307 lines
11 KiB
Python
307 lines
11 KiB
Python
# Unpickler restricted to loading only state dicts
|
|
# Restrict constructing types to a list defined in _get_allowed_globals()
|
|
# Restrict BUILD operation to `Tensor`, `Parameter` and `OrderedDict` types only
|
|
# Restrict APPEND/APPENDS to `list`
|
|
# In `GLOBALS` operation do not do class lookup by name, but rather rely on dictionary
|
|
# defined by `_get_allowed_globals()` method, that contains:
|
|
# - torch types (Storage, dtypes, Tensor, `torch.Size`),
|
|
# - `torch._utils._rebuild` functions.
|
|
# - `torch.nn.Parameter`
|
|
# - `collections.OrderedDict`
|
|
|
|
# Based of https://github.com/python/cpython/blob/main/Lib/pickle.py
|
|
# Expected to be useful for loading PyTorch model weights
|
|
# For example:
|
|
# data = urllib.request.urlopen('https://download.pytorch.org/models/resnet50-0676ba61.pth').read()
|
|
# buf = io.BytesIO(data)
|
|
# weights = torch.load(buf, weights_only = True)
|
|
|
|
import functools as _functools
|
|
from collections import OrderedDict
|
|
from pickle import (
|
|
APPEND,
|
|
APPENDS,
|
|
BINFLOAT,
|
|
BINGET,
|
|
BININT,
|
|
BININT1,
|
|
BININT2,
|
|
BINPERSID,
|
|
BINPUT,
|
|
BINUNICODE,
|
|
BUILD,
|
|
bytes_types,
|
|
decode_long,
|
|
EMPTY_DICT,
|
|
EMPTY_LIST,
|
|
EMPTY_SET,
|
|
EMPTY_TUPLE,
|
|
GLOBAL,
|
|
LONG1,
|
|
LONG_BINGET,
|
|
LONG_BINPUT,
|
|
MARK,
|
|
NEWFALSE,
|
|
NEWOBJ,
|
|
NEWTRUE,
|
|
NONE,
|
|
PROTO,
|
|
REDUCE,
|
|
SETITEM,
|
|
SETITEMS,
|
|
SHORT_BINSTRING,
|
|
STOP,
|
|
TUPLE,
|
|
TUPLE1,
|
|
TUPLE2,
|
|
TUPLE3,
|
|
UnpicklingError,
|
|
)
|
|
from struct import unpack
|
|
from sys import maxsize
|
|
from typing import Any, Dict, List
|
|
|
|
import torch
|
|
|
|
|
|
# Unpickling machinery
|
|
@_functools.lru_cache(maxsize=1)
|
|
def _get_allowed_globals():
|
|
rc: Dict[str, Any] = {
|
|
"collections.OrderedDict": OrderedDict,
|
|
"torch.nn.parameter.Parameter": torch.nn.Parameter,
|
|
"torch.serialization._get_layout": torch.serialization._get_layout,
|
|
"torch.Size": torch.Size,
|
|
"torch.Tensor": torch.Tensor,
|
|
}
|
|
# dtype
|
|
for t in [
|
|
torch.complex32,
|
|
torch.complex64,
|
|
torch.complex128,
|
|
torch.float8_e5m2,
|
|
torch.float8_e4m3fn,
|
|
torch.float8_e5m2fnuz,
|
|
torch.float8_e4m3fnuz,
|
|
torch.float16,
|
|
torch.float32,
|
|
torch.float64,
|
|
torch.int8,
|
|
torch.int16,
|
|
torch.int32,
|
|
torch.int64,
|
|
]:
|
|
rc[str(t)] = t
|
|
# Tensor classes
|
|
for tt in torch._tensor_classes:
|
|
rc[f"{tt.__module__}.{tt.__name__}"] = tt
|
|
# Storage classes
|
|
for ts in torch._storage_classes:
|
|
if ts not in (torch.storage.TypedStorage, torch.storage.UntypedStorage):
|
|
# Wrap legacy storage types in a dummy class
|
|
rc[f"{ts.__module__}.{ts.__name__}"] = torch.serialization.StorageType(
|
