|
params={"W": None, "b": None},
|
|
attrs={"softmax_normalize": True, "softmax_temperature": 1.0},
|
|
)
|
|
|
|
|
|
@registry.layers("Softmax.v2")
|
|
def Softmax_v2(
|
|
nO: Optional[int] = None,
|
|
nI: Optional[int] = None,
|
|
*,
|
|
init_W: Optional[Callable] = None,
|
|
init_b: Optional[Callable] = None,
|
|
normalize_outputs: bool = True,
|
|
temperature: float = 1.0,
|
|
) -> Model[InT, OutT]:
|
|
if init_W is None:
|
|
init_W = zero_init
|
|
if init_b is None:
|
|
init_b = zero_init
|
|
validate_temperature(temperature)
|
|
return Model(
|
|
"softmax",
|
|
forward,
|
|
init=partial(init, init_W, init_b),
|
|
dims={"nO": nO, "nI": nI},
|
|
params={"W": None, "b": None},
|
|
attrs={
|
|
"softmax_normalize": normalize_outputs,
|
|
"softmax_temperature": temperature,
|
|
},
|
|
)
|
|
|
|
|
|
def forward(model: Model[InT, OutT], X: InT, is_train: bool) -> Tuple[OutT, Callable]:
|
|
normalize = model.attrs["softmax_normalize"] or is_train
|
|
|
|
temperature = model.attrs["softmax_temperature"]
|
|
validate_temperature(temperature)
|
|
|
|
W = cast(Floats2d, model.get_param("W"))
|
|
b = cast(Floats1d, model.get_param("b"))
|
|
Y = model.ops.affine(X, W, b)
|
|
|
|
if normalize:
|
|
Y = model.ops.softmax(Y, temperature=temperature)
|
|
|
|
array_info = ArrayInfo.from_array(Y)
|
|
|
|
def backprop(dY: InT) -> OutT:
|
|
array_info.check_consistency(dY)
|
|
if temperature != 1.0:
|
|
dY = dY / temperature
|
|
|
|
model.inc_grad("b", dY.sum(axis=0))
|
|
model.inc_grad("W", model.ops.gemm(dY, X, trans1=True))
|
|
return model.ops.gemm(dY, W)
|
|
|
|
def backprop_unnormalized(dY: InT):
|
|
msg = "backprop is not supported for an unnormalized Softmax layer"
|
|
raise ValueError(msg)
|
|
|
|
if normalize:
|
|
return Y, backprop
|
|
else:
|
|
return Y, backprop_unnormalized
|
|
|
|
|
|
def init(
|
|
init_W: Callable,
|
|
init_b: Callable,
|
|
model: Model[InT, OutT],
|
|
X: Optional[InT] = None,
|
|
Y: Optional[OutT] = None,
|
|
) -> None:
|
|
if X is not None and model.has_dim("nI") is None:
|
|
model.set_dim("nI", get_width(X))
|
|
if Y is not None and model.has_dim("nO") is None:
|
|
model.set_dim("nO", get_width(Y))
|
|
model.set_param("W", init_W(model.ops, (model.get_dim("nO"), model.get_dim("nI"))))
|
|
model.set_param("b", init_b(model.ops, (model.get_dim("nO"),)))
|
|
|
|
|
|
def validate_temperature(temperature):
|
|
if temperature <= 0.0:
|
|
msg = "softmax temperature must not be zero or negative"
|
|
raise ValueError(msg)
|