6977 lines
139 KiB
Python
6977 lines
139 KiB
Python
"""Adds docstrings to Tensor functions"""
|
|
|
|
import torch._C
|
|
from torch._C import _add_docstr as add_docstr
|
|
from torch._torch_docs import parse_kwargs, reproducibility_notes
|
|
|
|
|
|
def add_docstr_all(method, docstr):
|
|
add_docstr(getattr(torch._C.TensorBase, method), docstr)
|
|
|
|
|
|
common_args = parse_kwargs(
|
|
"""
|
|
memory_format (:class:`torch.memory_format`, optional): the desired memory format of
|
|
returned Tensor. Default: ``torch.preserve_format``.
|
|
"""
|
|
)
|
|
|
|
new_common_args = parse_kwargs(
|
|
"""
|
|
size (int...): a list, tuple, or :class:`torch.Size` of integers defining the
|
|
shape of the output tensor.
|
|
dtype (:class:`torch.dtype`, optional): the desired type of returned tensor.
|
|
Default: if None, same :class:`torch.dtype` as this tensor.
|
|
device (:class:`torch.device`, optional): the desired device of returned tensor.
|
|
Default: if None, same :class:`torch.device` as this tensor.
|
|
requires_grad (bool, optional): If autograd should record operations on the
|
|
returned tensor. Default: ``False``.
|
|
pin_memory (bool, optional): If set, returned tensor would be allocated in
|
|
the pinned memory. Works only for CPU tensors. Default: ``False``.
|
|
layout (:class:`torch.layout`, optional): the desired layout of returned Tensor.
|
|
Default: ``torch.strided``.
|
|
"""
|
|
)
|
|
|
|
add_docstr_all(
|
|
"new_tensor",
|
|
"""
|
|
new_tensor(data, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, \
|
|
pin_memory=False) -> Tensor
|
|
"""
|
|
+ r"""
|
|
|
|
Returns a new Tensor with :attr:`data` as the tensor data.
|
|
By default, the returned Tensor has the same :class:`torch.dtype` and
|
|
:class:`torch.device` as this tensor.
|
|
|
|
.. warning::
|
|
|
|
:func:`new_tensor` always copies :attr:`data`. If you have a Tensor
|
|
``data`` and want to avoid a copy, use :func:`torch.Tensor.requires_grad_`
|
|
or :func:`torch.Tensor.detach`.
|
|
If you have a numpy array and want to avoid a copy, use
|
|
:func:`torch.from_numpy`.
|
|
|
|
.. warning::
|
|
|
|
When data is a tensor `x`, :func:`new_tensor()` reads out 'the data' from whatever it is passed,
|
|
and constructs a leaf variable. Therefore ``tensor.new_tensor(x)`` is equivalent to ``x.clone().detach()``
|
|
and ``tensor.new_tensor(x, requires_grad=True)`` is equivalent to ``x.clone().detach().requires_grad_(True)``.
|
|
The equivalents using ``clone()`` and ``detach()`` are recommended.
|
|
|
|
Args:
|
|
data (array_like): The returned Tensor copies :attr:`data`.
|
|
|
|
Keyword args:
|
|
{dtype}
|
|
{device}
|
|
{requires_grad}
|
|
{layout}
|
|
{pin_memory}
|
|
|
|
Example::
|
|
|
|
>>> tensor = torch.ones((2,), dtype=torch.int8)
|
|
>>> data = [[0, 1], [2, 3]]
|
|
>>> tensor.new_tensor(data)
|
|
tensor([[ 0, 1],
|
|
[ 2, 3]], dtype=torch.int8)
|
|
|
|
""".format(
|
|
**new_common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"new_full",
|
|
"""
|
|
new_full(size, fill_value, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, \
|
|
pin_memory=False) -> Tensor
|
|
"""
|
|
+ r"""
|
|
|
|
Returns a Tensor of size :attr:`size` filled with :attr:`fill_value`.
|
|
By default, the returned Tensor has the same :class:`torch.dtype` and
|
|
:class:`torch.device` as this tensor.
|
|
|
|
Args:
|
|
fill_value (scalar): the number to fill the output tensor with.
|
|
|
|
Keyword args:
|
|
{dtype}
|
|
{device}
|
|
{requires_grad}
|
|
{layout}
|
|
{pin_memory}
|
|
|
|
Example::
|
|
|
|
>>> tensor = torch.ones((2,), dtype=torch.float64)
|
|
>>> tensor.new_full((3, 4), 3.141592)
|
|
tensor([[ 3.1416, 3.1416, 3.1416, 3.1416],
|
|
[ 3.1416, 3.1416, 3.1416, 3.1416],
|
|
[ 3.1416, 3.1416, 3.1416, 3.1416]], dtype=torch.float64)
|
|
|
|
""".format(
|
|
**new_common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"new_empty",
|
|
"""
|
|
new_empty(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, \
|
|
pin_memory=False) -> Tensor
|
|
"""
|
|
+ r"""
|
|
|
|
Returns a Tensor of size :attr:`size` filled with uninitialized data.
|
|
By default, the returned Tensor has the same :class:`torch.dtype` and
|
|
:class:`torch.device` as this tensor.
|
|
|
|
Args:
|
|
size (int...): a list, tuple, or :class:`torch.Size` of integers defining the
|
|
shape of the output tensor.
|
|
|
|
Keyword args:
|
|
{dtype}
|
|
{device}
|
|
{requires_grad}
|
|
{layout}
|
|
{pin_memory}
|
|
|
|
Example::
|
|
|
|
>>> tensor = torch.ones(())
|
|
>>> tensor.new_empty((2, 3))
|
|
tensor([[ 5.8182e-18, 4.5765e-41, -1.0545e+30],
|
|
[ 3.0949e-41, 4.4842e-44, 0.0000e+00]])
|
|
|
|
""".format(
|
|
**new_common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"new_empty_strided",
|
|
"""
|
|
new_empty_strided(size, stride, dtype=None, device=None, requires_grad=False, layout=torch.strided, \
|
|
pin_memory=False) -> Tensor
|
|
"""
|
|
+ r"""
|
|
|
|
Returns a Tensor of size :attr:`size` and strides :attr:`stride` filled with
|
|
uninitialized data. By default, the returned Tensor has the same
|
|
:class:`torch.dtype` and :class:`torch.device` as this tensor.
|
|
|
|
Args:
|
|
size (int...): a list, tuple, or :class:`torch.Size` of integers defining the
|
|
shape of the output tensor.
|
|
|
|
Keyword args:
|
|
{dtype}
|
|
{device}
|
|
{requires_grad}
|
|
{layout}
|
|
{pin_memory}
|
|
|
|
Example::
|
|
|
|
>>> tensor = torch.ones(())
|
|
>>> tensor.new_empty_strided((2, 3), (3, 1))
|
|
tensor([[ 5.8182e-18, 4.5765e-41, -1.0545e+30],
|
|
[ 3.0949e-41, 4.4842e-44, 0.0000e+00]])
|
|
|
|
""".format(
|
|
**new_common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"new_ones",
|
|
"""
|
|
new_ones(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, \
|
|
pin_memory=False) -> Tensor
|
|
"""
|
|
+ r"""
|
|
|
|
Returns a Tensor of size :attr:`size` filled with ``1``.
|
|
By default, the returned Tensor has the same :class:`torch.dtype` and
|
|
:class:`torch.device` as this tensor.
|
|
|
|
Args:
|
|
size (int...): a list, tuple, or :class:`torch.Size` of integers defining the
|
|
shape of the output tensor.
|
|
|
|
Keyword args:
|
|
{dtype}
|
|
{device}
|
|
{requires_grad}
|
|
{layout}
|
|
{pin_memory}
|
|
|
|
Example::
|
|
|
|
>>> tensor = torch.tensor((), dtype=torch.int32)
|
|
>>> tensor.new_ones((2, 3))
|
|
tensor([[ 1, 1, 1],
|
|
[ 1, 1, 1]], dtype=torch.int32)
|
|
|
|
""".format(
|
|
**new_common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"new_zeros",
|
|
"""
|
|
new_zeros(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, \
|
|
pin_memory=False) -> Tensor
|
|
"""
|
|
+ r"""
|
|
|
|
Returns a Tensor of size :attr:`size` filled with ``0``.
|
|
By default, the returned Tensor has the same :class:`torch.dtype` and
|
|
:class:`torch.device` as this tensor.
|
|
|
|
Args:
|
|
size (int...): a list, tuple, or :class:`torch.Size` of integers defining the
|
|
shape of the output tensor.
|
|
|
|
Keyword args:
|
|
{dtype}
|
|
{device}
|
|
{requires_grad}
|
|
{layout}
|
|
{pin_memory}
|
|
|
|
Example::
|
|
|
|
>>> tensor = torch.tensor((), dtype=torch.float64)
|
|
>>> tensor.new_zeros((2, 3))
|
|
tensor([[ 0., 0., 0.],
|
|
[ 0., 0., 0.]], dtype=torch.float64)
|
|
|
|
""".format(
|
|
**new_common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"abs",
|
|
r"""
|
|
abs() -> Tensor
|
|
|
|
See :func:`torch.abs`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"abs_",
|
|
r"""
|
|
abs_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.abs`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"absolute",
|
|
r"""
|
|
absolute() -> Tensor
|
|
|
|
Alias for :func:`abs`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"absolute_",
|
|
r"""
|
|
absolute_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.absolute`
|
|
Alias for :func:`abs_`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"acos",
|
|
r"""
|
|
acos() -> Tensor
|
|
|
|
See :func:`torch.acos`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"acos_",
|
|
r"""
|
|
acos_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.acos`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"arccos",
|
|
r"""
|
|
arccos() -> Tensor
|
|
|
|
See :func:`torch.arccos`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"arccos_",
|
|
r"""
|
|
arccos_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.arccos`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"acosh",
|
|
r"""
|
|
acosh() -> Tensor
|
|
|
|
See :func:`torch.acosh`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"acosh_",
|
|
r"""
|
|
acosh_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.acosh`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"arccosh",
|
|
r"""
|
|
acosh() -> Tensor
|
|
|
|
See :func:`torch.arccosh`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"arccosh_",
|
|
r"""
|
|
acosh_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.arccosh`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"add",
|
|
r"""
|
|
add(other, *, alpha=1) -> Tensor
|
|
|
|
Add a scalar or tensor to :attr:`self` tensor. If both :attr:`alpha`
|
|
and :attr:`other` are specified, each element of :attr:`other` is scaled by
|
|
:attr:`alpha` before being used.
|
|
|
|
When :attr:`other` is a tensor, the shape of :attr:`other` must be
|
|
:ref:`broadcastable <broadcasting-semantics>` with the shape of the underlying
|
|
tensor
|
|
|
|
See :func:`torch.add`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"add_",
|
|
r"""
|
|
add_(other, *, alpha=1) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.add`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"addbmm",
|
|
r"""
|
|
addbmm(batch1, batch2, *, beta=1, alpha=1) -> Tensor
|
|
|
|
See :func:`torch.addbmm`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"addbmm_",
|
|
r"""
|
|
addbmm_(batch1, batch2, *, beta=1, alpha=1) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.addbmm`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"addcdiv",
|
|
r"""
|
|
addcdiv(tensor1, tensor2, *, value=1) -> Tensor
|
|
|
|
See :func:`torch.addcdiv`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"addcdiv_",
|
|
r"""
|
|
addcdiv_(tensor1, tensor2, *, value=1) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.addcdiv`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"addcmul",
|
|
r"""
|
|
addcmul(tensor1, tensor2, *, value=1) -> Tensor
|
|
|
|
See :func:`torch.addcmul`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"addcmul_",
|
|
r"""
|
|
addcmul_(tensor1, tensor2, *, value=1) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.addcmul`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"addmm",
|
|
r"""
|
|
addmm(mat1, mat2, *, beta=1, alpha=1) -> Tensor
|
|
|
|
See :func:`torch.addmm`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"addmm_",
|
|
r"""
|
|
addmm_(mat1, mat2, *, beta=1, alpha=1) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.addmm`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"addmv",
|
|
r"""
|
|
addmv(mat, vec, *, beta=1, alpha=1) -> Tensor
|
|
|
|
See :func:`torch.addmv`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"addmv_",
|
|
r"""
|
|
addmv_(mat, vec, *, beta=1, alpha=1) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.addmv`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sspaddmm",
|
|
r"""
|
|
sspaddmm(mat1, mat2, *, beta=1, alpha=1) -> Tensor
|
|
|
|
See :func:`torch.sspaddmm`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"smm",
|
|
r"""
|
|
smm(mat) -> Tensor
|
|
|
|
See :func:`torch.smm`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"addr",
|
|
r"""
|
|
addr(vec1, vec2, *, beta=1, alpha=1) -> Tensor
|
|
|
|
See :func:`torch.addr`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"addr_",
|
|
r"""
|
|
addr_(vec1, vec2, *, beta=1, alpha=1) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.addr`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"align_as",
|
|
r"""
|
|
align_as(other) -> Tensor
|
|
|
|
Permutes the dimensions of the :attr:`self` tensor to match the dimension order
|
|
in the :attr:`other` tensor, adding size-one dims for any new names.
|
|
|
|
This operation is useful for explicit broadcasting by names (see examples).
|
|
|
|
All of the dims of :attr:`self` must be named in order to use this method.
|
|
The resulting tensor is a view on the original tensor.
|
|
|
|
All dimension names of :attr:`self` must be present in ``other.names``.
|
|
:attr:`other` may contain named dimensions that are not in ``self.names``;
|
|
the output tensor has a size-one dimension for each of those new names.
|
|
|
|
To align a tensor to a specific order, use :meth:`~Tensor.align_to`.
|
|
|
|
Examples::
|
|
|
|
# Example 1: Applying a mask
|
|
>>> mask = torch.randint(2, [127, 128], dtype=torch.bool).refine_names('W', 'H')
|
|
>>> imgs = torch.randn(32, 128, 127, 3, names=('N', 'H', 'W', 'C'))
|
|
>>> imgs.masked_fill_(mask.align_as(imgs), 0)
|
|
|
|
|
|
# Example 2: Applying a per-channel-scale
|
|
>>> def scale_channels(input, scale):
|
|
>>> scale = scale.refine_names('C')
|
|
>>> return input * scale.align_as(input)
|
|
|
|
>>> num_channels = 3
|
|
>>> scale = torch.randn(num_channels, names=('C',))
|
|
>>> imgs = torch.rand(32, 128, 128, num_channels, names=('N', 'H', 'W', 'C'))
|
|
>>> more_imgs = torch.rand(32, num_channels, 128, 128, names=('N', 'C', 'H', 'W'))
|
|
>>> videos = torch.randn(3, num_channels, 128, 128, 128, names=('N', 'C', 'H', 'W', 'D'))
|
|
|
|
# scale_channels is agnostic to the dimension order of the input
|
|
>>> scale_channels(imgs, scale)
|
|
>>> scale_channels(more_imgs, scale)
|
|
>>> scale_channels(videos, scale)
|
|
|
|
.. warning::
|
|
The named tensor API is experimental and subject to change.
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"all",
|
|
r"""
|
|
all(dim=None, keepdim=False) -> Tensor
|
|
|
|
See :func:`torch.all`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"allclose",
|
|
r"""
|
|
allclose(other, rtol=1e-05, atol=1e-08, equal_nan=False) -> Tensor
|
|
|
|
See :func:`torch.allclose`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"angle",
|
|
r"""
|
|
angle() -> Tensor
|
|
|
|
See :func:`torch.angle`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"any",
|
|
r"""
|
|
any(dim=None, keepdim=False) -> Tensor
|
|
|
|
See :func:`torch.any`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"apply_",
|
|
r"""
|
|
apply_(callable) -> Tensor
|
|
|
|
Applies the function :attr:`callable` to each element in the tensor, replacing
|
|
each element with the value returned by :attr:`callable`.
|
|
|
|
.. note::
|
|
|
|
This function only works with CPU tensors and should not be used in code
|
|
sections that require high performance.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"asin",
|
|
r"""
|
|
asin() -> Tensor
|
|
|
|
See :func:`torch.asin`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"asin_",
|
|
r"""
|
|
asin_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.asin`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"arcsin",
|
|
r"""
|
|
arcsin() -> Tensor
|
|
|
|
See :func:`torch.arcsin`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"arcsin_",
|
|
r"""
|
|
arcsin_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.arcsin`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"asinh",
|
|
r"""
|
|
asinh() -> Tensor
|
|
|
|
See :func:`torch.asinh`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"asinh_",
|
|
r"""
|
|
asinh_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.asinh`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"arcsinh",
|
|
r"""
|
|
arcsinh() -> Tensor
|
|
|
|
See :func:`torch.arcsinh`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"arcsinh_",
|
|
r"""
|
|
arcsinh_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.arcsinh`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"as_strided",
|
|
r"""
|
|
as_strided(size, stride, storage_offset=None) -> Tensor
|
|
|
|
See :func:`torch.as_strided`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"as_strided_",
|
|
r"""
|
|
as_strided_(size, stride, storage_offset=None) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.as_strided`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"atan",
|
|
r"""
|
|
atan() -> Tensor
|
|
|
|
See :func:`torch.atan`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"atan_",
|
|
r"""
|
|
atan_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.atan`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"arctan",
|
|
r"""
|
|
arctan() -> Tensor
|
|
|
|
See :func:`torch.arctan`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"arctan_",
|
|
r"""
|
|
arctan_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.arctan`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"atan2",
|
|
r"""
|
|
atan2(other) -> Tensor
|
|
|
|
See :func:`torch.atan2`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"atan2_",
|
|
r"""
|
|
atan2_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.atan2`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"arctan2",
|
|
r"""
|
|
arctan2(other) -> Tensor
|
|
|
|
See :func:`torch.arctan2`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"arctan2_",
|
|
r"""
|
|
atan2_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.arctan2`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"atanh",
|
|
r"""
|
|
atanh() -> Tensor
|
|
|
|
See :func:`torch.atanh`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"atanh_",
|
|
r"""
|
|
atanh_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.atanh`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"arctanh",
|
|
r"""
|
|
arctanh() -> Tensor
|
|
|
|
See :func:`torch.arctanh`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"arctanh_",
|
|
r"""
|
|
arctanh_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.arctanh`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"baddbmm",
|
|
r"""
|
|
baddbmm(batch1, batch2, *, beta=1, alpha=1) -> Tensor
|
|
|
|
See :func:`torch.baddbmm`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"baddbmm_",
|
|
r"""
|
|
baddbmm_(batch1, batch2, *, beta=1, alpha=1) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.baddbmm`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"bernoulli",
|
|
r"""
|
|
bernoulli(*, generator=None) -> Tensor
|
|
|
|
Returns a result tensor where each :math:`\texttt{result[i]}` is independently
|
|
sampled from :math:`\text{Bernoulli}(\texttt{self[i]})`. :attr:`self` must have
|
|
floating point ``dtype``, and the result will have the same ``dtype``.
|
|
|
|
See :func:`torch.bernoulli`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"bernoulli_",
|
|
r"""
|
|
bernoulli_(p=0.5, *, generator=None) -> Tensor
|
|
|
|
Fills each location of :attr:`self` with an independent sample from
|
|
:math:`\text{Bernoulli}(\texttt{p})`. :attr:`self` can have integral
|
|
``dtype``.
|
|
|
|
:attr:`p` should either be a scalar or tensor containing probabilities to be
|
|
used for drawing the binary random number.
|
|
|
|
If it is a tensor, the :math:`\text{i}^{th}` element of :attr:`self` tensor
|
|
will be set to a value sampled from
|
|
:math:`\text{Bernoulli}(\texttt{p\_tensor[i]})`. In this case `p` must have
|
|
floating point ``dtype``.
|
|
|
|
See also :meth:`~Tensor.bernoulli` and :func:`torch.bernoulli`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"bincount",
|
|
r"""
|
|
bincount(weights=None, minlength=0) -> Tensor
|
|
|
|
See :func:`torch.bincount`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"bitwise_not",
|
|
r"""
|
|
bitwise_not() -> Tensor
|
|
|
|
See :func:`torch.bitwise_not`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"bitwise_not_",
|
|
r"""
|
|
bitwise_not_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.bitwise_not`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"bitwise_and",
|
|
r"""
|
|
bitwise_and() -> Tensor
|
|
|
|
See :func:`torch.bitwise_and`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"bitwise_and_",
|
|
r"""
|
|
bitwise_and_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.bitwise_and`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"bitwise_or",
|
|
r"""
|
|
bitwise_or() -> Tensor
|
|
|
|
See :func:`torch.bitwise_or`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"bitwise_or_",
|
|
r"""
|
|
bitwise_or_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.bitwise_or`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"bitwise_xor",
|
|
r"""
|
|
bitwise_xor() -> Tensor
|
|
|
|
See :func:`torch.bitwise_xor`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"bitwise_xor_",
|
|
r"""
|
|
bitwise_xor_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.bitwise_xor`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"bitwise_left_shift",
|
|
r"""
|
|
bitwise_left_shift(other) -> Tensor
|
|
|
|
See :func:`torch.bitwise_left_shift`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"bitwise_left_shift_",
|
|
r"""
|
|
bitwise_left_shift_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.bitwise_left_shift`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"bitwise_right_shift",
|
|
r"""
|
|
bitwise_right_shift(other) -> Tensor
|
|
|
|
See :func:`torch.bitwise_right_shift`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"bitwise_right_shift_",
|
|
r"""
|
|
bitwise_right_shift_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.bitwise_right_shift`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"broadcast_to",
|
|
r"""
|
|
broadcast_to(shape) -> Tensor
|
|
|
|
See :func:`torch.broadcast_to`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"logical_and",
|
|
r"""
|
|
logical_and() -> Tensor
|
|
|
|
See :func:`torch.logical_and`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"logical_and_",
|
|
r"""
|
|
logical_and_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.logical_and`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"logical_not",
|
|
r"""
|
|
logical_not() -> Tensor
|
|
|
|
See :func:`torch.logical_not`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"logical_not_",
|
|
r"""
|
|
logical_not_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.logical_not`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"logical_or",
|
|
r"""
|
|
logical_or() -> Tensor
|
|
|
|
See :func:`torch.logical_or`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"logical_or_",
|
|
r"""
|
|
logical_or_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.logical_or`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"logical_xor",
|
|
r"""
|
|
logical_xor() -> Tensor
|
|
|
|
See :func:`torch.logical_xor`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"logical_xor_",
|
|
r"""
|
|
logical_xor_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.logical_xor`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"bmm",
|
|
r"""
|
|
bmm(batch2) -> Tensor
|
|
|
|
See :func:`torch.bmm`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"cauchy_",
|
|
r"""
|
|
cauchy_(median=0, sigma=1, *, generator=None) -> Tensor
|
|
|
|
Fills the tensor with numbers drawn from the Cauchy distribution:
|
|
|
|
.. math::
|
|
|
|
f(x) = \dfrac{1}{\pi} \dfrac{\sigma}{(x - \text{median})^2 + \sigma^2}
|
|
|
|
.. note::
|
|
Sigma (:math:`\sigma`) is used to denote the scale parameter in Cauchy distribution.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"ceil",
|
|
r"""
|
|
ceil() -> Tensor
|
|
|
|
See :func:`torch.ceil`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"ceil_",
|
|
r"""
|
|
ceil_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.ceil`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"cholesky",
|
|
r"""
|
|
cholesky(upper=False) -> Tensor
|
|
|
|
See :func:`torch.cholesky`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"cholesky_solve",
|
|
r"""
|
|
cholesky_solve(input2, upper=False) -> Tensor
|
|
|
|
See :func:`torch.cholesky_solve`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"cholesky_inverse",
|
|
r"""
|
|
cholesky_inverse(upper=False) -> Tensor
|
|
|
|
See :func:`torch.cholesky_inverse`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"clamp",
|
|
r"""
|
|
clamp(min=None, max=None) -> Tensor
|
|
|
|
See :func:`torch.clamp`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"clamp_",
|
|
r"""
|
|
clamp_(min=None, max=None) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.clamp`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"clip",
|
|
r"""
|
|
clip(min=None, max=None) -> Tensor
|
|
|
|
Alias for :meth:`~Tensor.clamp`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"clip_",
|
|
r"""
|
|
clip_(min=None, max=None) -> Tensor
|
|
|
|
Alias for :meth:`~Tensor.clamp_`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"clone",
|
|
r"""
|
|
clone(*, memory_format=torch.preserve_format) -> Tensor
|
|
|
|
See :func:`torch.clone`
|
|
""".format(
|
|
**common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"coalesce",
|
|
r"""
|
|
coalesce() -> Tensor
|
|
|
|
Returns a coalesced copy of :attr:`self` if :attr:`self` is an
|
|
:ref:`uncoalesced tensor <sparse-uncoalesced-coo-docs>`.
|
|
|
|
Returns :attr:`self` if :attr:`self` is a coalesced tensor.
|
|
|
|
.. warning::
|
|
Throws an error if :attr:`self` is not a sparse COO tensor.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"contiguous",
|
|
r"""
|
|
contiguous(memory_format=torch.contiguous_format) -> Tensor
|
|
|
|
Returns a contiguous in memory tensor containing the same data as :attr:`self` tensor. If
|
|
:attr:`self` tensor is already in the specified memory format, this function returns the
|
|
:attr:`self` tensor.
|
|
|
|
Args:
|
|
memory_format (:class:`torch.memory_format`, optional): the desired memory format of
|
|
returned Tensor. Default: ``torch.contiguous_format``.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"copy_",
|
|
r"""
|
|
copy_(src, non_blocking=False) -> Tensor
|
|
|
|
Copies the elements from :attr:`src` into :attr:`self` tensor and returns
|
|
:attr:`self`.
|
|
|
|
The :attr:`src` tensor must be :ref:`broadcastable <broadcasting-semantics>`
|
|
with the :attr:`self` tensor. It may be of a different data type or reside on a
|
|
different device.
|
|
|
|
Args:
|
|
src (Tensor): the source tensor to copy from
|
|
non_blocking (bool): if ``True`` and this copy is between CPU and GPU,
|
|
the copy may occur asynchronously with respect to the host. For other
|
|
cases, this argument has no effect.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"conj",
|
|
r"""
|
|
conj() -> Tensor
|
|
|
|
See :func:`torch.conj`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"conj_physical",
|
|
r"""
|
|
conj_physical() -> Tensor
|
|
|
|
See :func:`torch.conj_physical`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"conj_physical_",
|
|
r"""
|
|
conj_physical_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.conj_physical`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"resolve_conj",
|
|
r"""
|
|
resolve_conj() -> Tensor
|
|
|
|
See :func:`torch.resolve_conj`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"resolve_neg",
|
|
r"""
|
|
resolve_neg() -> Tensor
|
|
|
|
See :func:`torch.resolve_neg`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"copysign",
|
|
r"""
|
|
copysign(other) -> Tensor
|
|
|
|
See :func:`torch.copysign`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"copysign_",
|
|
r"""
|
|
copysign_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.copysign`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"cos",
|
|
r"""
|
|
cos() -> Tensor
|
|
|
|
See :func:`torch.cos`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"cos_",
|
|
r"""
|
|
cos_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.cos`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"cosh",
|
|
r"""
|
|
cosh() -> Tensor
|
|
|
|
See :func:`torch.cosh`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"cosh_",
|
|
r"""
|
|
cosh_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.cosh`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"cpu",
|
|
r"""
|
|
cpu(memory_format=torch.preserve_format) -> Tensor
|
|
|
|
Returns a copy of this object in CPU memory.
|
|
|
|
If this object is already in CPU memory and on the correct device,
|
|
then no copy is performed and the original object is returned.
|
|
|
|
Args:
|
|
{memory_format}
|
|
|
|
""".format(
|
|
**common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"count_nonzero",
|
|
r"""
|
|
count_nonzero(dim=None) -> Tensor
|
|
|
|
See :func:`torch.count_nonzero`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"cov",
|
|
r"""
|
|
cov(*, correction=1, fweights=None, aweights=None) -> Tensor
|
|
|
|
See :func:`torch.cov`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"corrcoef",
|
|
r"""
|
|
corrcoef() -> Tensor
|
|
|
|
See :func:`torch.corrcoef`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"cross",
|
|
r"""
|
|
cross(other, dim=None) -> Tensor
|
|
|
|
See :func:`torch.cross`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"cuda",
|
|
r"""
|
|
cuda(device=None, non_blocking=False, memory_format=torch.preserve_format) -> Tensor
|
|
|
|
Returns a copy of this object in CUDA memory.
|
|
|
|
If this object is already in CUDA memory and on the correct device,
|
|
then no copy is performed and the original object is returned.
|
|
|
|
Args:
|
|
device (:class:`torch.device`): The destination GPU device.
|
|
Defaults to the current CUDA device.
|
|
non_blocking (bool): If ``True`` and the source is in pinned memory,
|
|
the copy will be asynchronous with respect to the host.
|
|
Otherwise, the argument has no effect. Default: ``False``.
|
|
{memory_format}
|
|
""".format(
|
|
**common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"ipu",
|
|
r"""
|
|
ipu(device=None, non_blocking=False, memory_format=torch.preserve_format) -> Tensor
|
|
|
|
Returns a copy of this object in IPU memory.
|
|
|
|
If this object is already in IPU memory and on the correct device,
|
|
then no copy is performed and the original object is returned.
|
|
|
|
Args:
|
|
device (:class:`torch.device`): The destination IPU device.
|
|
Defaults to the current IPU device.
|
|
non_blocking (bool): If ``True`` and the source is in pinned memory,
|
|
the copy will be asynchronous with respect to the host.
|
|
Otherwise, the argument has no effect. Default: ``False``.
|
|
{memory_format}
|
|
""".format(
|
|
**common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"xpu",
|
|
r"""
|
|
xpu(device=None, non_blocking=False, memory_format=torch.preserve_format) -> Tensor
|
|
|
|
Returns a copy of this object in XPU memory.
|
|
|
|
If this object is already in XPU memory and on the correct device,
|
|
then no copy is performed and the original object is returned.
|
|
|
|
Args:
|
|
device (:class:`torch.device`): The destination XPU device.
|
|
Defaults to the current XPU device.
|
|
non_blocking (bool): If ``True`` and the source is in pinned memory,
|
|
the copy will be asynchronous with respect to the host.
|
|
Otherwise, the argument has no effect. Default: ``False``.
|
|
{memory_format}
|
|
""".format(
|
|
**common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"logcumsumexp",
|
|
r"""
|
|
logcumsumexp(dim) -> Tensor
|
|
|
|
See :func:`torch.logcumsumexp`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"cummax",
|
|
r"""
|
|
cummax(dim) -> (Tensor, Tensor)
|
|
|
|
See :func:`torch.cummax`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"cummin",
|
|
r"""
|
|
cummin(dim) -> (Tensor, Tensor)
|
|
|
|
See :func:`torch.cummin`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"cumprod",
|
|
r"""
|
|
cumprod(dim, dtype=None) -> Tensor
|
|
|
|
See :func:`torch.cumprod`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"cumprod_",
|
|
r"""
|
|
cumprod_(dim, dtype=None) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.cumprod`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"cumsum",
|
|
r"""
|
|
cumsum(dim, dtype=None) -> Tensor
|
|
|
|
See :func:`torch.cumsum`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"cumsum_",
|
|
r"""
|
|
cumsum_(dim, dtype=None) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.cumsum`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"data_ptr",
|
|
r"""
|
|
data_ptr() -> int
|
|
|
|
Returns the address of the first element of :attr:`self` tensor.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"dequantize",
|
|
r"""
|
|
dequantize() -> Tensor
|
|
|
|
Given a quantized Tensor, dequantize it and return the dequantized float Tensor.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"dense_dim",
|
|
r"""
|
|
dense_dim() -> int
|
|
|
|
Return the number of dense dimensions in a :ref:`sparse tensor <sparse-docs>` :attr:`self`.
|
|
|
|
.. note::
|
|
Returns ``len(self.shape)`` if :attr:`self` is not a sparse tensor.
|
|
|
|
See also :meth:`Tensor.sparse_dim` and :ref:`hybrid tensors <sparse-hybrid-coo-docs>`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"diag",
|
|
r"""
|
|
diag(diagonal=0) -> Tensor
|
|
|
|
See :func:`torch.diag`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"diag_embed",
|
|
r"""
|
|
diag_embed(offset=0, dim1=-2, dim2=-1) -> Tensor
|
|
|
|
See :func:`torch.diag_embed`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"diagflat",
|
|
r"""
|
|
diagflat(offset=0) -> Tensor
|
|
|
|
See :func:`torch.diagflat`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"diagonal",
|
|
r"""
|
|
diagonal(offset=0, dim1=0, dim2=1) -> Tensor
|
|
|
|
See :func:`torch.diagonal`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"diagonal_scatter",
|
|
r"""
|
|
diagonal_scatter(src, offset=0, dim1=0, dim2=1) -> Tensor
|
|
|
|
See :func:`torch.diagonal_scatter`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"as_strided_scatter",
|
|
r"""
|
|
as_strided_scatter(src, size, stride, storage_offset=None) -> Tensor
|
|
|
|
See :func:`torch.as_strided_scatter`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"fill_diagonal_",
|
|
r"""
|
|
fill_diagonal_(fill_value, wrap=False) -> Tensor
|
|
|
|
Fill the main diagonal of a tensor that has at least 2-dimensions.
|
|
When dims>2, all dimensions of input must be of equal length.
|
|
This function modifies the input tensor in-place, and returns the input tensor.
|
|
|
|
Arguments:
|
|
fill_value (Scalar): the fill value
|
|
wrap (bool): the diagonal 'wrapped' after N columns for tall matrices.
|
|
|
|
Example::
|
|
|
|
>>> a = torch.zeros(3, 3)
|
|
>>> a.fill_diagonal_(5)
|
|
tensor([[5., 0., 0.],
|
|
[0., 5., 0.],
|
|
[0., 0., 5.]])
|
|
>>> b = torch.zeros(7, 3)
|
|
>>> b.fill_diagonal_(5)
|
|
tensor([[5., 0., 0.],
|
|
[0., 5., 0.],
|
|
[0., 0., 5.],
|
|
[0., 0., 0.],
|
|
[0., 0., 0.],
|
|
[0., 0., 0.],
|
|
[0., 0., 0.]])
|
|
>>> c = torch.zeros(7, 3)
|
|
>>> c.fill_diagonal_(5, wrap=True)
|
|
tensor([[5., 0., 0.],
|
|
[0., 5., 0.],
|
|
[0., 0., 5.],
|
|
[0., 0., 0.],
|
|
[5., 0., 0.],
|
|
[0., 5., 0.],
|
|
[0., 0., 5.]])
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"floor_divide",
|
|
r"""
|
|
floor_divide(value) -> Tensor
|
|
|
|
See :func:`torch.floor_divide`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"floor_divide_",
|
|
r"""
|
|
floor_divide_(value) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.floor_divide`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"diff",
|
|
r"""
|
|
diff(n=1, dim=-1, prepend=None, append=None) -> Tensor
|
|
|
|
See :func:`torch.diff`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"digamma",
|
|
r"""
|
|
digamma() -> Tensor
|
|
|
|
See :func:`torch.digamma`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"digamma_",
|
|
r"""
|
|
digamma_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.digamma`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"dim",
|
|
r"""
|
|
dim() -> int
|
|
|
|
Returns the number of dimensions of :attr:`self` tensor.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"dist",
|
|
r"""
|
|
dist(other, p=2) -> Tensor
|
|
|
|
See :func:`torch.dist`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"div",
|
|
r"""
|
|
div(value, *, rounding_mode=None) -> Tensor
|
|
|
|
See :func:`torch.div`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"div_",
|
|
r"""
|
|
div_(value, *, rounding_mode=None) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.div`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"divide",
|
|
r"""
|
|
divide(value, *, rounding_mode=None) -> Tensor
|
|
|
|
See :func:`torch.divide`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"divide_",
|
|
r"""
|
|
divide_(value, *, rounding_mode=None) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.divide`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"dot",
|
|
r"""
|
|
dot(other) -> Tensor
|
|
|
|
See :func:`torch.dot`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"element_size",
|
|
r"""
|
|
element_size() -> int
|
|
|
|
Returns the size in bytes of an individual element.
|
|
|
|
Example::
|
|
|
|
>>> torch.tensor([]).element_size()
|
|
4
|
|
>>> torch.tensor([], dtype=torch.uint8).element_size()
|
|
1
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"eq",
|
|
r"""
|
|
eq(other) -> Tensor
|
|
|
|
See :func:`torch.eq`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"eq_",
|
|
r"""
|
|
eq_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.eq`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"equal",
|
|
r"""
|
|
equal(other) -> bool
|
|
|
|
See :func:`torch.equal`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"erf",
|
|
r"""
|
|
erf() -> Tensor
|
|
|
|
See :func:`torch.erf`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"erf_",
|
|
r"""
|
|
erf_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.erf`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"erfc",
|
|
r"""
|
|
erfc() -> Tensor
|
|
|
|
See :func:`torch.erfc`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"erfc_",
|
|
r"""
|
|
erfc_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.erfc`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"erfinv",
|
|
r"""
|
|
erfinv() -> Tensor
|
|
|
|
See :func:`torch.erfinv`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"erfinv_",
|
|
r"""
|
|
erfinv_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.erfinv`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"exp",
|
|
r"""
|
|
exp() -> Tensor
|
|
|
|
See :func:`torch.exp`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"exp_",
|
|
r"""
|
|
exp_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.exp`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"exp2",
|
|
r"""
|
|
exp2() -> Tensor
|
|
|
|
See :func:`torch.exp2`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"exp2_",
|
|
r"""
|
|
exp2_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.exp2`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"expm1",
|
|
r"""
|
|
expm1() -> Tensor
|
|
|
|
See :func:`torch.expm1`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"expm1_",
|
|
r"""
|
|
expm1_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.expm1`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"exponential_",
|
|
r"""
|
|
exponential_(lambd=1, *, generator=None) -> Tensor
|
|
|
|
Fills :attr:`self` tensor with elements drawn from the PDF (probability density function):
|
|
|
|
.. math::
|
|
|
|
f(x) = \lambda e^{-\lambda x}, x > 0
|
|
|
|
.. note::
|
|
In probability theory, exponential distribution is supported on interval [0, :math:`\inf`) (i.e., :math:`x >= 0`)
|
|
implying that zero can be sampled from the exponential distribution.
|
|
However, :func:`torch.Tensor.exponential_` does not sample zero,
|
|
which means that its actual support is the interval (0, :math:`\inf`).
|
|
|
|
Note that :func:`torch.distributions.exponential.Exponential` is supported on the interval [0, :math:`\inf`) and can sample zero.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"fill_",
|
|
r"""
|
|
fill_(value) -> Tensor
|
|
|
|
Fills :attr:`self` tensor with the specified value.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"floor",
|
|
r"""
|
|
floor() -> Tensor
|
|
|
|
See :func:`torch.floor`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"flip",
|
|
r"""
|
|
flip(dims) -> Tensor
|
|
|
|
See :func:`torch.flip`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"fliplr",
|
|
r"""
|
|
fliplr() -> Tensor
|
|
|
|
See :func:`torch.fliplr`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"flipud",
|
|
r"""
|
|
flipud() -> Tensor
|
|
|
|
See :func:`torch.flipud`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"roll",
|
|
r"""
|
|
roll(shifts, dims) -> Tensor
|
|
|
|
See :func:`torch.roll`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"floor_",
|
|
r"""
|
|
floor_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.floor`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"fmod",
|
|
r"""
|
|
fmod(divisor) -> Tensor
|
|
|
|
See :func:`torch.fmod`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"fmod_",
|
|
r"""
|
|
fmod_(divisor) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.fmod`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"frac",
|
|
r"""
|
|
frac() -> Tensor
|
|
|
|
See :func:`torch.frac`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"frac_",
|
|
r"""
|
|
frac_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.frac`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"frexp",
|
|
r"""
|
|
frexp(input) -> (Tensor mantissa, Tensor exponent)
|
|
|
|
See :func:`torch.frexp`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"flatten",
|
|
r"""
|
|
flatten(start_dim=0, end_dim=-1) -> Tensor
|
|
|
|
See :func:`torch.flatten`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"gather",
|
|
r"""
|
|
gather(dim, index) -> Tensor
|
|
|
|
See :func:`torch.gather`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"gcd",
|
|
r"""
|
|
gcd(other) -> Tensor
|
|
|
|
See :func:`torch.gcd`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"gcd_",
|
|
r"""
|
|
gcd_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.gcd`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"ge",
|
|
r"""
|
|
ge(other) -> Tensor
|
|
|
|
See :func:`torch.ge`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"ge_",
|
|
r"""
|
|
ge_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.ge`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"greater_equal",
|
|
r"""
|
|
greater_equal(other) -> Tensor
|
|
|
|
See :func:`torch.greater_equal`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"greater_equal_",
|
|
r"""
|
|
greater_equal_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.greater_equal`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"geometric_",
|
|
r"""
|
|
geometric_(p, *, generator=None) -> Tensor
|
|
|
|
Fills :attr:`self` tensor with elements drawn from the geometric distribution:
|
|
|
|
.. math::
|
|
|
|
P(X=k) = (1 - p)^{k - 1} p, k = 1, 2, ...
|
|
|
|
.. note::
|
|
:func:`torch.Tensor.geometric_` `k`-th trial is the first success hence draws samples in :math:`\{1, 2, \ldots\}`, whereas
|
|
:func:`torch.distributions.geometric.Geometric` :math:`(k+1)`-th trial is the first success
|
|
hence draws samples in :math:`\{0, 1, \ldots\}`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"geqrf",
|
|
r"""
|
|
geqrf() -> (Tensor, Tensor)
|
|
|
|
See :func:`torch.geqrf`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"ger",
|
|
r"""
|
|
ger(vec2) -> Tensor
|
|
|
|
See :func:`torch.ger`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"inner",
|
|
r"""
|
|
inner(other) -> Tensor
|
|
|
|
See :func:`torch.inner`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"outer",
|
|
r"""
|
|
outer(vec2) -> Tensor
|
|
|
|
See :func:`torch.outer`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"hypot",
|
|
r"""
|
|
hypot(other) -> Tensor
|
|
|
|
See :func:`torch.hypot`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"hypot_",
|
|
r"""
|
|
hypot_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.hypot`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"i0",
|
|
r"""
|
|
i0() -> Tensor
|
|
|
|
See :func:`torch.i0`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"i0_",
|
|
r"""
|
|
i0_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.i0`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"igamma",
|
|
r"""
|
|
igamma(other) -> Tensor
|
|
|
|
See :func:`torch.igamma`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"igamma_",
|
|
r"""
|
|
igamma_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.igamma`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"igammac",
|
|
r"""
|
|
igammac(other) -> Tensor
|
|
See :func:`torch.igammac`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"igammac_",
|
|
r"""
|
|
igammac_(other) -> Tensor
|
|
In-place version of :meth:`~Tensor.igammac`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"indices",
|
|
r"""
|
|
indices() -> Tensor
|
|
|
|
Return the indices tensor of a :ref:`sparse COO tensor <sparse-coo-docs>`.
|
|
|
|
.. warning::
|
|
Throws an error if :attr:`self` is not a sparse COO tensor.
|
|
|
|
See also :meth:`Tensor.values`.
|
|
|
|
.. note::
|
|
This method can only be called on a coalesced sparse tensor. See
|
|
:meth:`Tensor.coalesce` for details.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"get_device",
|
|
r"""
|
|
get_device() -> Device ordinal (Integer)
|
|
|
|
For CUDA tensors, this function returns the device ordinal of the GPU on which the tensor resides.
|
|
For CPU tensors, this function returns `-1`.
|
|
|
|
Example::
|
|
|
|
>>> x = torch.randn(3, 4, 5, device='cuda:0')
|
|
>>> x.get_device()
|
|
0
|
|
>>> x.cpu().get_device()
|
|
-1
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"values",
|
|
r"""
|
|
values() -> Tensor
|
|
|
|
Return the values tensor of a :ref:`sparse COO tensor <sparse-coo-docs>`.
|
|
|
|
.. warning::
|
|
Throws an error if :attr:`self` is not a sparse COO tensor.
|
|
|
|
See also :meth:`Tensor.indices`.
|
|
|
|
.. note::
|
|
This method can only be called on a coalesced sparse tensor. See
|
|
:meth:`Tensor.coalesce` for details.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"gt",
|
|
r"""
|
|
gt(other) -> Tensor
|
|
|
|
See :func:`torch.gt`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"gt_",
|
|
r"""
|
|
gt_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.gt`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"greater",
|
|
r"""
|
|
greater(other) -> Tensor
|
|
|
|
See :func:`torch.greater`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"greater_",
|
|
r"""
|
|
greater_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.greater`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"has_names",
|
|
r"""
|
|
Is ``True`` if any of this tensor's dimensions are named. Otherwise, is ``False``.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"hardshrink",
|
|
r"""
|
|
hardshrink(lambd=0.5) -> Tensor
|
|
|
|
See :func:`torch.nn.functional.hardshrink`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"heaviside",
|
|
r"""
|
|
heaviside(values) -> Tensor
|
|
|
|
See :func:`torch.heaviside`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"heaviside_",
|
|
r"""
|
|
heaviside_(values) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.heaviside`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"histc",
|
|
r"""
|
|
histc(bins=100, min=0, max=0) -> Tensor
|
|
|
|
See :func:`torch.histc`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"histogram",
|
|
r"""
|
|
histogram(input, bins, *, range=None, weight=None, density=False) -> (Tensor, Tensor)
|
|
|
|
See :func:`torch.histogram`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"index_add_",
|
|
r"""
|
|
index_add_(dim, index, source, *, alpha=1) -> Tensor
|
|
|
|
Accumulate the elements of :attr:`alpha` times ``source`` into the :attr:`self`
|
|
tensor by adding to the indices in the order given in :attr:`index`. For example,
|
|
if ``dim == 0``, ``index[i] == j``, and ``alpha=-1``, then the ``i``\ th row of
|
|
``source`` is subtracted from the ``j``\ th row of :attr:`self`.
|
|
|
|
The :attr:`dim`\ th dimension of ``source`` must have the same size as the
|
|
length of :attr:`index` (which must be a vector), and all other dimensions must
|
|
match :attr:`self`, or an error will be raised.
|
|
|
|
For a 3-D tensor the output is given as::
|
|
|
|
self[index[i], :, :] += alpha * src[i, :, :] # if dim == 0
|
|
self[:, index[i], :] += alpha * src[:, i, :] # if dim == 1
|
|
self[:, :, index[i]] += alpha * src[:, :, i] # if dim == 2
|
|
|
|
Note:
|
|
{forward_reproducibility_note}
|
|
|
|
Args:
|
|
dim (int): dimension along which to index
|
|
index (Tensor): indices of ``source`` to select from,
|
|
should have dtype either `torch.int64` or `torch.int32`
|
|
source (Tensor): the tensor containing values to add
|
|
|
|
Keyword args:
|
|
alpha (Number): the scalar multiplier for ``source``
|
|
|
|
Example::
|
|
|
|
>>> x = torch.ones(5, 3)
|
|
>>> t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float)
|
|
>>> index = torch.tensor([0, 4, 2])
|
|
>>> x.index_add_(0, index, t)
|
|
tensor([[ 2., 3., 4.],
|
|
[ 1., 1., 1.],
|
|
[ 8., 9., 10.],
|
|
[ 1., 1., 1.],
|
|
[ 5., 6., 7.]])
|
|
>>> x.index_add_(0, index, t, alpha=-1)
|
|
tensor([[ 1., 1., 1.],
|
|
[ 1., 1., 1.],
|
|
[ 1., 1., 1.],
|
|
[ 1., 1., 1.],
|
|
[ 1., 1., 1.]])
|
|
""".format(
|
|
**reproducibility_notes
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"index_copy_",
|
|
r"""
|
|
index_copy_(dim, index, tensor) -> Tensor
|
|
|
|
Copies the elements of :attr:`tensor` into the :attr:`self` tensor by selecting
|
|
the indices in the order given in :attr:`index`. For example, if ``dim == 0``
|
|
and ``index[i] == j``, then the ``i``\ th row of :attr:`tensor` is copied to the
|
|
``j``\ th row of :attr:`self`.
|
|
|
|
The :attr:`dim`\ th dimension of :attr:`tensor` must have the same size as the
|
|
length of :attr:`index` (which must be a vector), and all other dimensions must
|
|
match :attr:`self`, or an error will be raised.
|
|
|
|
.. note::
|
|
If :attr:`index` contains duplicate entries, multiple elements from
|
|
:attr:`tensor` will be copied to the same index of :attr:`self`. The result
|
|
is nondeterministic since it depends on which copy occurs last.
|
|
|
|
Args:
|
|
dim (int): dimension along which to index
|
|
index (LongTensor): indices of :attr:`tensor` to select from
|
|
tensor (Tensor): the tensor containing values to copy
|
|
|
|
Example::
|
|
|
|
>>> x = torch.zeros(5, 3)
|
|
>>> t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float)
|
|
>>> index = torch.tensor([0, 4, 2])
|
|
>>> x.index_copy_(0, index, t)
|
|
tensor([[ 1., 2., 3.],
|
|
[ 0., 0., 0.],
|
|
[ 7., 8., 9.],
|
|
[ 0., 0., 0.],
|
|
[ 4., 5., 6.]])
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"index_fill_",
|
|
r"""
|
|
index_fill_(dim, index, value) -> Tensor
|
|
|
|
Fills the elements of the :attr:`self` tensor with value :attr:`value` by
|
|
selecting the indices in the order given in :attr:`index`.
|
|
|
|
Args:
|
|
dim (int): dimension along which to index
|
|
index (LongTensor): indices of :attr:`self` tensor to fill in
|
|
value (float): the value to fill with
|
|
|
|
Example::
|
|
>>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float)
|
|
>>> index = torch.tensor([0, 2])
|
|
>>> x.index_fill_(1, index, -1)
|
|
tensor([[-1., 2., -1.],
|
|
[-1., 5., -1.],
|
|
[-1., 8., -1.]])
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"index_put_",
|
|
r"""
|
|
index_put_(indices, values, accumulate=False) -> Tensor
|
|
|
|
Puts values from the tensor :attr:`values` into the tensor :attr:`self` using
|
|
the indices specified in :attr:`indices` (which is a tuple of Tensors). The
|
|
expression ``tensor.index_put_(indices, values)`` is equivalent to
|
|
``tensor[indices] = values``. Returns :attr:`self`.
|
|
|
|
If :attr:`accumulate` is ``True``, the elements in :attr:`values` are added to
|
|
:attr:`self`. If accumulate is ``False``, the behavior is undefined if indices
|
|
contain duplicate elements.
|
|
|
|
Args:
|
|
indices (tuple of LongTensor): tensors used to index into `self`.
|
|
values (Tensor): tensor of same dtype as `self`.
|
|
accumulate (bool): whether to accumulate into self
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"index_put",
|
|
r"""
|
|
index_put(indices, values, accumulate=False) -> Tensor
|
|
|
|
Out-place version of :meth:`~Tensor.index_put_`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"index_reduce_",
|
|
r"""
|
|
index_reduce_(dim, index, source, reduce, *, include_self=True) -> Tensor
|
|
|
|
Accumulate the elements of ``source`` into the :attr:`self`
|
|
tensor by accumulating to the indices in the order given in :attr:`index`
|
|
using the reduction given by the ``reduce`` argument. For example, if ``dim == 0``,
|
|
``index[i] == j``, ``reduce == prod`` and ``include_self == True`` then the ``i``\ th
|
|
row of ``source`` is multiplied by the ``j``\ th row of :attr:`self`. If
|
|
:obj:`include_self="True"`, the values in the :attr:`self` tensor are included
|
|
in the reduction, otherwise, rows in the :attr:`self` tensor that are accumulated
|
|
to are treated as if they were filled with the reduction identites.
|
|
|
|
The :attr:`dim`\ th dimension of ``source`` must have the same size as the
|
|
length of :attr:`index` (which must be a vector), and all other dimensions must
|
|
match :attr:`self`, or an error will be raised.
|
|
|
|
For a 3-D tensor with :obj:`reduce="prod"` and :obj:`include_self=True` the
|
|
output is given as::
|
|
|
|
self[index[i], :, :] *= src[i, :, :] # if dim == 0
|
|
self[:, index[i], :] *= src[:, i, :] # if dim == 1
|
|
self[:, :, index[i]] *= src[:, :, i] # if dim == 2
|
|
|
|
Note:
|
|
{forward_reproducibility_note}
|
|
|
|
.. note::
|
|
|
|
This function only supports floating point tensors.
|
|
|
|
.. warning::
|
|
|
|
This function is in beta and may change in the near future.
|
|
|
|
Args:
|
|
dim (int): dimension along which to index
|
|
index (Tensor): indices of ``source`` to select from,
|
|
should have dtype either `torch.int64` or `torch.int32`
|
|
source (FloatTensor): the tensor containing values to accumulate
|
|
reduce (str): the reduction operation to apply
|
|
(:obj:`"prod"`, :obj:`"mean"`, :obj:`"amax"`, :obj:`"amin"`)
|
|
|
|
Keyword args:
|
|
include_self (bool): whether the elements from the ``self`` tensor are
|
|
included in the reduction
|
|
|
|
Example::
|
|
|
|
>>> x = torch.empty(5, 3).fill_(2)
|
|
>>> t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], dtype=torch.float)
|
|
>>> index = torch.tensor([0, 4, 2, 0])
|
|
>>> x.index_reduce_(0, index, t, 'prod')
|
|
tensor([[20., 44., 72.],
|
|
[ 2., 2., 2.],
|
|
[14., 16., 18.],
|
|
[ 2., 2., 2.],
|
|
[ 8., 10., 12.]])
|
|
>>> x = torch.empty(5, 3).fill_(2)
|
|
>>> x.index_reduce_(0, index, t, 'prod', include_self=False)
|
|
tensor([[10., 22., 36.],
|
|
[ 2., 2., 2.],
|
|
[ 7., 8., 9.],
|
|
[ 2., 2., 2.],
|
|
[ 4., 5., 6.]])
|
|
""".format(
|
|
**reproducibility_notes
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"index_select",
|
|
r"""
|
|
index_select(dim, index) -> Tensor
|
|
|
|
See :func:`torch.index_select`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sparse_mask",
|
|
r"""
|
|
sparse_mask(mask) -> Tensor
|
|
|
|
Returns a new :ref:`sparse tensor <sparse-docs>` with values from a
|
|
strided tensor :attr:`self` filtered by the indices of the sparse
|
|
tensor :attr:`mask`. The values of :attr:`mask` sparse tensor are
|
|
ignored. :attr:`self` and :attr:`mask` tensors must have the same
|
|
shape.
|
|
|
|
.. note::
|
|
|
|
The returned sparse tensor might contain duplicate values if :attr:`mask`
|
|
is not coalesced. It is therefore advisable to pass ``mask.coalesce()``
|
|
if such behavior is not desired.
|
|
|
|
.. note::
|
|
|
|
The returned sparse tensor has the same indices as the sparse tensor
|
|
:attr:`mask`, even when the corresponding values in :attr:`self` are
|
|
zeros.
|
|
|
|
Args:
|
|
mask (Tensor): a sparse tensor whose indices are used as a filter
|
|
|
|
Example::
|
|
|
|
>>> nse = 5
|
|
>>> dims = (5, 5, 2, 2)
|
|
>>> I = torch.cat([torch.randint(0, dims[0], size=(nse,)),
|
|
... torch.randint(0, dims[1], size=(nse,))], 0).reshape(2, nse)
|
|
>>> V = torch.randn(nse, dims[2], dims[3])
|
|
>>> S = torch.sparse_coo_tensor(I, V, dims).coalesce()
|
|
>>> D = torch.randn(dims)
|
|
>>> D.sparse_mask(S)
|
|
tensor(indices=tensor([[0, 0, 0, 2],
|
|
[0, 1, 4, 3]]),
|
|
values=tensor([[[ 1.6550, 0.2397],
|
|
[-0.1611, -0.0779]],
|
|
|
|
[[ 0.2326, -1.0558],
|
|
[ 1.4711, 1.9678]],
|
|
|
|
[[-0.5138, -0.0411],
|
|
[ 1.9417, 0.5158]],
|
|
|
|
[[ 0.0793, 0.0036],
|
|
[-0.2569, -0.1055]]]),
|
|
size=(5, 5, 2, 2), nnz=4, layout=torch.sparse_coo)
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"inverse",
|
|
r"""
|
|
inverse() -> Tensor
|
|
|
|
See :func:`torch.inverse`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"isnan",
|
|
r"""
|
|
isnan() -> Tensor
|
|
|
|
See :func:`torch.isnan`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"isinf",
|
|
r"""
|
|
isinf() -> Tensor
|
|
|
|
See :func:`torch.isinf`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"isposinf",
|
|
r"""
|
|
isposinf() -> Tensor
|
|
|
|
See :func:`torch.isposinf`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"isneginf",
|
|
r"""
|
|
isneginf() -> Tensor
|
|
|
|
See :func:`torch.isneginf`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"isfinite",
|
|
r"""
|
|
isfinite() -> Tensor
|
|
|
|
See :func:`torch.isfinite`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"isclose",
|
|
r"""
|
|
isclose(other, rtol=1e-05, atol=1e-08, equal_nan=False) -> Tensor
|
|
|
|
See :func:`torch.isclose`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"isreal",
|
|
r"""
|
|
isreal() -> Tensor
|
|
|
|
See :func:`torch.isreal`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"is_coalesced",
|
|
r"""
|
|
is_coalesced() -> bool
|
|
|
|
Returns ``True`` if :attr:`self` is a :ref:`sparse COO tensor
|
|
<sparse-coo-docs>` that is coalesced, ``False`` otherwise.
|
|
|
|
.. warning::
|
|
Throws an error if :attr:`self` is not a sparse COO tensor.
|
|
|
|
See :meth:`coalesce` and :ref:`uncoalesced tensors <sparse-uncoalesced-coo-docs>`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"is_contiguous",
|
|
r"""
|
|
is_contiguous(memory_format=torch.contiguous_format) -> bool
|
|
|
|
Returns True if :attr:`self` tensor is contiguous in memory in the order specified
|
|
by memory format.
|
|
|
|
Args:
|
|
memory_format (:class:`torch.memory_format`, optional): Specifies memory allocation
|
|
order. Default: ``torch.contiguous_format``.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"is_pinned",
|
|
r"""
|
|
Returns true if this tensor resides in pinned memory.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"is_floating_point",
|
|
r"""
|
|
is_floating_point() -> bool
|
|
|
|
Returns True if the data type of :attr:`self` is a floating point data type.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"is_complex",
|
|
r"""
|
|
is_complex() -> bool
|
|
|
|
Returns True if the data type of :attr:`self` is a complex data type.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"is_inference",
|
|
r"""
|
|
is_inference() -> bool
|
|
|
|
See :func:`torch.is_inference`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"is_conj",
|
|
r"""
|
|
is_conj() -> bool
|
|
|
|
Returns True if the conjugate bit of :attr:`self` is set to true.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"is_neg",
|
|
r"""
|
|
is_neg() -> bool
|
|
|
|
Returns True if the negative bit of :attr:`self` is set to true.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"is_signed",
|
|
r"""
|
|
is_signed() -> bool
|
|
|
|
Returns True if the data type of :attr:`self` is a signed data type.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"is_set_to",
|
|
r"""
|
|
is_set_to(tensor) -> bool
|
|
|
|
Returns True if both tensors are pointing to the exact same memory (same
|
|
storage, offset, size and stride).
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"item",
|
|
r"""
|
|
item() -> number
|
|
|
|
Returns the value of this tensor as a standard Python number. This only works
|
|
for tensors with one element. For other cases, see :meth:`~Tensor.tolist`.
|
|
|
|
This operation is not differentiable.
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([1.0])
|
|
>>> x.item()
|
|
1.0
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"kron",
|
|
r"""
|
|
kron(other) -> Tensor
|
|
|
|
See :func:`torch.kron`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"kthvalue",
|
|
r"""
|
|
kthvalue(k, dim=None, keepdim=False) -> (Tensor, LongTensor)
|
|
|
|
See :func:`torch.kthvalue`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"ldexp",
|
|
r"""
|
|
ldexp(other) -> Tensor
|
|
|
|
See :func:`torch.ldexp`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"ldexp_",
|
|
r"""
|
|
ldexp_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.ldexp`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"lcm",
|
|
r"""
|
|
lcm(other) -> Tensor
|
|
|
|
See :func:`torch.lcm`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"lcm_",
|
|
r"""
|
|
lcm_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.lcm`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"le",
|
|
r"""
|
|
le(other) -> Tensor
|
|
|
|
See :func:`torch.le`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"le_",
|
|
r"""
|
|
le_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.le`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"less_equal",
|
|
r"""
|
|
less_equal(other) -> Tensor
|
|
|
|
See :func:`torch.less_equal`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"less_equal_",
|
|
r"""
|
|
less_equal_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.less_equal`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"lerp",
|
|
r"""
|
|
lerp(end, weight) -> Tensor
|
|
|
|
See :func:`torch.lerp`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"lerp_",
|
|
r"""
|
|
lerp_(end, weight) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.lerp`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"lgamma",
|
|
r"""
|
|
lgamma() -> Tensor
|
|
|
|
See :func:`torch.lgamma`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"lgamma_",
|
|
r"""
|
|
lgamma_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.lgamma`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"log",
|
|
r"""
|
|
log() -> Tensor
|
|
|
|
See :func:`torch.log`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"log_",
|
|
r"""
|
|
log_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.log`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"log10",
|
|
r"""
|
|
log10() -> Tensor
|
|
|
|
See :func:`torch.log10`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"log10_",
|
|
r"""
|
|
log10_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.log10`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"log1p",
|
|
r"""
|
|
log1p() -> Tensor
|
|
|
|
See :func:`torch.log1p`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"log1p_",
|
|
r"""
|
|
log1p_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.log1p`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"log2",
|
|
r"""
|
|
log2() -> Tensor
|
|
|
|
See :func:`torch.log2`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"log2_",
|
|
r"""
|
|
log2_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.log2`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"logaddexp",
|
|
r"""
|
|
logaddexp(other) -> Tensor
|
|
|
|
See :func:`torch.logaddexp`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"logaddexp2",
|
|
r"""
|
|
logaddexp2(other) -> Tensor
|
|
|
|
See :func:`torch.logaddexp2`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"log_normal_",
|
|
r"""
|
|
log_normal_(mean=1, std=2, *, generator=None)
|
|
|
|
Fills :attr:`self` tensor with numbers samples from the log-normal distribution
|
|
parameterized by the given mean :math:`\mu` and standard deviation
|
|
:math:`\sigma`. Note that :attr:`mean` and :attr:`std` are the mean and
|
|
standard deviation of the underlying normal distribution, and not of the
|
|
returned distribution:
|
|
|
|
.. math::
|
|
|
|
f(x) = \dfrac{1}{x \sigma \sqrt{2\pi}}\ e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"logsumexp",
|
|
r"""
|
|
logsumexp(dim, keepdim=False) -> Tensor
|
|
|
|
See :func:`torch.logsumexp`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"lt",
|
|
r"""
|
|
lt(other) -> Tensor
|
|
|
|
See :func:`torch.lt`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"lt_",
|
|
r"""
|
|
lt_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.lt`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"less",
|
|
r"""
|
|
lt(other) -> Tensor
|
|
|
|
See :func:`torch.less`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"less_",
|
|
r"""
|
|
less_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.less`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"lu_solve",
|
|
r"""
|
|
lu_solve(LU_data, LU_pivots) -> Tensor
|
|
|
|
See :func:`torch.lu_solve`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"map_",
|
|
r"""
|
|
map_(tensor, callable)
|
|
|
|
Applies :attr:`callable` for each element in :attr:`self` tensor and the given
|
|
:attr:`tensor` and stores the results in :attr:`self` tensor. :attr:`self` tensor and
|
|
the given :attr:`tensor` must be :ref:`broadcastable <broadcasting-semantics>`.
|
|
|
|
The :attr:`callable` should have the signature::
|
|
|
|
def callable(a, b) -> number
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"masked_scatter_",
|
|
r"""
|
|
masked_scatter_(mask, source)
|
|
|
|
Copies elements from :attr:`source` into :attr:`self` tensor at positions where
|
|
the :attr:`mask` is True. Elements from :attr:`source` are copied into :attr:`self`
|
|
starting at position 0 of :attr:`source` and continuing in order one-by-one for each
|
|
occurrence of :attr:`mask` being True.
|
|
The shape of :attr:`mask` must be :ref:`broadcastable <broadcasting-semantics>`
|
|
with the shape of the underlying tensor. The :attr:`source` should have at least
|
|
as many elements as the number of ones in :attr:`mask`.
|
|
|
|
Args:
|
|
mask (BoolTensor): the boolean mask
|
|
source (Tensor): the tensor to copy from
|
|
|
|
.. note::
|
|
|
|
The :attr:`mask` operates on the :attr:`self` tensor, not on the given
|
|
:attr:`source` tensor.
|
|
|
|
Example:
|
|
|
|
>>> self = torch.tensor([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]])
|
|
>>> mask = torch.tensor([[0, 0, 0, 1, 1], [1, 1, 0, 1, 1]])
|
|
>>> source = torch.tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]])
|
|
>>> self.masked_scatter_(mask, source)
|
|
tensor([[0, 0, 0, 0, 1],
|
|
[2, 3, 0, 4, 5]])
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"masked_fill_",
|
|
r"""
|
|
masked_fill_(mask, value)
|
|
|
|
Fills elements of :attr:`self` tensor with :attr:`value` where :attr:`mask` is
|
|
True. The shape of :attr:`mask` must be
|
|
:ref:`broadcastable <broadcasting-semantics>` with the shape of the underlying
|
|
tensor.
|
|
|
|
Args:
|
|
mask (BoolTensor): the boolean mask
|
|
value (float): the value to fill in with
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"masked_select",
|
|
r"""
|
|
masked_select(mask) -> Tensor
|
|
|
|
See :func:`torch.masked_select`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"matrix_power",
|
|
r"""
|
|
matrix_power(n) -> Tensor
|
|
|
|
.. note:: :meth:`~Tensor.matrix_power` is deprecated, use :func:`torch.linalg.matrix_power` instead.
|
|
|
|
Alias for :func:`torch.linalg.matrix_power`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"matrix_exp",
|
|
r"""
|
|
matrix_exp() -> Tensor
|
|
|
|
See :func:`torch.matrix_exp`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"max",
|
|
r"""
|
|
max(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor)
|
|
|
|
See :func:`torch.max`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"amax",
|
|
r"""
|
|
amax(dim=None, keepdim=False) -> Tensor
|
|
|
|
See :func:`torch.amax`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"maximum",
|
|
r"""
|
|
maximum(other) -> Tensor
|
|
|
|
See :func:`torch.maximum`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"fmax",
|
|
r"""
|
|
fmax(other) -> Tensor
|
|
|
|
See :func:`torch.fmax`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"argmax",
|
|
r"""
|
|
argmax(dim=None, keepdim=False) -> LongTensor
|
|
|
|
See :func:`torch.argmax`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"argwhere",
|
|
r"""
|
|
argwhere() -> Tensor
|
|
|
|
See :func:`torch.argwhere`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"mean",
|
|
r"""
|
|
mean(dim=None, keepdim=False, *, dtype=None) -> Tensor
|
|
|
|
See :func:`torch.mean`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"nanmean",
|
|
r"""
|
|
nanmean(dim=None, keepdim=False, *, dtype=None) -> Tensor
|
|
|
|
See :func:`torch.nanmean`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"median",
|
|
r"""
|
|
median(dim=None, keepdim=False) -> (Tensor, LongTensor)
|
|
|
|
See :func:`torch.median`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"nanmedian",
|
|
r"""
|
|
nanmedian(dim=None, keepdim=False) -> (Tensor, LongTensor)
|
|
|
|
See :func:`torch.nanmedian`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"min",
|
|
r"""
|
|
min(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor)
|
|
|
|
See :func:`torch.min`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"amin",
|
|
r"""
|
|
amin(dim=None, keepdim=False) -> Tensor
|
|
|
|
See :func:`torch.amin`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"minimum",
|
|
r"""
|
|
minimum(other) -> Tensor
|
|
|
|
See :func:`torch.minimum`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"aminmax",
|
|
r"""
|
|
aminmax(*, dim=None, keepdim=False) -> (Tensor min, Tensor max)
|
|
|
|
See :func:`torch.aminmax`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"fmin",
|
|
r"""
|
|
fmin(other) -> Tensor
|
|
|
|
See :func:`torch.fmin`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"argmin",
|
|
r"""
|
|
argmin(dim=None, keepdim=False) -> LongTensor
|
|
|
|
See :func:`torch.argmin`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"mm",
|
|
r"""
|
|
mm(mat2) -> Tensor
|
|
|
|
See :func:`torch.mm`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"mode",
|
|
r"""
|
|
mode(dim=None, keepdim=False) -> (Tensor, LongTensor)
|
|
|
|
See :func:`torch.mode`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"movedim",
|
|
r"""
|
|
movedim(source, destination) -> Tensor
|
|
|
|
See :func:`torch.movedim`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"moveaxis",
|
|
r"""
|
|
moveaxis(source, destination) -> Tensor
|
|
|
|
See :func:`torch.moveaxis`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"mul",
|
|
r"""
|
|
mul(value) -> Tensor
|
|
|
|
See :func:`torch.mul`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"mul_",
|
|
r"""
|
|
mul_(value) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.mul`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"multiply",
|
|
r"""
|
|
multiply(value) -> Tensor
|
|
|
|
See :func:`torch.multiply`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"multiply_",
|
|
r"""
|
|
multiply_(value) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.multiply`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"multinomial",
|
|
r"""
|
|
multinomial(num_samples, replacement=False, *, generator=None) -> Tensor
|
|
|
|
See :func:`torch.multinomial`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"mv",
|
|
r"""
|
|
mv(vec) -> Tensor
|
|
|
|
See :func:`torch.mv`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"mvlgamma",
|
|
r"""
|
|
mvlgamma(p) -> Tensor
|
|
|
|
See :func:`torch.mvlgamma`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"mvlgamma_",
|
|
r"""
|
|
mvlgamma_(p) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.mvlgamma`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"narrow",
|
|
r"""
|
|
narrow(dimension, start, length) -> Tensor
|
|
|
|
See :func:`torch.narrow`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"narrow_copy",
|
|
r"""
|
|
narrow_copy(dimension, start, length) -> Tensor
|
|
|
|
See :func:`torch.narrow_copy`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"ndimension",
|
|
r"""
|
|
ndimension() -> int
|
|
|
|
Alias for :meth:`~Tensor.dim()`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"nan_to_num",
|
|
r"""
|
|
nan_to_num(nan=0.0, posinf=None, neginf=None) -> Tensor
|
|
|
|
See :func:`torch.nan_to_num`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"nan_to_num_",
|
|
r"""
|
|
nan_to_num_(nan=0.0, posinf=None, neginf=None) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.nan_to_num`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"ne",
|
|
r"""
|
|
ne(other) -> Tensor
|
|
|
|
See :func:`torch.ne`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"ne_",
|
|
r"""
|
|
ne_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.ne`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"not_equal",
|
|
r"""
|
|
not_equal(other) -> Tensor
|
|
|
|
See :func:`torch.not_equal`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"not_equal_",
|
|
r"""
|
|
not_equal_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.not_equal`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"neg",
|
|
r"""
|
|
neg() -> Tensor
|
|
|
|
See :func:`torch.neg`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"negative",
|
|
r"""
|
|
negative() -> Tensor
|
|
|
|
See :func:`torch.negative`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"neg_",
|
|
r"""
|
|
neg_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.neg`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"negative_",
|
|
r"""
|
|
negative_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.negative`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"nelement",
|
|
r"""
|
|
nelement() -> int
|
|
|
|
Alias for :meth:`~Tensor.numel`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"nextafter",
|
|
r"""
|
|
nextafter(other) -> Tensor
|
|
See :func:`torch.nextafter`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"nextafter_",
|
|
r"""
|
|
nextafter_(other) -> Tensor
|
|
In-place version of :meth:`~Tensor.nextafter`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"nonzero",
|
|
r"""
|
|
nonzero() -> LongTensor
|
|
|
|
See :func:`torch.nonzero`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"nonzero_static",
|
|
r"""
|
|
nonzero_static(input, *, size, fill_value=-1) -> Tensor
|
|
|
|
Returns a 2-D tensor where each row is the index for a non-zero value.
|
|
The returned Tensor has the same `torch.dtype` as `torch.nonzero()`.
|
|
|
|
Args:
|
|
input (Tensor): the input tensor to count non-zero elements.
|
|
|
|
Keyword args:
|
|
size (int): the size of non-zero elements expected to be included in the out
|
|
tensor. Pad the out tensor with `fill_value` if the `size` is larger
|
|
than total number of non-zero elements, truncate out tensor if `size`
|
|
is smaller. The size must be a non-negative integer.
|
|
fill_value (int): the value to fill the output tensor with when `size` is larger
|
|
than the total number of non-zero elements. Default is `-1` to represent
|
|
invalid index.
|
|
|
|
Example:
|
|
|
|
# Example 1: Padding
|
|
>>> input_tensor = torch.tensor([[1, 0], [3, 2]])
|
|
>>> static_size = 4
|
|
>>> t = torch.nonzero_static(input_tensor, size = static_size)
|
|
tensor([[ 0, 0],
|
|
[ 1, 0],
|
|
[ 1, 1],
|
|
[ -1, -1]], dtype=torch.int64)
|
|
|
|
# Example 2: Truncating
|
|
>>> input_tensor = torch.tensor([[1, 0], [3, 2]])
|
|
>>> static_size = 2
|
|
>>> t = torch.nonzero_static(input_tensor, size = static_size)
|
|
tensor([[ 0, 0],
|
|
[ 1, 0]], dtype=torch.int64)
|
|
|
|
# Example 3: 0 size
|
|
>>> input_tensor = torch.tensor([10])
|
|
>>> static_size = 0
|
|
>>> t = torch.nonzero_static(input_tensor, size = static_size)
|
|
tensor([], size=(0, 1), dtype=torch.int64)
|
|
|
|
# Example 4: 0 rank input
|
|
>>> input_tensor = torch.tensor(10)
|
|
>>> static_size = 2
|
|
>>> t = torch.nonzero_static(input_tensor, size = static_size)
|
|
tensor([], size=(2, 0), dtype=torch.int64)
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"norm",
|
|
r"""
|
|
norm(p=2, dim=None, keepdim=False) -> Tensor
|
|
|
|
See :func:`torch.norm`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"normal_",
|
|
r"""
|
|
normal_(mean=0, std=1, *, generator=None) -> Tensor
|
|
|
|
Fills :attr:`self` tensor with elements samples from the normal distribution
|
|
parameterized by :attr:`mean` and :attr:`std`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"numel",
|
|
r"""
|
|
numel() -> int
|
|
|
|
See :func:`torch.numel`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"numpy",
|
|
r"""
|
|
numpy(*, force=False) -> numpy.ndarray
|
|
|
|
Returns the tensor as a NumPy :class:`ndarray`.
|
|
|
|
If :attr:`force` is ``False`` (the default), the conversion
|
|
is performed only if the tensor is on the CPU, does not require grad,
|
|
does not have its conjugate bit set, and is a dtype and layout that
|
|
NumPy supports. The returned ndarray and the tensor will share their
|
|
storage, so changes to the tensor will be reflected in the ndarray
|
|
and vice versa.
|
|
|
|
If :attr:`force` is ``True`` this is equivalent to
|
|
calling ``t.detach().cpu().resolve_conj().resolve_neg().numpy()``.
|
|
If the tensor isn't on the CPU or the conjugate or negative bit is set,
|
|
the tensor won't share its storage with the returned ndarray.
|
|
Setting :attr:`force` to ``True`` can be a useful shorthand.
|
|
|
|
Args:
|
|
force (bool): if ``True``, the ndarray may be a copy of the tensor
|
|
instead of always sharing memory, defaults to ``False``.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"orgqr",
|
|
r"""
|
|
orgqr(input2) -> Tensor
|
|
|
|
See :func:`torch.orgqr`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"ormqr",
|
|
r"""
|
|
ormqr(input2, input3, left=True, transpose=False) -> Tensor
|
|
|
|
See :func:`torch.ormqr`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"permute",
|
|
r"""
|
|
permute(*dims) -> Tensor
|
|
|
|
See :func:`torch.permute`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"polygamma",
|
|
r"""
|
|
polygamma(n) -> Tensor
|
|
|
|
See :func:`torch.polygamma`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"polygamma_",
|
|
r"""
|
|
polygamma_(n) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.polygamma`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"positive",
|
|
r"""
|
|
positive() -> Tensor
|
|
|
|
See :func:`torch.positive`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"pow",
|
|
r"""
|
|
pow(exponent) -> Tensor
|
|
|
|
See :func:`torch.pow`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"pow_",
|
|
r"""
|
|
pow_(exponent) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.pow`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"float_power",
|
|
r"""
|
|
float_power(exponent) -> Tensor
|
|
|
|
See :func:`torch.float_power`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"float_power_",
|
|
r"""
|
|
float_power_(exponent) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.float_power`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"prod",
|
|
r"""
|
|
prod(dim=None, keepdim=False, dtype=None) -> Tensor
|
|
|
|
See :func:`torch.prod`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"put_",
|
|
r"""
|
|
put_(index, source, accumulate=False) -> Tensor
|
|
|
|
Copies the elements from :attr:`source` into the positions specified by
|
|
:attr:`index`. For the purpose of indexing, the :attr:`self` tensor is treated as if
|
|
it were a 1-D tensor.
|
|
|
|
:attr:`index` and :attr:`source` need to have the same number of elements, but not necessarily
|
|
the same shape.
|
|
|
|
If :attr:`accumulate` is ``True``, the elements in :attr:`source` are added to
|
|
:attr:`self`. If accumulate is ``False``, the behavior is undefined if :attr:`index`
|
|
contain duplicate elements.
|
|
|
|
Args:
|
|
index (LongTensor): the indices into self
|
|
source (Tensor): the tensor containing values to copy from
|
|
accumulate (bool): whether to accumulate into self
|
|
|
|
Example::
|
|
|
|
>>> src = torch.tensor([[4, 3, 5],
|
|
... [6, 7, 8]])
|
|
>>> src.put_(torch.tensor([1, 3]), torch.tensor([9, 10]))
|
|
tensor([[ 4, 9, 5],
|
|
[ 10, 7, 8]])
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"put",
|
|
r"""
|
|
put(input, index, source, accumulate=False) -> Tensor
|
|
|
|
Out-of-place version of :meth:`torch.Tensor.put_`.
|
|
`input` corresponds to `self` in :meth:`torch.Tensor.put_`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"qr",
|
|
r"""
|
|
qr(some=True) -> (Tensor, Tensor)
|
|
|
|
See :func:`torch.qr`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"qscheme",
|
|
r"""
|
|
qscheme() -> torch.qscheme
|
|
|
|
Returns the quantization scheme of a given QTensor.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"quantile",
|
|
r"""
|
|
quantile(q, dim=None, keepdim=False, *, interpolation='linear') -> Tensor
|
|
|
|
See :func:`torch.quantile`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"nanquantile",
|
|
r"""
|
|
nanquantile(q, dim=None, keepdim=False, *, interpolation='linear') -> Tensor
|
|
|
|
See :func:`torch.nanquantile`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"q_scale",
|
|
r"""
|
|
q_scale() -> float
|
|
|
|
Given a Tensor quantized by linear(affine) quantization,
|
|
returns the scale of the underlying quantizer().
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"q_zero_point",
|
|
r"""
|
|
q_zero_point() -> int
|
|
|
|
Given a Tensor quantized by linear(affine) quantization,
|
|
returns the zero_point of the underlying quantizer().
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"q_per_channel_scales",
|
|
r"""
|
|
q_per_channel_scales() -> Tensor
|
|
|
|
Given a Tensor quantized by linear (affine) per-channel quantization,
|
|
returns a Tensor of scales of the underlying quantizer. It has the number of
|
|
elements that matches the corresponding dimensions (from q_per_channel_axis) of
|
|
the tensor.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"q_per_channel_zero_points",
|
|
r"""
|
|
q_per_channel_zero_points() -> Tensor
|
|
|
|
Given a Tensor quantized by linear (affine) per-channel quantization,
|
|
returns a tensor of zero_points of the underlying quantizer. It has the number of
|
|
elements that matches the corresponding dimensions (from q_per_channel_axis) of
|
|
the tensor.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"q_per_channel_axis",
|
|
r"""
|
|
q_per_channel_axis() -> int
|
|
|
|
Given a Tensor quantized by linear (affine) per-channel quantization,
|
|
returns the index of dimension on which per-channel quantization is applied.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"random_",
|
|
r"""
|
|
random_(from=0, to=None, *, generator=None) -> Tensor
|
|
|
|
Fills :attr:`self` tensor with numbers sampled from the discrete uniform
|
|
distribution over ``[from, to - 1]``. If not specified, the values are usually
|
|
only bounded by :attr:`self` tensor's data type. However, for floating point
|
|
types, if unspecified, range will be ``[0, 2^mantissa]`` to ensure that every
|
|
value is representable. For example, `torch.tensor(1, dtype=torch.double).random_()`
|
|
will be uniform in ``[0, 2^53]``.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"rad2deg",
|
|
r"""
|
|
rad2deg() -> Tensor
|
|
|
|
See :func:`torch.rad2deg`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"rad2deg_",
|
|
r"""
|
|
rad2deg_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.rad2deg`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"deg2rad",
|
|
r"""
|
|
deg2rad() -> Tensor
|
|
|
|
See :func:`torch.deg2rad`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"deg2rad_",
|
|
r"""
|
|
deg2rad_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.deg2rad`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"ravel",
|
|
r"""
|
|
ravel() -> Tensor
|
|
|
|
see :func:`torch.ravel`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"reciprocal",
|
|
r"""
|
|
reciprocal() -> Tensor
|
|
|
|
See :func:`torch.reciprocal`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"reciprocal_",
|
|
r"""
|
|
reciprocal_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.reciprocal`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"record_stream",
|
|
r"""
|
|
record_stream(stream)
|
|
|
|
Marks the tensor as having been used by this stream. When the tensor
|
|
is deallocated, ensure the tensor memory is not reused for another tensor
|
|
until all work queued on :attr:`stream` at the time of deallocation is
|
|
complete.
|
|
|
|
.. note::
|
|
|
|
The caching allocator is aware of only the stream where a tensor was
|
|
allocated. Due to the awareness, it already correctly manages the life
|
|
cycle of tensors on only one stream. But if a tensor is used on a stream
|
|
different from the stream of origin, the allocator might reuse the memory
|
|
unexpectedly. Calling this method lets the allocator know which streams
|
|
have used the tensor.
|
|
|
|
.. warning::
|
|
|
|
This method is most suitable for use cases where you are providing a
|
|
function that created a tensor on a side stream, and want users to be able
|
|
to make use of the tensor without having to think carefully about stream
|
|
safety when making use of them. These safety guarantees come at some
|
|
performance and predictability cost (analogous to the tradeoff between GC
|
|
and manual memory management), so if you are in a situation where
|
|
you manage the full lifetime of your tensors, you may consider instead
|
|
manually managing CUDA events so that calling this method is not necessary.
|
|
In particular, when you call this method, on later allocations the
|
|
allocator will poll the recorded stream to see if all operations have
|
|
completed yet; you can potentially race with side stream computation and
|
|
non-deterministically reuse or fail to reuse memory for an allocation.
|
|
|
|
You can safely use tensors allocated on side streams without
|
|
:meth:`~Tensor.record_stream`; you must manually ensure that
|
|
any non-creation stream uses of a tensor are synced back to the creation
|
|
stream before you deallocate the tensor. As the CUDA caching allocator
|
|
guarantees that the memory will only be reused with the same creation stream,
|
|
this is sufficient to ensure that writes to future reallocations of the
|
|
memory will be delayed until non-creation stream uses are done.
|
|
(Counterintuitively, you may observe that on the CPU side we have already
|
|
reallocated the tensor, even though CUDA kernels on the old tensor are
|
|
still in progress. This is fine, because CUDA operations on the new
|
|
tensor will appropriately wait for the old operations to complete, as they
|
|
are all on the same stream.)
|
|
|
|
Concretely, this looks like this::
|
|
|
|
with torch.cuda.stream(s0):
|
|
x = torch.zeros(N)
|
|
|
|
s1.wait_stream(s0)
|
|
with torch.cuda.stream(s1):
|
|
y = some_comm_op(x)
|
|
|
|
... some compute on s0 ...
|
|
|
|
# synchronize creation stream s0 to side stream s1
|
|
# before deallocating x
|
|
s0.wait_stream(s1)
|
|
del x
|
|
|
|
Note that some discretion is required when deciding when to perform
|
|
``s0.wait_stream(s1)``. In particular, if we were to wait immediately
|
|
after ``some_comm_op``, there wouldn't be any point in having the side
|
|
stream; it would be equivalent to have run ``some_comm_op`` on ``s0``.
|
|
Instead, the synchronization must be placed at some appropriate, later
|
|
point in time where you expect the side stream ``s1`` to have finished
|
|
work. This location is typically identified via profiling, e.g., using
|
|
Chrome traces produced
|
|
:meth:`torch.autograd.profiler.profile.export_chrome_trace`. If you
|
|
place the wait too early, work on s0 will block until ``s1`` has finished,
|
|
preventing further overlapping of communication and computation. If you
|
|
place the wait too late, you will use more memory than is strictly
|
|
necessary (as you are keeping ``x`` live for longer.) For a concrete
|
|
example of how this guidance can be applied in practice, see this post:
|
|
`FSDP and CUDACachingAllocator
|
|
<https://dev-discuss.pytorch.org/t/fsdp-cudacachingallocator-an-outsider-newb-perspective/1486>`_.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"remainder",
|
|
r"""
|
|
remainder(divisor) -> Tensor
|
|
|
|
See :func:`torch.remainder`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"remainder_",
|
|
r"""
|
|
remainder_(divisor) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.remainder`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"renorm",
|
|
r"""
|
|
renorm(p, dim, maxnorm) -> Tensor
|
|
|
|
See :func:`torch.renorm`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"renorm_",
|
|
r"""
|
|
renorm_(p, dim, maxnorm) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.renorm`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"repeat",
|
|
r"""
|
|
repeat(*sizes) -> Tensor
|
|
|
|
Repeats this tensor along the specified dimensions.
|
|
|
|
Unlike :meth:`~Tensor.expand`, this function copies the tensor's data.
|
|
|
|
.. warning::
|
|
|
|
:meth:`~Tensor.repeat` behaves differently from
|
|
`numpy.repeat <https://docs.scipy.org/doc/numpy/reference/generated/numpy.repeat.html>`_,
|
|
but is more similar to
|
|
`numpy.tile <https://docs.scipy.org/doc/numpy/reference/generated/numpy.tile.html>`_.
|
|
For the operator similar to `numpy.repeat`, see :func:`torch.repeat_interleave`.
|
|
|
|
Args:
|
|
sizes (torch.Size or int...): The number of times to repeat this tensor along each
|
|
dimension
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([1, 2, 3])
|
|
>>> x.repeat(4, 2)
|
|
tensor([[ 1, 2, 3, 1, 2, 3],
|
|
[ 1, 2, 3, 1, 2, 3],
|
|
[ 1, 2, 3, 1, 2, 3],
|
|
[ 1, 2, 3, 1, 2, 3]])
|
|
>>> x.repeat(4, 2, 1).size()
|
|
torch.Size([4, 2, 3])
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"repeat_interleave",
|
|
r"""
|
|
repeat_interleave(repeats, dim=None, *, output_size=None) -> Tensor
|
|
|
|
See :func:`torch.repeat_interleave`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"requires_grad_",
|
|
r"""
|
|
requires_grad_(requires_grad=True) -> Tensor
|
|
|
|
Change if autograd should record operations on this tensor: sets this tensor's
|
|
:attr:`requires_grad` attribute in-place. Returns this tensor.
|
|
|
|
:func:`requires_grad_`'s main use case is to tell autograd to begin recording
|
|
operations on a Tensor ``tensor``. If ``tensor`` has ``requires_grad=False``
|
|
(because it was obtained through a DataLoader, or required preprocessing or
|
|
initialization), ``tensor.requires_grad_()`` makes it so that autograd will
|
|
begin to record operations on ``tensor``.
|
|
|
|
Args:
|
|
requires_grad (bool): If autograd should record operations on this tensor.
|
|
Default: ``True``.
|
|
|
|
Example::
|
|
|
|
>>> # Let's say we want to preprocess some saved weights and use
|
|
>>> # the result as new weights.
|
|
>>> saved_weights = [0.1, 0.2, 0.3, 0.25]
|
|
>>> loaded_weights = torch.tensor(saved_weights)
|
|
>>> weights = preprocess(loaded_weights) # some function
|
|
>>> weights
|
|
tensor([-0.5503, 0.4926, -2.1158, -0.8303])
|
|
|
|
>>> # Now, start to record operations done to weights
|
|
>>> weights.requires_grad_()
|
|
>>> out = weights.pow(2).sum()
|
|
>>> out.backward()
|
|
>>> weights.grad
|
|
tensor([-1.1007, 0.9853, -4.2316, -1.6606])
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"reshape",
|
|
r"""
|
|
reshape(*shape) -> Tensor
|
|
|
|
Returns a tensor with the same data and number of elements as :attr:`self`
|
|
but with the specified shape. This method returns a view if :attr:`shape` is
|
|
compatible with the current shape. See :meth:`torch.Tensor.view` on when it is
|
|
possible to return a view.
|
|
|
|
See :func:`torch.reshape`
|
|
|
|
Args:
|
|
shape (tuple of ints or int...): the desired shape
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"reshape_as",
|
|
r"""
|
|
reshape_as(other) -> Tensor
|
|
|
|
Returns this tensor as the same shape as :attr:`other`.
|
|
``self.reshape_as(other)`` is equivalent to ``self.reshape(other.sizes())``.
|
|
This method returns a view if ``other.sizes()`` is compatible with the current
|
|
shape. See :meth:`torch.Tensor.view` on when it is possible to return a view.
|
|
|
|
Please see :meth:`reshape` for more information about ``reshape``.
|
|
|
|
Args:
|
|
other (:class:`torch.Tensor`): The result tensor has the same shape
|
|
as :attr:`other`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"resize_",
|
|
r"""
|
|
resize_(*sizes, memory_format=torch.contiguous_format) -> Tensor
|
|
|
|
Resizes :attr:`self` tensor to the specified size. If the number of elements is
|
|
larger than the current storage size, then the underlying storage is resized
|
|
to fit the new number of elements. If the number of elements is smaller, the
|
|
underlying storage is not changed. Existing elements are preserved but any new
|
|
memory is uninitialized.
|
|
|
|
.. warning::
|
|
|
|
This is a low-level method. The storage is reinterpreted as C-contiguous,
|
|
ignoring the current strides (unless the target size equals the current
|
|
size, in which case the tensor is left unchanged). For most purposes, you
|
|
will instead want to use :meth:`~Tensor.view()`, which checks for
|
|
contiguity, or :meth:`~Tensor.reshape()`, which copies data if needed. To
|
|
change the size in-place with custom strides, see :meth:`~Tensor.set_()`.
|
|
|
|
.. note::
|
|
|
|
If :func:`torch.use_deterministic_algorithms()` and
|
|
:attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to
|
|
``True``, new elements are initialized to prevent nondeterministic behavior
|
|
from using the result as an input to an operation. Floating point and
|
|
complex values are set to NaN, and integer values are set to the maximum
|
|
value.
|
|
|
|
Args:
|
|
sizes (torch.Size or int...): the desired size
|
|
memory_format (:class:`torch.memory_format`, optional): the desired memory format of
|
|
Tensor. Default: ``torch.contiguous_format``. Note that memory format of
|
|
:attr:`self` is going to be unaffected if ``self.size()`` matches ``sizes``.
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([[1, 2], [3, 4], [5, 6]])
|
|
>>> x.resize_(2, 2)
|
|
tensor([[ 1, 2],
|
|
[ 3, 4]])
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"resize_as_",
|
|
r"""
|
|
resize_as_(tensor, memory_format=torch.contiguous_format) -> Tensor
|
|
|
|
Resizes the :attr:`self` tensor to be the same size as the specified
|
|
:attr:`tensor`. This is equivalent to ``self.resize_(tensor.size())``.
|
|
|
|
Args:
|
|
memory_format (:class:`torch.memory_format`, optional): the desired memory format of
|
|
Tensor. Default: ``torch.contiguous_format``. Note that memory format of
|
|
:attr:`self` is going to be unaffected if ``self.size()`` matches ``tensor.size()``.
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"rot90",
|
|
r"""
|
|
rot90(k, dims) -> Tensor
|
|
|
|
See :func:`torch.rot90`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"round",
|
|
r"""
|
|
round(decimals=0) -> Tensor
|
|
|
|
See :func:`torch.round`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"round_",
|
|
r"""
|
|
round_(decimals=0) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.round`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"rsqrt",
|
|
r"""
|
|
rsqrt() -> Tensor
|
|
|
|
See :func:`torch.rsqrt`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"rsqrt_",
|
|
r"""
|
|
rsqrt_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.rsqrt`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"scatter_",
|
|
r"""
|
|
scatter_(dim, index, src, *, reduce=None) -> Tensor
|
|
|
|
Writes all values from the tensor :attr:`src` into :attr:`self` at the indices
|
|
specified in the :attr:`index` tensor. For each value in :attr:`src`, its output
|
|
index is specified by its index in :attr:`src` for ``dimension != dim`` and by
|
|
the corresponding value in :attr:`index` for ``dimension = dim``.
|
|
|
|
For a 3-D tensor, :attr:`self` is updated as::
|
|
|
|
self[index[i][j][k]][j][k] = src[i][j][k] # if dim == 0
|
|
self[i][index[i][j][k]][k] = src[i][j][k] # if dim == 1
|
|
self[i][j][index[i][j][k]] = src[i][j][k] # if dim == 2
|
|
|
|
This is the reverse operation of the manner described in :meth:`~Tensor.gather`.
|
|
|
|
:attr:`self`, :attr:`index` and :attr:`src` (if it is a Tensor) should all have
|
|
the same number of dimensions. It is also required that
|
|
``index.size(d) <= src.size(d)`` for all dimensions ``d``, and that
|
|
``index.size(d) <= self.size(d)`` for all dimensions ``d != dim``.
|
|
Note that ``index`` and ``src`` do not broadcast.
|
|
|
|
Moreover, as for :meth:`~Tensor.gather`, the values of :attr:`index` must be
|
|
between ``0`` and ``self.size(dim) - 1`` inclusive.
|
|
|
|
.. warning::
|
|
|
|
When indices are not unique, the behavior is non-deterministic (one of the
|
|
values from ``src`` will be picked arbitrarily) and the gradient will be
|
|
incorrect (it will be propagated to all locations in the source that
|
|
correspond to the same index)!
|
|
|
|
.. note::
|
|
|
|
The backward pass is implemented only for ``src.shape == index.shape``.
|
|
|
|
Additionally accepts an optional :attr:`reduce` argument that allows
|
|
specification of an optional reduction operation, which is applied to all
|
|
values in the tensor :attr:`src` into :attr:`self` at the indices
|
|
specified in the :attr:`index`. For each value in :attr:`src`, the reduction
|
|
operation is applied to an index in :attr:`self` which is specified by
|
|
its index in :attr:`src` for ``dimension != dim`` and by the corresponding
|
|
value in :attr:`index` for ``dimension = dim``.
|
|
|
|
Given a 3-D tensor and reduction using the multiplication operation, :attr:`self`
|
|
is updated as::
|
|
|
|
self[index[i][j][k]][j][k] *= src[i][j][k] # if dim == 0
|
|
self[i][index[i][j][k]][k] *= src[i][j][k] # if dim == 1
|
|
self[i][j][index[i][j][k]] *= src[i][j][k] # if dim == 2
|
|
|
|
Reducing with the addition operation is the same as using
|
|
:meth:`~torch.Tensor.scatter_add_`.
|
|
|
|
.. warning::
|
|
The reduce argument with Tensor ``src`` is deprecated and will be removed in
|
|
a future PyTorch release. Please use :meth:`~torch.Tensor.scatter_reduce_`
|
|
instead for more reduction options.
|
|
|
|
Args:
|
|
dim (int): the axis along which to index
|
|
index (LongTensor): the indices of elements to scatter, can be either empty
|
|
or of the same dimensionality as ``src``. When empty, the operation
|
|
returns ``self`` unchanged.
|
|
src (Tensor): the source element(s) to scatter.
|
|
|
|
Keyword args:
|
|
reduce (str, optional): reduction operation to apply, can be either
|
|
``'add'`` or ``'multiply'``.
|
|
|
|
Example::
|
|
|
|
>>> src = torch.arange(1, 11).reshape((2, 5))
|
|
>>> src
|
|
tensor([[ 1, 2, 3, 4, 5],
|
|
[ 6, 7, 8, 9, 10]])
|
|
>>> index = torch.tensor([[0, 1, 2, 0]])
|
|
>>> torch.zeros(3, 5, dtype=src.dtype).scatter_(0, index, src)
|
|
tensor([[1, 0, 0, 4, 0],
|
|
[0, 2, 0, 0, 0],
|
|
[0, 0, 3, 0, 0]])
|
|
>>> index = torch.tensor([[0, 1, 2], [0, 1, 4]])
|
|
>>> torch.zeros(3, 5, dtype=src.dtype).scatter_(1, index, src)
|
|
tensor([[1, 2, 3, 0, 0],
|
|
[6, 7, 0, 0, 8],
|
|
[0, 0, 0, 0, 0]])
|
|
|
|
>>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]),
|
|
... 1.23, reduce='multiply')
|
|
tensor([[2.0000, 2.0000, 2.4600, 2.0000],
|
|
[2.0000, 2.0000, 2.0000, 2.4600]])
|
|
>>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]),
|
|
... 1.23, reduce='add')
|
|
tensor([[2.0000, 2.0000, 3.2300, 2.0000],
|
|
[2.0000, 2.0000, 2.0000, 3.2300]])
|
|
|
|
.. function:: scatter_(dim, index, value, *, reduce=None) -> Tensor:
|
|
:noindex:
|
|
|
|
Writes the value from :attr:`value` into :attr:`self` at the indices
|
|
specified in the :attr:`index` tensor. This operation is equivalent to the previous version,
|
|
with the :attr:`src` tensor filled entirely with :attr:`value`.
|
|
|
|
Args:
|
|
dim (int): the axis along which to index
|
|
index (LongTensor): the indices of elements to scatter, can be either empty
|
|
or of the same dimensionality as ``src``. When empty, the operation
|
|
returns ``self`` unchanged.
|
|
value (Scalar): the value to scatter.
|
|
|
|
Keyword args:
|
|
reduce (str, optional): reduction operation to apply, can be either
|
|
``'add'`` or ``'multiply'``.
|
|
|
|
Example::
|
|
|
|
>>> index = torch.tensor([[0, 1]])
|
|
>>> value = 2
|
|
>>> torch.zeros(3, 5).scatter_(0, index, value)
|
|
tensor([[2., 0., 0., 0., 0.],
|
|
[0., 2., 0., 0., 0.],
|
|
[0., 0., 0., 0., 0.]])
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"scatter_add_",
|
|
r"""
|
|
scatter_add_(dim, index, src) -> Tensor
|
|
|
|
Adds all values from the tensor :attr:`src` into :attr:`self` at the indices
|
|
specified in the :attr:`index` tensor in a similar fashion as
|
|
:meth:`~torch.Tensor.scatter_`. For each value in :attr:`src`, it is added to
|
|
an index in :attr:`self` which is specified by its index in :attr:`src`
|
|
for ``dimension != dim`` and by the corresponding value in :attr:`index` for
|
|
``dimension = dim``.
|
|
|
|
For a 3-D tensor, :attr:`self` is updated as::
|
|
|
|
self[index[i][j][k]][j][k] += src[i][j][k] # if dim == 0
|
|
self[i][index[i][j][k]][k] += src[i][j][k] # if dim == 1
|
|
self[i][j][index[i][j][k]] += src[i][j][k] # if dim == 2
|
|
|
|
:attr:`self`, :attr:`index` and :attr:`src` should have same number of
|
|
dimensions. It is also required that ``index.size(d) <= src.size(d)`` for all
|
|
dimensions ``d``, and that ``index.size(d) <= self.size(d)`` for all dimensions
|
|
``d != dim``. Note that ``index`` and ``src`` do not broadcast.
|
|
|
|
Note:
|
|
{forward_reproducibility_note}
|
|
|
|
.. note::
|
|
|
|
The backward pass is implemented only for ``src.shape == index.shape``.
|
|
|
|
Args:
|
|
dim (int): the axis along which to index
|
|
index (LongTensor): the indices of elements to scatter and add, can be
|
|
either empty or of the same dimensionality as ``src``. When empty, the
|
|
operation returns ``self`` unchanged.
|
|
src (Tensor): the source elements to scatter and add
|
|
|
|
Example::
|
|
|
|
>>> src = torch.ones((2, 5))
|
|
>>> index = torch.tensor([[0, 1, 2, 0, 0]])
|
|
>>> torch.zeros(3, 5, dtype=src.dtype).scatter_add_(0, index, src)
|
|
tensor([[1., 0., 0., 1., 1.],
|
|
[0., 1., 0., 0., 0.],
|
|
[0., 0., 1., 0., 0.]])
|
|
>>> index = torch.tensor([[0, 1, 2, 0, 0], [0, 1, 2, 2, 2]])
|
|
>>> torch.zeros(3, 5, dtype=src.dtype).scatter_add_(0, index, src)
|
|
tensor([[2., 0., 0., 1., 1.],
|
|
[0., 2., 0., 0., 0.],
|
|
[0., 0., 2., 1., 1.]])
|
|
|
|
""".format(
|
|
**reproducibility_notes
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"scatter_reduce_",
|
|
r"""
|
|
scatter_reduce_(dim, index, src, reduce, *, include_self=True) -> Tensor
|
|
|
|
Reduces all values from the :attr:`src` tensor to the indices specified in
|
|
the :attr:`index` tensor in the :attr:`self` tensor using the applied reduction
|
|
defined via the :attr:`reduce` argument (:obj:`"sum"`, :obj:`"prod"`, :obj:`"mean"`,
|
|
:obj:`"amax"`, :obj:`"amin"`). For each value in :attr:`src`, it is reduced to an
|
|
index in :attr:`self` which is specified by its index in :attr:`src` for
|
|
``dimension != dim`` and by the corresponding value in :attr:`index` for
|
|
``dimension = dim``. If :obj:`include_self="True"`, the values in the :attr:`self`
|
|
tensor are included in the reduction.
|
|
|
|
:attr:`self`, :attr:`index` and :attr:`src` should all have
|
|
the same number of dimensions. It is also required that
|
|
``index.size(d) <= src.size(d)`` for all dimensions ``d``, and that
|
|
``index.size(d) <= self.size(d)`` for all dimensions ``d != dim``.
|
|
Note that ``index`` and ``src`` do not broadcast.
|
|
|
|
For a 3-D tensor with :obj:`reduce="sum"` and :obj:`include_self=True` the
|
|
output is given as::
|
|
|
|
self[index[i][j][k]][j][k] += src[i][j][k] # if dim == 0
|
|
self[i][index[i][j][k]][k] += src[i][j][k] # if dim == 1
|
|
self[i][j][index[i][j][k]] += src[i][j][k] # if dim == 2
|
|
|
|
Note:
|
|
{forward_reproducibility_note}
|
|
|
|
.. note::
|
|
|
|
The backward pass is implemented only for ``src.shape == index.shape``.
|
|
|
|
.. warning::
|
|
|
|
This function is in beta and may change in the near future.
|
|
|
|
Args:
|
|
dim (int): the axis along which to index
|
|
index (LongTensor): the indices of elements to scatter and reduce.
|
|
src (Tensor): the source elements to scatter and reduce
|
|
reduce (str): the reduction operation to apply for non-unique indices
|
|
(:obj:`"sum"`, :obj:`"prod"`, :obj:`"mean"`, :obj:`"amax"`, :obj:`"amin"`)
|
|
include_self (bool): whether elements from the :attr:`self` tensor are
|
|
included in the reduction
|
|
|
|
Example::
|
|
|
|
>>> src = torch.tensor([1., 2., 3., 4., 5., 6.])
|
|
>>> index = torch.tensor([0, 1, 0, 1, 2, 1])
|
|
>>> input = torch.tensor([1., 2., 3., 4.])
|
|
>>> input.scatter_reduce(0, index, src, reduce="sum")
|
|
tensor([5., 14., 8., 4.])
|
|
>>> input.scatter_reduce(0, index, src, reduce="sum", include_self=False)
|
|
tensor([4., 12., 5., 4.])
|
|
>>> input2 = torch.tensor([5., 4., 3., 2.])
|
|
>>> input2.scatter_reduce(0, index, src, reduce="amax")
|
|
tensor([5., 6., 5., 2.])
|
|
>>> input2.scatter_reduce(0, index, src, reduce="amax", include_self=False)
|
|
tensor([3., 6., 5., 2.])
|
|
|
|
|
|
""".format(
|
|
**reproducibility_notes
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"select",
|
|
r"""
|
|
select(dim, index) -> Tensor
|
|
|
|
See :func:`torch.select`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"select_scatter",
|
|
r"""
|
|
select_scatter(src, dim, index) -> Tensor
|
|
|
|
See :func:`torch.select_scatter`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"slice_scatter",
|
|
r"""
|
|
slice_scatter(src, dim=0, start=None, end=None, step=1) -> Tensor
|
|
|
|
See :func:`torch.slice_scatter`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"set_",
|
|
r"""
|
|
set_(source=None, storage_offset=0, size=None, stride=None) -> Tensor
|
|
|
|
Sets the underlying storage, size, and strides. If :attr:`source` is a tensor,
|
|
:attr:`self` tensor will share the same storage and have the same size and
|
|
strides as :attr:`source`. Changes to elements in one tensor will be reflected
|
|
in the other.
|
|
|
|
If :attr:`source` is a :class:`~torch.Storage`, the method sets the underlying
|
|
storage, offset, size, and stride.
|
|
|
|
Args:
|
|
source (Tensor or Storage): the tensor or storage to use
|
|
storage_offset (int, optional): the offset in the storage
|
|
size (torch.Size, optional): the desired size. Defaults to the size of the source.
|
|
stride (tuple, optional): the desired stride. Defaults to C-contiguous strides.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sigmoid",
|
|
r"""
|
|
sigmoid() -> Tensor
|
|
|
|
See :func:`torch.sigmoid`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sigmoid_",
|
|
r"""
|
|
sigmoid_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.sigmoid`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"logit",
|
|
r"""
|
|
logit() -> Tensor
|
|
|
|
See :func:`torch.logit`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"logit_",
|
|
r"""
|
|
logit_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.logit`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sign",
|
|
r"""
|
|
sign() -> Tensor
|
|
|
|
See :func:`torch.sign`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sign_",
|
|
r"""
|
|
sign_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.sign`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"signbit",
|
|
r"""
|
|
signbit() -> Tensor
|
|
|
|
See :func:`torch.signbit`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sgn",
|
|
r"""
|
|
sgn() -> Tensor
|
|
|
|
See :func:`torch.sgn`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sgn_",
|
|
r"""
|
|
sgn_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.sgn`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sin",
|
|
r"""
|
|
sin() -> Tensor
|
|
|
|
See :func:`torch.sin`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sin_",
|
|
r"""
|
|
sin_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.sin`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sinc",
|
|
r"""
|
|
sinc() -> Tensor
|
|
|
|
See :func:`torch.sinc`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sinc_",
|
|
r"""
|
|
sinc_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.sinc`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sinh",
|
|
r"""
|
|
sinh() -> Tensor
|
|
|
|
See :func:`torch.sinh`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sinh_",
|
|
r"""
|
|
sinh_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.sinh`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"size",
|
|
r"""
|
|
size(dim=None) -> torch.Size or int
|
|
|
|
Returns the size of the :attr:`self` tensor. If ``dim`` is not specified,
|
|
the returned value is a :class:`torch.Size`, a subclass of :class:`tuple`.
|
|
If ``dim`` is specified, returns an int holding the size of that dimension.
|
|
|
|
Args:
|
|
dim (int, optional): The dimension for which to retrieve the size.
|
|
|
|
Example::
|
|
|
|
>>> t = torch.empty(3, 4, 5)
|
|
>>> t.size()
|
|
torch.Size([3, 4, 5])
|
|
>>> t.size(dim=1)
|
|
4
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"shape",
|
|
r"""
|
|
shape() -> torch.Size
|
|
|
|
Returns the size of the :attr:`self` tensor. Alias for :attr:`size`.
|
|
|
|
See also :meth:`Tensor.size`.
|
|
|
|
Example::
|
|
|
|
>>> t = torch.empty(3, 4, 5)
|
|
>>> t.size()
|
|
torch.Size([3, 4, 5])
|
|
>>> t.shape
|
|
torch.Size([3, 4, 5])
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sort",
|
|
r"""
|
|
sort(dim=-1, descending=False) -> (Tensor, LongTensor)
|
|
|
|
See :func:`torch.sort`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"msort",
|
|
r"""
|
|
msort() -> Tensor
|
|
|
|
See :func:`torch.msort`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"argsort",
|
|
r"""
|
|
argsort(dim=-1, descending=False) -> LongTensor
|
|
|
|
See :func:`torch.argsort`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sparse_dim",
|
|
r"""
|
|
sparse_dim() -> int
|
|
|
|
Return the number of sparse dimensions in a :ref:`sparse tensor <sparse-docs>` :attr:`self`.
|
|
|
|
.. note::
|
|
Returns ``0`` if :attr:`self` is not a sparse tensor.
|
|
|
|
See also :meth:`Tensor.dense_dim` and :ref:`hybrid tensors <sparse-hybrid-coo-docs>`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sparse_resize_",
|
|
r"""
|
|
sparse_resize_(size, sparse_dim, dense_dim) -> Tensor
|
|
|
|
Resizes :attr:`self` :ref:`sparse tensor <sparse-docs>` to the desired
|
|
size and the number of sparse and dense dimensions.
|
|
|
|
.. note::
|
|
If the number of specified elements in :attr:`self` is zero, then
|
|
:attr:`size`, :attr:`sparse_dim`, and :attr:`dense_dim` can be any
|
|
size and positive integers such that ``len(size) == sparse_dim +
|
|
dense_dim``.
|
|
|
|
If :attr:`self` specifies one or more elements, however, then each
|
|
dimension in :attr:`size` must not be smaller than the corresponding
|
|
dimension of :attr:`self`, :attr:`sparse_dim` must equal the number
|
|
of sparse dimensions in :attr:`self`, and :attr:`dense_dim` must
|
|
equal the number of dense dimensions in :attr:`self`.
|
|
|
|
.. warning::
|
|
Throws an error if :attr:`self` is not a sparse tensor.
|
|
|
|
Args:
|
|
size (torch.Size): the desired size. If :attr:`self` is non-empty
|
|
sparse tensor, the desired size cannot be smaller than the
|
|
original size.
|
|
sparse_dim (int): the number of sparse dimensions
|
|
dense_dim (int): the number of dense dimensions
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sparse_resize_and_clear_",
|
|
r"""
|
|
sparse_resize_and_clear_(size, sparse_dim, dense_dim) -> Tensor
|
|
|
|
Removes all specified elements from a :ref:`sparse tensor
|
|
<sparse-docs>` :attr:`self` and resizes :attr:`self` to the desired
|
|
size and the number of sparse and dense dimensions.
|
|
|
|
.. warning:
|
|
Throws an error if :attr:`self` is not a sparse tensor.
|
|
|
|
Args:
|
|
size (torch.Size): the desired size.
|
|
sparse_dim (int): the number of sparse dimensions
|
|
dense_dim (int): the number of dense dimensions
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sqrt",
|
|
r"""
|
|
sqrt() -> Tensor
|
|
|
|
See :func:`torch.sqrt`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sqrt_",
|
|
r"""
|
|
sqrt_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.sqrt`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"square",
|
|
r"""
|
|
square() -> Tensor
|
|
|
|
See :func:`torch.square`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"square_",
|
|
r"""
|
|
square_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.square`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"squeeze",
|
|
r"""
|
|
squeeze(dim=None) -> Tensor
|
|
|
|
See :func:`torch.squeeze`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"squeeze_",
|
|
r"""
|
|
squeeze_(dim=None) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.squeeze`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"std",
|
|
r"""
|
|
std(dim=None, *, correction=1, keepdim=False) -> Tensor
|
|
|
|
See :func:`torch.std`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"storage_offset",
|
|
r"""
|
|
storage_offset() -> int
|
|
|
|
Returns :attr:`self` tensor's offset in the underlying storage in terms of
|
|
number of storage elements (not bytes).
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([1, 2, 3, 4, 5])
|
|
>>> x.storage_offset()
|
|
0
|
|
>>> x[3:].storage_offset()
|
|
3
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"untyped_storage",
|
|
r"""
|
|
untyped_storage() -> torch.UntypedStorage
|
|
|
|
Returns the underlying :class:`UntypedStorage`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"stride",
|
|
r"""
|
|
stride(dim) -> tuple or int
|
|
|
|
Returns the stride of :attr:`self` tensor.
|
|
|
|
Stride is the jump necessary to go from one element to the next one in the
|
|
specified dimension :attr:`dim`. A tuple of all strides is returned when no
|
|
argument is passed in. Otherwise, an integer value is returned as the stride in
|
|
the particular dimension :attr:`dim`.
|
|
|
|
Args:
|
|
dim (int, optional): the desired dimension in which stride is required
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
|
|
>>> x.stride()
|
|
(5, 1)
|
|
>>> x.stride(0)
|
|
5
|
|
>>> x.stride(-1)
|
|
1
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sub",
|
|
r"""
|
|
sub(other, *, alpha=1) -> Tensor
|
|
|
|
See :func:`torch.sub`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sub_",
|
|
r"""
|
|
sub_(other, *, alpha=1) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.sub`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"subtract",
|
|
r"""
|
|
subtract(other, *, alpha=1) -> Tensor
|
|
|
|
See :func:`torch.subtract`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"subtract_",
|
|
r"""
|
|
subtract_(other, *, alpha=1) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.subtract`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sum",
|
|
r"""
|
|
sum(dim=None, keepdim=False, dtype=None) -> Tensor
|
|
|
|
See :func:`torch.sum`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"nansum",
|
|
r"""
|
|
nansum(dim=None, keepdim=False, dtype=None) -> Tensor
|
|
|
|
See :func:`torch.nansum`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"svd",
|
|
r"""
|
|
svd(some=True, compute_uv=True) -> (Tensor, Tensor, Tensor)
|
|
|
|
See :func:`torch.svd`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"swapdims",
|
|
r"""
|
|
swapdims(dim0, dim1) -> Tensor
|
|
|
|
See :func:`torch.swapdims`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"swapdims_",
|
|
r"""
|
|
swapdims_(dim0, dim1) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.swapdims`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"swapaxes",
|
|
r"""
|
|
swapaxes(axis0, axis1) -> Tensor
|
|
|
|
See :func:`torch.swapaxes`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"swapaxes_",
|
|
r"""
|
|
swapaxes_(axis0, axis1) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.swapaxes`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"t",
|
|
r"""
|
|
t() -> Tensor
|
|
|
|
See :func:`torch.t`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"t_",
|
|
r"""
|
|
t_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.t`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"tile",
|
|
r"""
|
|
tile(dims) -> Tensor
|
|
|
|
See :func:`torch.tile`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"to",
|
|
r"""
|
|
to(*args, **kwargs) -> Tensor
|
|
|
|
Performs Tensor dtype and/or device conversion. A :class:`torch.dtype` and :class:`torch.device` are
|
|
inferred from the arguments of ``self.to(*args, **kwargs)``.
|
|
|
|
.. note::
|
|
|
|
If the ``self`` Tensor already
|
|
has the correct :class:`torch.dtype` and :class:`torch.device`, then ``self`` is returned.
|
|
Otherwise, the returned tensor is a copy of ``self`` with the desired
|
|
:class:`torch.dtype` and :class:`torch.device`.
|
|
|
|
Here are the ways to call ``to``:
|
|
|
|
.. method:: to(dtype, non_blocking=False, copy=False, memory_format=torch.preserve_format) -> Tensor
|
|
:noindex:
|
|
|
|
Returns a Tensor with the specified :attr:`dtype`
|
|
|
|
Args:
|
|
{memory_format}
|
|
|
|
.. method:: to(device=None, dtype=None, non_blocking=False, copy=False, memory_format=torch.preserve_format) -> Tensor
|
|
:noindex:
|
|
|
|
Returns a Tensor with the specified :attr:`device` and (optional)
|
|
:attr:`dtype`. If :attr:`dtype` is ``None`` it is inferred to be ``self.dtype``.
|
|
When :attr:`non_blocking`, tries to convert asynchronously with respect to
|
|
the host if possible, e.g., converting a CPU Tensor with pinned memory to a
|
|
CUDA Tensor.
|
|
When :attr:`copy` is set, a new Tensor is created even when the Tensor
|
|
already matches the desired conversion.
|
|
|
|
Args:
|
|
{memory_format}
|
|
|
|
.. method:: to(other, non_blocking=False, copy=False) -> Tensor
|
|
:noindex:
|
|
|
|
Returns a Tensor with same :class:`torch.dtype` and :class:`torch.device` as
|
|
the Tensor :attr:`other`. When :attr:`non_blocking`, tries to convert
|
|
asynchronously with respect to the host if possible, e.g., converting a CPU
|
|
Tensor with pinned memory to a CUDA Tensor.
|
|
When :attr:`copy` is set, a new Tensor is created even when the Tensor
|
|
already matches the desired conversion.
|
|
|
|
Example::
|
|
|
|
>>> tensor = torch.randn(2, 2) # Initially dtype=float32, device=cpu
|
|
>>> tensor.to(torch.float64)
|
|
tensor([[-0.5044, 0.0005],
|
|
[ 0.3310, -0.0584]], dtype=torch.float64)
|
|
|
|
>>> cuda0 = torch.device('cuda:0')
|
|
>>> tensor.to(cuda0)
|
|
tensor([[-0.5044, 0.0005],
|
|
[ 0.3310, -0.0584]], device='cuda:0')
|
|
|
|
>>> tensor.to(cuda0, dtype=torch.float64)
|
|
tensor([[-0.5044, 0.0005],
|
|
[ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0')
|
|
|
|
>>> other = torch.randn((), dtype=torch.float64, device=cuda0)
|
|
>>> tensor.to(other, non_blocking=True)
|
|
tensor([[-0.5044, 0.0005],
|
|
[ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0')
|
|
""".format(
|
|
**common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"byte",
|
|
r"""
|
|
byte(memory_format=torch.preserve_format) -> Tensor
|
|
|
|
``self.byte()`` is equivalent to ``self.to(torch.uint8)``. See :func:`to`.
|
|
|
|
Args:
|
|
{memory_format}
|
|
""".format(
|
|
**common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"bool",
|
|
r"""
|
|
bool(memory_format=torch.preserve_format) -> Tensor
|
|
|
|
``self.bool()`` is equivalent to ``self.to(torch.bool)``. See :func:`to`.
|
|
|
|
Args:
|
|
{memory_format}
|
|
""".format(
|
|
**common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"char",
|
|
r"""
|
|
char(memory_format=torch.preserve_format) -> Tensor
|
|
|
|
``self.char()`` is equivalent to ``self.to(torch.int8)``. See :func:`to`.
|
|
|
|
Args:
|
|
{memory_format}
|
|
""".format(
|
|
**common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"bfloat16",
|
|
r"""
|
|
bfloat16(memory_format=torch.preserve_format) -> Tensor
|
|
``self.bfloat16()`` is equivalent to ``self.to(torch.bfloat16)``. See :func:`to`.
|
|
|
|
Args:
|
|
{memory_format}
|
|
""".format(
|
|
**common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"double",
|
|
r"""
|
|
double(memory_format=torch.preserve_format) -> Tensor
|
|
|
|
``self.double()`` is equivalent to ``self.to(torch.float64)``. See :func:`to`.
|
|
|
|
Args:
|
|
{memory_format}
|
|
""".format(
|
|
**common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"float",
|
|
r"""
|
|
float(memory_format=torch.preserve_format) -> Tensor
|
|
|
|
``self.float()`` is equivalent to ``self.to(torch.float32)``. See :func:`to`.
|
|
|
|
Args:
|
|
{memory_format}
|
|
""".format(
|
|
**common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"cdouble",
|
|
r"""
|
|
cdouble(memory_format=torch.preserve_format) -> Tensor
|
|
|
|
``self.cdouble()`` is equivalent to ``self.to(torch.complex128)``. See :func:`to`.
|
|
|
|
Args:
|
|
{memory_format}
|
|
""".format(
|
|
**common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"cfloat",
|
|
r"""
|
|
cfloat(memory_format=torch.preserve_format) -> Tensor
|
|
|
|
``self.cfloat()`` is equivalent to ``self.to(torch.complex64)``. See :func:`to`.
|
|
|
|
Args:
|
|
{memory_format}
|
|
""".format(
|
|
**common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"chalf",
|
|
r"""
|
|
chalf(memory_format=torch.preserve_format) -> Tensor
|
|
|
|
``self.chalf()`` is equivalent to ``self.to(torch.complex32)``. See :func:`to`.
|
|
|
|
Args:
|
|
{memory_format}
|
|
""".format(
|
|
**common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"half",
|
|
r"""
|
|
half(memory_format=torch.preserve_format) -> Tensor
|
|
|
|
``self.half()`` is equivalent to ``self.to(torch.float16)``. See :func:`to`.
|
|
|
|
Args:
|
|
{memory_format}
|
|
""".format(
|
|
**common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"int",
|
|
r"""
|
|
int(memory_format=torch.preserve_format) -> Tensor
|
|
|
|
``self.int()`` is equivalent to ``self.to(torch.int32)``. See :func:`to`.
|
|
|
|
Args:
|
|
{memory_format}
|
|
""".format(
|
|
**common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"int_repr",
|
|
r"""
|
|
int_repr() -> Tensor
|
|
|
|
Given a quantized Tensor,
|
|
``self.int_repr()`` returns a CPU Tensor with uint8_t as data type that stores the
|
|
underlying uint8_t values of the given Tensor.
|
|
""",
|
|
)
|
|
|
|
|
|
add_docstr_all(
|
|
"long",
|
|
r"""
|
|
long(memory_format=torch.preserve_format) -> Tensor
|
|
|
|
``self.long()`` is equivalent to ``self.to(torch.int64)``. See :func:`to`.
|
|
|
|
Args:
|
|
{memory_format}
|
|
""".format(
|
|
**common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"short",
|
|
r"""
|
|
short(memory_format=torch.preserve_format) -> Tensor
|
|
|
|
``self.short()`` is equivalent to ``self.to(torch.int16)``. See :func:`to`.
|
|
|
|
Args:
|
|
{memory_format}
|
|
""".format(
|
|
**common_args
|
|
),
|
|
)
|
|
|
|
add_docstr_all(
|
|
"take",
|
|
r"""
|
|
take(indices) -> Tensor
|
|
|
|
See :func:`torch.take`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"take_along_dim",
|
|
r"""
|
|
take_along_dim(indices, dim) -> Tensor
|
|
|
|
See :func:`torch.take_along_dim`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"tan",
|
|
r"""
|
|
tan() -> Tensor
|
|
|
|
See :func:`torch.tan`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"tan_",
|
|
r"""
|
|
tan_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.tan`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"tanh",
|
|
r"""
|
|
tanh() -> Tensor
|
|
|
|
See :func:`torch.tanh`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"softmax",
|
|
r"""
|
|
softmax(dim) -> Tensor
|
|
|
|
Alias for :func:`torch.nn.functional.softmax`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"tanh_",
|
|
r"""
|
|
tanh_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.tanh`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"tolist",
|
|
r"""
|
|
tolist() -> list or number
|
|
|
|
Returns the tensor as a (nested) list. For scalars, a standard
|
|
Python number is returned, just like with :meth:`~Tensor.item`.
|
|
Tensors are automatically moved to the CPU first if necessary.
|
|
|
|
This operation is not differentiable.
|
|
|
|
Examples::
|
|
|
|
>>> a = torch.randn(2, 2)
|
|
>>> a.tolist()
|
|
[[0.012766935862600803, 0.5415473580360413],
|
|
[-0.08909505605697632, 0.7729271650314331]]
|
|
>>> a[0,0].tolist()
|
|
0.012766935862600803
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"topk",
|
|
r"""
|
|
topk(k, dim=None, largest=True, sorted=True) -> (Tensor, LongTensor)
|
|
|
|
See :func:`torch.topk`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"to_dense",
|
|
r"""
|
|
to_dense(dtype=None, *, masked_grad=True) -> Tensor
|
|
|
|
Creates a strided copy of :attr:`self` if :attr:`self` is not a strided tensor, otherwise returns :attr:`self`.
|
|
|
|
Keyword args:
|
|
{dtype}
|
|
masked_grad (bool, optional): If set to ``True`` (default) and
|
|
:attr:`self` has a sparse layout then the backward of
|
|
:meth:`to_dense` returns ``grad.sparse_mask(self)``.
|
|
|
|
Example::
|
|
|
|
>>> s = torch.sparse_coo_tensor(
|
|
... torch.tensor([[1, 1],
|
|
... [0, 2]]),
|
|
... torch.tensor([9, 10]),
|
|
... size=(3, 3))
|
|
>>> s.to_dense()
|
|
tensor([[ 0, 0, 0],
|
|
[ 9, 0, 10],
|
|
[ 0, 0, 0]])
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"to_sparse",
|
|
r"""
|
|
to_sparse(sparseDims) -> Tensor
|
|
|
|
Returns a sparse copy of the tensor. PyTorch supports sparse tensors in
|
|
:ref:`coordinate format <sparse-coo-docs>`.
|
|
|
|
Args:
|
|
sparseDims (int, optional): the number of sparse dimensions to include in the new sparse tensor
|
|
|
|
Example::
|
|
|
|
>>> d = torch.tensor([[0, 0, 0], [9, 0, 10], [0, 0, 0]])
|
|
>>> d
|
|
tensor([[ 0, 0, 0],
|
|
[ 9, 0, 10],
|
|
[ 0, 0, 0]])
|
|
>>> d.to_sparse()
|
|
tensor(indices=tensor([[1, 1],
|
|
[0, 2]]),
|
|
values=tensor([ 9, 10]),
|
|
size=(3, 3), nnz=2, layout=torch.sparse_coo)
|
|
>>> d.to_sparse(1)
|
|
tensor(indices=tensor([[1]]),
|
|
values=tensor([[ 9, 0, 10]]),
|
|
size=(3, 3), nnz=1, layout=torch.sparse_coo)
|
|
|
|
.. method:: to_sparse(*, layout=None, blocksize=None, dense_dim=None) -> Tensor
|
|
:noindex:
|
|
|
|
Returns a sparse tensor with the specified layout and blocksize. If
|
|
the :attr:`self` is strided, the number of dense dimensions could be
|
|
specified, and a hybrid sparse tensor will be created, with
|
|
`dense_dim` dense dimensions and `self.dim() - 2 - dense_dim` batch
|
|
dimension.
|
|
|
|
.. note:: If the :attr:`self` layout and blocksize parameters match
|
|
with the specified layout and blocksize, return
|
|
:attr:`self`. Otherwise, return a sparse tensor copy of
|
|
:attr:`self`.
|
|
|
|
Args:
|
|
|
|
layout (:class:`torch.layout`, optional): The desired sparse
|
|
layout. One of ``torch.sparse_coo``, ``torch.sparse_csr``,
|
|
``torch.sparse_csc``, ``torch.sparse_bsr``, or
|
|
``torch.sparse_bsc``. Default: if ``None``,
|
|
``torch.sparse_coo``.
|
|
|
|
blocksize (list, tuple, :class:`torch.Size`, optional): Block size
|
|
of the resulting BSR or BSC tensor. For other layouts,
|
|
specifying the block size that is not ``None`` will result in a
|
|
RuntimeError exception. A block size must be a tuple of length
|
|
two such that its items evenly divide the two sparse dimensions.
|
|
|
|
dense_dim (int, optional): Number of dense dimensions of the
|
|
resulting CSR, CSC, BSR or BSC tensor. This argument should be
|
|
used only if :attr:`self` is a strided tensor, and must be a
|
|
value between 0 and dimension of :attr:`self` tensor minus two.
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([[1, 0], [0, 0], [2, 3]])
|
|
>>> x.to_sparse(layout=torch.sparse_coo)
|
|
tensor(indices=tensor([[0, 2, 2],
|
|
[0, 0, 1]]),
|
|
values=tensor([1, 2, 3]),
|
|
size=(3, 2), nnz=3, layout=torch.sparse_coo)
|
|
>>> x.to_sparse(layout=torch.sparse_bsr, blocksize=(1, 2))
|
|
tensor(crow_indices=tensor([0, 1, 1, 2]),
|
|
col_indices=tensor([0, 0]),
|
|
values=tensor([[[1, 0]],
|
|
[[2, 3]]]), size=(3, 2), nnz=2, layout=torch.sparse_bsr)
|
|
>>> x.to_sparse(layout=torch.sparse_bsr, blocksize=(2, 1))
|
|
RuntimeError: Tensor size(-2) 3 needs to be divisible by blocksize[0] 2
|
|
>>> x.to_sparse(layout=torch.sparse_csr, blocksize=(3, 1))
|
|
RuntimeError: to_sparse for Strided to SparseCsr conversion does not use specified blocksize
|
|
|
|
>>> x = torch.tensor([[[1], [0]], [[0], [0]], [[2], [3]]])
|
|
>>> x.to_sparse(layout=torch.sparse_csr, dense_dim=1)
|
|
tensor(crow_indices=tensor([0, 1, 1, 3]),
|
|
col_indices=tensor([0, 0, 1]),
|
|
values=tensor([[1],
|
|
[2],
|
|
[3]]), size=(3, 2, 1), nnz=3, layout=torch.sparse_csr)
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"to_sparse_csr",
|
|
r"""
|
|
to_sparse_csr(dense_dim=None) -> Tensor
|
|
|
|
Convert a tensor to compressed row storage format (CSR). Except for
|
|
strided tensors, only works with 2D tensors. If the :attr:`self` is
|
|
strided, then the number of dense dimensions could be specified, and a
|
|
hybrid CSR tensor will be created, with `dense_dim` dense dimensions
|
|
and `self.dim() - 2 - dense_dim` batch dimension.
|
|
|
|
Args:
|
|
|
|
dense_dim (int, optional): Number of dense dimensions of the
|
|
resulting CSR tensor. This argument should be used only if
|
|
:attr:`self` is a strided tensor, and must be a value between 0
|
|
and dimension of :attr:`self` tensor minus two.
|
|
|
|
Example::
|
|
|
|
>>> dense = torch.randn(5, 5)
|
|
>>> sparse = dense.to_sparse_csr()
|
|
>>> sparse._nnz()
|
|
25
|
|
|
|
>>> dense = torch.zeros(3, 3, 1, 1)
|
|
>>> dense[0, 0] = dense[1, 2] = dense[2, 1] = 1
|
|
>>> dense.to_sparse_csr(dense_dim=2)
|
|
tensor(crow_indices=tensor([0, 1, 2, 3]),
|
|
col_indices=tensor([0, 2, 1]),
|
|
values=tensor([[[1.]],
|
|
|
|
[[1.]],
|
|
|
|
[[1.]]]), size=(3, 3, 1, 1), nnz=3,
|
|
layout=torch.sparse_csr)
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"to_sparse_csc",
|
|
r"""
|
|
to_sparse_csc() -> Tensor
|
|
|
|
Convert a tensor to compressed column storage (CSC) format. Except
|
|
for strided tensors, only works with 2D tensors. If the :attr:`self`
|
|
is strided, then the number of dense dimensions could be specified,
|
|
and a hybrid CSC tensor will be created, with `dense_dim` dense
|
|
dimensions and `self.dim() - 2 - dense_dim` batch dimension.
|
|
|
|
Args:
|
|
|
|
dense_dim (int, optional): Number of dense dimensions of the
|
|
resulting CSC tensor. This argument should be used only if
|
|
:attr:`self` is a strided tensor, and must be a value between 0
|
|
and dimension of :attr:`self` tensor minus two.
|
|
|
|
Example::
|
|
|
|
>>> dense = torch.randn(5, 5)
|
|
>>> sparse = dense.to_sparse_csc()
|
|
>>> sparse._nnz()
|
|
25
|
|
|
|
>>> dense = torch.zeros(3, 3, 1, 1)
|
|
>>> dense[0, 0] = dense[1, 2] = dense[2, 1] = 1
|
|
>>> dense.to_sparse_csc(dense_dim=2)
|
|
tensor(ccol_indices=tensor([0, 1, 2, 3]),
|
|
row_indices=tensor([0, 2, 1]),
|
|
values=tensor([[[1.]],
|
|
|
|
[[1.]],
|
|
|
|
[[1.]]]), size=(3, 3, 1, 1), nnz=3,
|
|
layout=torch.sparse_csc)
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"to_sparse_bsr",
|
|
r"""
|
|
to_sparse_bsr(blocksize, dense_dim) -> Tensor
|
|
|
|
Convert a tensor to a block sparse row (BSR) storage format of given
|
|
blocksize. If the :attr:`self` is strided, then the number of dense
|
|
dimensions could be specified, and a hybrid BSR tensor will be
|
|
created, with `dense_dim` dense dimensions and `self.dim() - 2 -
|
|
dense_dim` batch dimension.
|
|
|
|
Args:
|
|
|
|
blocksize (list, tuple, :class:`torch.Size`, optional): Block size
|
|
of the resulting BSR tensor. A block size must be a tuple of
|
|
length two such that its items evenly divide the two sparse
|
|
dimensions.
|
|
|
|
dense_dim (int, optional): Number of dense dimensions of the
|
|
resulting BSR tensor. This argument should be used only if
|
|
:attr:`self` is a strided tensor, and must be a value between 0
|
|
and dimension of :attr:`self` tensor minus two.
|
|
|
|
Example::
|
|
|
|
>>> dense = torch.randn(10, 10)
|
|
>>> sparse = dense.to_sparse_csr()
|
|
>>> sparse_bsr = sparse.to_sparse_bsr((5, 5))
|
|
>>> sparse_bsr.col_indices()
|
|
tensor([0, 1, 0, 1])
|
|
|
|
>>> dense = torch.zeros(4, 3, 1)
|
|
>>> dense[0:2, 0] = dense[0:2, 2] = dense[2:4, 1] = 1
|
|
>>> dense.to_sparse_bsr((2, 1), 1)
|
|
tensor(crow_indices=tensor([0, 2, 3]),
|
|
col_indices=tensor([0, 2, 1]),
|
|
values=tensor([[[[1.]],
|
|
|
|
[[1.]]],
|
|
|
|
|
|
[[[1.]],
|
|
|
|
[[1.]]],
|
|
|
|
|
|
[[[1.]],
|
|
|
|
[[1.]]]]), size=(4, 3, 1), nnz=3,
|
|
layout=torch.sparse_bsr)
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"to_sparse_bsc",
|
|
r"""
|
|
to_sparse_bsc(blocksize, dense_dim) -> Tensor
|
|
|
|
Convert a tensor to a block sparse column (BSC) storage format of
|
|
given blocksize. If the :attr:`self` is strided, then the number of
|
|
dense dimensions could be specified, and a hybrid BSC tensor will be
|
|
created, with `dense_dim` dense dimensions and `self.dim() - 2 -
|
|
dense_dim` batch dimension.
|
|
|
|
Args:
|
|
|
|
blocksize (list, tuple, :class:`torch.Size`, optional): Block size
|
|
of the resulting BSC tensor. A block size must be a tuple of
|
|
length two such that its items evenly divide the two sparse
|
|
dimensions.
|
|
|
|
dense_dim (int, optional): Number of dense dimensions of the
|
|
resulting BSC tensor. This argument should be used only if
|
|
:attr:`self` is a strided tensor, and must be a value between 0
|
|
and dimension of :attr:`self` tensor minus two.
|
|
|
|
Example::
|
|
|
|
>>> dense = torch.randn(10, 10)
|
|
>>> sparse = dense.to_sparse_csr()
|
|
>>> sparse_bsc = sparse.to_sparse_bsc((5, 5))
|
|
>>> sparse_bsc.row_indices()
|
|
tensor([0, 1, 0, 1])
|
|
|
|
>>> dense = torch.zeros(4, 3, 1)
|
|
>>> dense[0:2, 0] = dense[0:2, 2] = dense[2:4, 1] = 1
|
|
>>> dense.to_sparse_bsc((2, 1), 1)
|
|
tensor(ccol_indices=tensor([0, 1, 2, 3]),
|
|
row_indices=tensor([0, 1, 0]),
|
|
values=tensor([[[[1.]],
|
|
|
|
[[1.]]],
|
|
|
|
|
|
[[[1.]],
|
|
|
|
[[1.]]],
|
|
|
|
|
|
[[[1.]],
|
|
|
|
[[1.]]]]), size=(4, 3, 1), nnz=3,
|
|
layout=torch.sparse_bsc)
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"to_mkldnn",
|
|
r"""
|
|
to_mkldnn() -> Tensor
|
|
Returns a copy of the tensor in ``torch.mkldnn`` layout.
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"trace",
|
|
r"""
|
|
trace() -> Tensor
|
|
|
|
See :func:`torch.trace`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"transpose",
|
|
r"""
|
|
transpose(dim0, dim1) -> Tensor
|
|
|
|
See :func:`torch.transpose`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"transpose_",
|
|
r"""
|
|
transpose_(dim0, dim1) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.transpose`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"triangular_solve",
|
|
r"""
|
|
triangular_solve(A, upper=True, transpose=False, unitriangular=False) -> (Tensor, Tensor)
|
|
|
|
See :func:`torch.triangular_solve`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"tril",
|
|
r"""
|
|
tril(diagonal=0) -> Tensor
|
|
|
|
See :func:`torch.tril`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"tril_",
|
|
r"""
|
|
tril_(diagonal=0) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.tril`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"triu",
|
|
r"""
|
|
triu(diagonal=0) -> Tensor
|
|
|
|
See :func:`torch.triu`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"triu_",
|
|
r"""
|
|
triu_(diagonal=0) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.triu`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"true_divide",
|
|
r"""
|
|
true_divide(value) -> Tensor
|
|
|
|
See :func:`torch.true_divide`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"true_divide_",
|
|
r"""
|
|
true_divide_(value) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.true_divide_`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"trunc",
|
|
r"""
|
|
trunc() -> Tensor
|
|
|
|
See :func:`torch.trunc`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"fix",
|
|
r"""
|
|
fix() -> Tensor
|
|
|
|
See :func:`torch.fix`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"trunc_",
|
|
r"""
|
|
trunc_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.trunc`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"fix_",
|
|
r"""
|
|
fix_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.fix`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"type",
|
|
r"""
|
|
type(dtype=None, non_blocking=False, **kwargs) -> str or Tensor
|
|
Returns the type if `dtype` is not provided, else casts this object to
|
|
the specified type.
|
|
|
|
If this is already of the correct type, no copy is performed and the
|
|
original object is returned.
|
|
|
|
Args:
|
|
dtype (dtype or string): The desired type
|
|
non_blocking (bool): If ``True``, and the source is in pinned memory
|
|
and destination is on the GPU or vice versa, the copy is performed
|
|
asynchronously with respect to the host. Otherwise, the argument
|
|
has no effect.
|
|
**kwargs: For compatibility, may contain the key ``async`` in place of
|
|
the ``non_blocking`` argument. The ``async`` arg is deprecated.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"type_as",
|
|
r"""
|
|
type_as(tensor) -> Tensor
|
|
|
|
Returns this tensor cast to the type of the given tensor.
|
|
|
|
This is a no-op if the tensor is already of the correct type. This is
|
|
equivalent to ``self.type(tensor.type())``
|
|
|
|
Args:
|
|
tensor (Tensor): the tensor which has the desired type
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"unfold",
|
|
r"""
|
|
unfold(dimension, size, step) -> Tensor
|
|
|
|
Returns a view of the original tensor which contains all slices of size :attr:`size` from
|
|
:attr:`self` tensor in the dimension :attr:`dimension`.
|
|
|
|
Step between two slices is given by :attr:`step`.
|
|
|
|
If `sizedim` is the size of dimension :attr:`dimension` for :attr:`self`, the size of
|
|
dimension :attr:`dimension` in the returned tensor will be
|
|
`(sizedim - size) / step + 1`.
|
|
|
|
An additional dimension of size :attr:`size` is appended in the returned tensor.
|
|
|
|
Args:
|
|
dimension (int): dimension in which unfolding happens
|
|
size (int): the size of each slice that is unfolded
|
|
step (int): the step between each slice
|
|
|
|
Example::
|
|
|
|
>>> x = torch.arange(1., 8)
|
|
>>> x
|
|
tensor([ 1., 2., 3., 4., 5., 6., 7.])
|
|
>>> x.unfold(0, 2, 1)
|
|
tensor([[ 1., 2.],
|
|
[ 2., 3.],
|
|
[ 3., 4.],
|
|
[ 4., 5.],
|
|
[ 5., 6.],
|
|
[ 6., 7.]])
|
|
>>> x.unfold(0, 2, 2)
|
|
tensor([[ 1., 2.],
|
|
[ 3., 4.],
|
|
[ 5., 6.]])
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"uniform_",
|
|
r"""
|
|
uniform_(from=0, to=1, *, generator=None) -> Tensor
|
|
|
|
Fills :attr:`self` tensor with numbers sampled from the continuous uniform
|
|
distribution:
|
|
|
|
.. math::
|
|
f(x) = \dfrac{1}{\text{to} - \text{from}}
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"unsqueeze",
|
|
r"""
|
|
unsqueeze(dim) -> Tensor
|
|
|
|
See :func:`torch.unsqueeze`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"unsqueeze_",
|
|
r"""
|
|
unsqueeze_(dim) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.unsqueeze`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"var",
|
|
r"""
|
|
var(dim=None, *, correction=1, keepdim=False) -> Tensor
|
|
|
|
See :func:`torch.var`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"vdot",
|
|
r"""
|
|
vdot(other) -> Tensor
|
|
|
|
See :func:`torch.vdot`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"view",
|
|
r"""
|
|
view(*shape) -> Tensor
|
|
|
|
Returns a new tensor with the same data as the :attr:`self` tensor but of a
|
|
different :attr:`shape`.
|
|
|
|
The returned tensor shares the same data and must have the same number
|
|
of elements, but may have a different size. For a tensor to be viewed, the new
|
|
view size must be compatible with its original size and stride, i.e., each new
|
|
view dimension must either be a subspace of an original dimension, or only span
|
|
across original dimensions :math:`d, d+1, \dots, d+k` that satisfy the following
|
|
contiguity-like condition that :math:`\forall i = d, \dots, d+k-1`,
|
|
|
|
.. math::
|
|
|
|
\text{stride}[i] = \text{stride}[i+1] \times \text{size}[i+1]
|
|
|
|
Otherwise, it will not be possible to view :attr:`self` tensor as :attr:`shape`
|
|
without copying it (e.g., via :meth:`contiguous`). When it is unclear whether a
|
|
:meth:`view` can be performed, it is advisable to use :meth:`reshape`, which
|
|
returns a view if the shapes are compatible, and copies (equivalent to calling
|
|
:meth:`contiguous`) otherwise.
|
|
|
|
Args:
|
|
shape (torch.Size or int...): the desired size
|
|
|
|
Example::
|
|
|
|
>>> x = torch.randn(4, 4)
|
|
>>> x.size()
|
|
torch.Size([4, 4])
|
|
>>> y = x.view(16)
|
|
>>> y.size()
|
|
torch.Size([16])
|
|
>>> z = x.view(-1, 8) # the size -1 is inferred from other dimensions
|
|
>>> z.size()
|
|
torch.Size([2, 8])
|
|
|
|
>>> a = torch.randn(1, 2, 3, 4)
|
|
>>> a.size()
|
|
torch.Size([1, 2, 3, 4])
|
|
>>> b = a.transpose(1, 2) # Swaps 2nd and 3rd dimension
|
|
>>> b.size()
|
|
torch.Size([1, 3, 2, 4])
|
|
>>> c = a.view(1, 3, 2, 4) # Does not change tensor layout in memory
|
|
>>> c.size()
|
|
torch.Size([1, 3, 2, 4])
|
|
>>> torch.equal(b, c)
|
|
False
|
|
|
|
|
|
.. method:: view(dtype) -> Tensor
|
|
:noindex:
|
|
|
|
Returns a new tensor with the same data as the :attr:`self` tensor but of a
|
|
different :attr:`dtype`.
|
|
|
|
If the element size of :attr:`dtype` is different than that of ``self.dtype``,
|
|
then the size of the last dimension of the output will be scaled
|
|
proportionally. For instance, if :attr:`dtype` element size is twice that of
|
|
``self.dtype``, then each pair of elements in the last dimension of
|
|
:attr:`self` will be combined, and the size of the last dimension of the output
|
|
will be half that of :attr:`self`. If :attr:`dtype` element size is half that
|
|
of ``self.dtype``, then each element in the last dimension of :attr:`self` will
|
|
be split in two, and the size of the last dimension of the output will be
|
|
double that of :attr:`self`. For this to be possible, the following conditions
|
|
must be true:
|
|
|
|
* ``self.dim()`` must be greater than 0.
|
|
* ``self.stride(-1)`` must be 1.
|
|
|
|
Additionally, if the element size of :attr:`dtype` is greater than that of
|
|
``self.dtype``, the following conditions must be true as well:
|
|
|
|
* ``self.size(-1)`` must be divisible by the ratio between the element
|
|
sizes of the dtypes.
|
|
* ``self.storage_offset()`` must be divisible by the ratio between the
|
|
element sizes of the dtypes.
|
|
* The strides of all dimensions, except the last dimension, must be
|
|
divisible by the ratio between the element sizes of the dtypes.
|
|
|
|
If any of the above conditions are not met, an error is thrown.
|
|
|
|
.. warning::
|
|
|
|
This overload is not supported by TorchScript, and using it in a Torchscript
|
|
program will cause undefined behavior.
|
|
|
|
|
|
Args:
|
|
dtype (:class:`torch.dtype`): the desired dtype
|
|
|
|
Example::
|
|
|
|
>>> x = torch.randn(4, 4)
|
|
>>> x
|
|
tensor([[ 0.9482, -0.0310, 1.4999, -0.5316],
|
|
[-0.1520, 0.7472, 0.5617, -0.8649],
|
|
[-2.4724, -0.0334, -0.2976, -0.8499],
|
|
[-0.2109, 1.9913, -0.9607, -0.6123]])
|
|
>>> x.dtype
|
|
torch.float32
|
|
|
|
>>> y = x.view(torch.int32)
|
|
>>> y
|
|
tensor([[ 1064483442, -1124191867, 1069546515, -1089989247],
|
|
[-1105482831, 1061112040, 1057999968, -1084397505],
|
|
[-1071760287, -1123489973, -1097310419, -1084649136],
|
|
[-1101533110, 1073668768, -1082790149, -1088634448]],
|
|
dtype=torch.int32)
|
|
>>> y[0, 0] = 1000000000
|
|
>>> x
|
|
tensor([[ 0.0047, -0.0310, 1.4999, -0.5316],
|
|
[-0.1520, 0.7472, 0.5617, -0.8649],
|
|
[-2.4724, -0.0334, -0.2976, -0.8499],
|
|
[-0.2109, 1.9913, -0.9607, -0.6123]])
|
|
|
|
>>> x.view(torch.cfloat)
|
|
tensor([[ 0.0047-0.0310j, 1.4999-0.5316j],
|
|
[-0.1520+0.7472j, 0.5617-0.8649j],
|
|
[-2.4724-0.0334j, -0.2976-0.8499j],
|
|
[-0.2109+1.9913j, -0.9607-0.6123j]])
|
|
>>> x.view(torch.cfloat).size()
|
|
torch.Size([4, 2])
|
|
|
|
>>> x.view(torch.uint8)
|
|
tensor([[ 0, 202, 154, 59, 182, 243, 253, 188, 185, 252, 191, 63, 240, 22,
|
|
8, 191],
|
|
[227, 165, 27, 190, 128, 72, 63, 63, 146, 203, 15, 63, 22, 106,
|
|
93, 191],
|
|
[205, 59, 30, 192, 112, 206, 8, 189, 7, 95, 152, 190, 12, 147,
|
|
89, 191],
|
|
[ 43, 246, 87, 190, 235, 226, 254, 63, 111, 240, 117, 191, 177, 191,
|
|
28, 191]], dtype=torch.uint8)
|
|
>>> x.view(torch.uint8).size()
|
|
torch.Size([4, 16])
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"view_as",
|
|
r"""
|
|
view_as(other) -> Tensor
|
|
|
|
View this tensor as the same size as :attr:`other`.
|
|
``self.view_as(other)`` is equivalent to ``self.view(other.size())``.
|
|
|
|
Please see :meth:`~Tensor.view` for more information about ``view``.
|
|
|
|
Args:
|
|
other (:class:`torch.Tensor`): The result tensor has the same size
|
|
as :attr:`other`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"expand",
|
|
r"""
|
|
expand(*sizes) -> Tensor
|
|
|
|
Returns a new view of the :attr:`self` tensor with singleton dimensions expanded
|
|
to a larger size.
|
|
|
|
Passing -1 as the size for a dimension means not changing the size of
|
|
that dimension.
|
|
|
|
Tensor can be also expanded to a larger number of dimensions, and the
|
|
new ones will be appended at the front. For the new dimensions, the
|
|
size cannot be set to -1.
|
|
|
|
Expanding a tensor does not allocate new memory, but only creates a
|
|
new view on the existing tensor where a dimension of size one is
|
|
expanded to a larger size by setting the ``stride`` to 0. Any dimension
|
|
of size 1 can be expanded to an arbitrary value without allocating new
|
|
memory.
|
|
|
|
Args:
|
|
*sizes (torch.Size or int...): the desired expanded size
|
|
|
|
.. warning::
|
|
|
|
More than one element of an expanded tensor may refer to a single
|
|
memory location. As a result, in-place operations (especially ones that
|
|
are vectorized) may result in incorrect behavior. If you need to write
|
|
to the tensors, please clone them first.
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([[1], [2], [3]])
|
|
>>> x.size()
|
|
torch.Size([3, 1])
|
|
>>> x.expand(3, 4)
|
|
tensor([[ 1, 1, 1, 1],
|
|
[ 2, 2, 2, 2],
|
|
[ 3, 3, 3, 3]])
|
|
>>> x.expand(-1, 4) # -1 means not changing the size of that dimension
|
|
tensor([[ 1, 1, 1, 1],
|
|
[ 2, 2, 2, 2],
|
|
[ 3, 3, 3, 3]])
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"expand_as",
|
|
r"""
|
|
expand_as(other) -> Tensor
|
|
|
|
Expand this tensor to the same size as :attr:`other`.
|
|
``self.expand_as(other)`` is equivalent to ``self.expand(other.size())``.
|
|
|
|
Please see :meth:`~Tensor.expand` for more information about ``expand``.
|
|
|
|
Args:
|
|
other (:class:`torch.Tensor`): The result tensor has the same size
|
|
as :attr:`other`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"sum_to_size",
|
|
r"""
|
|
sum_to_size(*size) -> Tensor
|
|
|
|
Sum ``this`` tensor to :attr:`size`.
|
|
:attr:`size` must be broadcastable to ``this`` tensor size.
|
|
|
|
Args:
|
|
size (int...): a sequence of integers defining the shape of the output tensor.
|
|
""",
|
|
)
|
|
|
|
|
|
add_docstr_all(
|
|
"zero_",
|
|
r"""
|
|
zero_() -> Tensor
|
|
|
|
Fills :attr:`self` tensor with zeros.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"matmul",
|
|
r"""
|
|
matmul(tensor2) -> Tensor
|
|
|
|
See :func:`torch.matmul`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"chunk",
|
|
r"""
|
|
chunk(chunks, dim=0) -> List of Tensors
|
|
|
|
See :func:`torch.chunk`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"unsafe_chunk",
|
|
r"""
|
|
unsafe_chunk(chunks, dim=0) -> List of Tensors
|
|
|
|
See :func:`torch.unsafe_chunk`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"unsafe_split",
|
|
r"""
|
|
unsafe_split(split_size, dim=0) -> List of Tensors
|
|
|
|
See :func:`torch.unsafe_split`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"tensor_split",
|
|
r"""
|
|
tensor_split(indices_or_sections, dim=0) -> List of Tensors
|
|
|
|
See :func:`torch.tensor_split`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"hsplit",
|
|
r"""
|
|
hsplit(split_size_or_sections) -> List of Tensors
|
|
|
|
See :func:`torch.hsplit`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"vsplit",
|
|
r"""
|
|
vsplit(split_size_or_sections) -> List of Tensors
|
|
|
|
See :func:`torch.vsplit`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"dsplit",
|
|
r"""
|
|
dsplit(split_size_or_sections) -> List of Tensors
|
|
|
|
See :func:`torch.dsplit`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"stft",
|
|
r"""
|
|
stft(frame_length, hop, fft_size=None, return_onesided=True, window=None, pad_end=0) -> Tensor
|
|
|
|
See :func:`torch.stft`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"istft",
|
|
r"""
|
|
istft(n_fft, hop_length=None, win_length=None, window=None,
|
|
center=True, normalized=False, onesided=True, length=None) -> Tensor
|
|
|
|
See :func:`torch.istft`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"det",
|
|
r"""
|
|
det() -> Tensor
|
|
|
|
See :func:`torch.det`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"where",
|
|
r"""
|
|
where(condition, y) -> Tensor
|
|
|
|
``self.where(condition, y)`` is equivalent to ``torch.where(condition, self, y)``.
|
|
See :func:`torch.where`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"logdet",
|
|
r"""
|
|
logdet() -> Tensor
|
|
|
|
See :func:`torch.logdet`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"slogdet",
|
|
r"""
|
|
slogdet() -> (Tensor, Tensor)
|
|
|
|
See :func:`torch.slogdet`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"unbind",
|
|
r"""
|
|
unbind(dim=0) -> seq
|
|
|
|
See :func:`torch.unbind`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"pin_memory",
|
|
r"""
|
|
pin_memory() -> Tensor
|
|
|
|
Copies the tensor to pinned memory, if it's not already pinned.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"pinverse",
|
|
r"""
|
|
pinverse() -> Tensor
|
|
|
|
See :func:`torch.pinverse`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"index_add",
|
|
r"""
|
|
index_add(dim, index, source, *, alpha=1) -> Tensor
|
|
|
|
Out-of-place version of :meth:`torch.Tensor.index_add_`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"index_copy",
|
|
r"""
|
|
index_copy(dim, index, tensor2) -> Tensor
|
|
|
|
Out-of-place version of :meth:`torch.Tensor.index_copy_`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"index_fill",
|
|
r"""
|
|
index_fill(dim, index, value) -> Tensor
|
|
|
|
Out-of-place version of :meth:`torch.Tensor.index_fill_`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"scatter",
|
|
r"""
|
|
scatter(dim, index, src) -> Tensor
|
|
|
|
Out-of-place version of :meth:`torch.Tensor.scatter_`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"scatter_add",
|
|
r"""
|
|
scatter_add(dim, index, src) -> Tensor
|
|
|
|
Out-of-place version of :meth:`torch.Tensor.scatter_add_`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"scatter_reduce",
|
|
r"""
|
|
scatter_reduce(dim, index, src, reduce, *, include_self=True) -> Tensor
|
|
|
|
Out-of-place version of :meth:`torch.Tensor.scatter_reduce_`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"masked_scatter",
|
|
r"""
|
|
masked_scatter(mask, tensor) -> Tensor
|
|
|
|
Out-of-place version of :meth:`torch.Tensor.masked_scatter_`
|
|
|
|
.. note::
|
|
|
|
The inputs :attr:`self` and :attr:`mask`
|
|
:ref:`broadcast <broadcasting-semantics>`.
|
|
|
|
Example:
|
|
|
|
>>> self = torch.tensor([0, 0, 0, 0, 0])
|
|
>>> mask = torch.tensor([[0, 0, 0, 1, 1], [1, 1, 0, 1, 1]])
|
|
>>> source = torch.tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]])
|
|
>>> self.masked_scatter(mask, source)
|
|
tensor([[0, 0, 0, 0, 1],
|
|
[2, 3, 0, 4, 5]])
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"xlogy",
|
|
r"""
|
|
xlogy(other) -> Tensor
|
|
|
|
See :func:`torch.xlogy`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"xlogy_",
|
|
r"""
|
|
xlogy_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.xlogy`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"masked_fill",
|
|
r"""
|
|
masked_fill(mask, value) -> Tensor
|
|
|
|
Out-of-place version of :meth:`torch.Tensor.masked_fill_`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"grad",
|
|
r"""
|
|
This attribute is ``None`` by default and becomes a Tensor the first time a call to
|
|
:func:`backward` computes gradients for ``self``.
|
|
The attribute will then contain the gradients computed and future calls to
|
|
:func:`backward` will accumulate (add) gradients into it.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"retain_grad",
|
|
r"""
|
|
retain_grad() -> None
|
|
|
|
Enables this Tensor to have their :attr:`grad` populated during
|
|
:func:`backward`. This is a no-op for leaf tensors.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"retains_grad",
|
|
r"""
|
|
Is ``True`` if this Tensor is non-leaf and its :attr:`grad` is enabled to be
|
|
populated during :func:`backward`, ``False`` otherwise.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"requires_grad",
|
|
r"""
|
|
Is ``True`` if gradients need to be computed for this Tensor, ``False`` otherwise.
|
|
|
|
.. note::
|
|
|
|
The fact that gradients need to be computed for a Tensor do not mean that the :attr:`grad`
|
|
attribute will be populated, see :attr:`is_leaf` for more details.
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"is_leaf",
|
|
r"""
|
|
All Tensors that have :attr:`requires_grad` which is ``False`` will be leaf Tensors by convention.
|
|
|
|
For Tensors that have :attr:`requires_grad` which is ``True``, they will be leaf Tensors if they were
|
|
created by the user. This means that they are not the result of an operation and so
|
|
:attr:`grad_fn` is None.
|
|
|
|
Only leaf Tensors will have their :attr:`grad` populated during a call to :func:`backward`.
|
|
To get :attr:`grad` populated for non-leaf Tensors, you can use :func:`retain_grad`.
|
|
|
|
Example::
|
|
|
|
>>> a = torch.rand(10, requires_grad=True)
|
|
>>> a.is_leaf
|
|
True
|
|
>>> b = torch.rand(10, requires_grad=True).cuda()
|
|
>>> b.is_leaf
|
|
False
|
|
# b was created by the operation that cast a cpu Tensor into a cuda Tensor
|
|
>>> c = torch.rand(10, requires_grad=True) + 2
|
|
>>> c.is_leaf
|
|
False
|
|
# c was created by the addition operation
|
|
>>> d = torch.rand(10).cuda()
|
|
>>> d.is_leaf
|
|
True
|
|
# d does not require gradients and so has no operation creating it (that is tracked by the autograd engine)
|
|
>>> e = torch.rand(10).cuda().requires_grad_()
|
|
>>> e.is_leaf
|
|
True
|
|
# e requires gradients and has no operations creating it
|
|
>>> f = torch.rand(10, requires_grad=True, device="cuda")
|
|
>>> f.is_leaf
|
|
True
|
|
# f requires grad, has no operation creating it
|
|
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"names",
|
|
r"""
|
|
Stores names for each of this tensor's dimensions.
|
|
|
|
``names[idx]`` corresponds to the name of tensor dimension ``idx``.
|
|
Names are either a string if the dimension is named or ``None`` if the
|
|
dimension is unnamed.
|
|
|
|
Dimension names may contain characters or underscore. Furthermore, a dimension
|
|
name must be a valid Python variable name (i.e., does not start with underscore).
|
|
|
|
Tensors may not have two named dimensions with the same name.
|
|
|
|
.. warning::
|
|
The named tensor API is experimental and subject to change.
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"is_cuda",
|
|
r"""
|
|
Is ``True`` if the Tensor is stored on the GPU, ``False`` otherwise.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"is_cpu",
|
|
r"""
|
|
Is ``True`` if the Tensor is stored on the CPU, ``False`` otherwise.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"is_xla",
|
|
r"""
|
|
Is ``True`` if the Tensor is stored on an XLA device, ``False`` otherwise.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"is_ipu",
|
|
r"""
|
|
Is ``True`` if the Tensor is stored on the IPU, ``False`` otherwise.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"is_xpu",
|
|
r"""
|
|
Is ``True`` if the Tensor is stored on the XPU, ``False`` otherwise.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"is_quantized",
|
|
r"""
|
|
Is ``True`` if the Tensor is quantized, ``False`` otherwise.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"is_meta",
|
|
r"""
|
|
Is ``True`` if the Tensor is a meta tensor, ``False`` otherwise. Meta tensors
|
|
are like normal tensors, but they carry no data.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"is_mps",
|
|
r"""
|
|
Is ``True`` if the Tensor is stored on the MPS device, ``False`` otherwise.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"is_sparse",
|
|
r"""
|
|
Is ``True`` if the Tensor uses sparse COO storage layout, ``False`` otherwise.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"is_sparse_csr",
|
|
r"""
|
|
Is ``True`` if the Tensor uses sparse CSR storage layout, ``False`` otherwise.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"device",
|
|
r"""
|
|
Is the :class:`torch.device` where this Tensor is.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"ndim",
|
|
r"""
|
|
Alias for :meth:`~Tensor.dim()`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"itemsize",
|
|
r"""
|
|
Alias for :meth:`~Tensor.element_size()`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"nbytes",
|
|
r"""
|
|
Returns the number of bytes consumed by the "view" of elements of the Tensor
|
|
if the Tensor does not use sparse storage layout.
|
|
Defined to be :meth:`~Tensor.numel()` * :meth:`~Tensor.element_size()`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"T",
|
|
r"""
|
|
Returns a view of this tensor with its dimensions reversed.
|
|
|
|
If ``n`` is the number of dimensions in ``x``,
|
|
``x.T`` is equivalent to ``x.permute(n-1, n-2, ..., 0)``.
|
|
|
|
.. warning::
|
|
The use of :func:`Tensor.T` on tensors of dimension other than 2 to reverse their shape
|
|
is deprecated and it will throw an error in a future release. Consider :attr:`~.Tensor.mT`
|
|
to transpose batches of matrices or `x.permute(*torch.arange(x.ndim - 1, -1, -1))` to reverse
|
|
the dimensions of a tensor.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"H",
|
|
r"""
|
|
Returns a view of a matrix (2-D tensor) conjugated and transposed.
|
|
|
|
``x.H`` is equivalent to ``x.transpose(0, 1).conj()`` for complex matrices and
|
|
``x.transpose(0, 1)`` for real matrices.
|
|
|
|
.. seealso::
|
|
|
|
:attr:`~.Tensor.mH`: An attribute that also works on batches of matrices.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"mT",
|
|
r"""
|
|
Returns a view of this tensor with the last two dimensions transposed.
|
|
|
|
``x.mT`` is equivalent to ``x.transpose(-2, -1)``.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"mH",
|
|
r"""
|
|
Accessing this property is equivalent to calling :func:`adjoint`.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"adjoint",
|
|
r"""
|
|
adjoint() -> Tensor
|
|
|
|
Alias for :func:`adjoint`
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"real",
|
|
r"""
|
|
Returns a new tensor containing real values of the :attr:`self` tensor for a complex-valued input tensor.
|
|
The returned tensor and :attr:`self` share the same underlying storage.
|
|
|
|
Returns :attr:`self` if :attr:`self` is a real-valued tensor tensor.
|
|
|
|
Example::
|
|
>>> x=torch.randn(4, dtype=torch.cfloat)
|
|
>>> x
|
|
tensor([(0.3100+0.3553j), (-0.5445-0.7896j), (-1.6492-0.0633j), (-0.0638-0.8119j)])
|
|
>>> x.real
|
|
tensor([ 0.3100, -0.5445, -1.6492, -0.0638])
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"imag",
|
|
r"""
|
|
Returns a new tensor containing imaginary values of the :attr:`self` tensor.
|
|
The returned tensor and :attr:`self` share the same underlying storage.
|
|
|
|
.. warning::
|
|
:func:`imag` is only supported for tensors with complex dtypes.
|
|
|
|
Example::
|
|
>>> x=torch.randn(4, dtype=torch.cfloat)
|
|
>>> x
|
|
tensor([(0.3100+0.3553j), (-0.5445-0.7896j), (-1.6492-0.0633j), (-0.0638-0.8119j)])
|
|
>>> x.imag
|
|
tensor([ 0.3553, -0.7896, -0.0633, -0.8119])
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"as_subclass",
|
|
r"""
|
|
as_subclass(cls) -> Tensor
|
|
|
|
Makes a ``cls`` instance with the same data pointer as ``self``. Changes
|
|
in the output mirror changes in ``self``, and the output stays attached
|
|
to the autograd graph. ``cls`` must be a subclass of ``Tensor``.
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"crow_indices",
|
|
r"""
|
|
crow_indices() -> IntTensor
|
|
|
|
Returns the tensor containing the compressed row indices of the :attr:`self`
|
|
tensor when :attr:`self` is a sparse CSR tensor of layout ``sparse_csr``.
|
|
The ``crow_indices`` tensor is strictly of shape (:attr:`self`.size(0) + 1)
|
|
and of type ``int32`` or ``int64``. When using MKL routines such as sparse
|
|
matrix multiplication, it is necessary to use ``int32`` indexing in order
|
|
to avoid downcasting and potentially losing information.
|
|
|
|
Example::
|
|
>>> csr = torch.eye(5,5).to_sparse_csr()
|
|
>>> csr.crow_indices()
|
|
tensor([0, 1, 2, 3, 4, 5], dtype=torch.int32)
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"col_indices",
|
|
r"""
|
|
col_indices() -> IntTensor
|
|
|
|
Returns the tensor containing the column indices of the :attr:`self`
|
|
tensor when :attr:`self` is a sparse CSR tensor of layout ``sparse_csr``.
|
|
The ``col_indices`` tensor is strictly of shape (:attr:`self`.nnz())
|
|
and of type ``int32`` or ``int64``. When using MKL routines such as sparse
|
|
matrix multiplication, it is necessary to use ``int32`` indexing in order
|
|
to avoid downcasting and potentially losing information.
|
|
|
|
Example::
|
|
>>> csr = torch.eye(5,5).to_sparse_csr()
|
|
>>> csr.col_indices()
|
|
tensor([0, 1, 2, 3, 4], dtype=torch.int32)
|
|
|
|
""",
|
|
)
|
|
|
|
add_docstr_all(
|
|
"to_padded_tensor",
|
|
r"""
|
|
to_padded_tensor(padding, output_size=None) -> Tensor
|
|
See :func:`to_padded_tensor`
|
|
""",
|
|
)
|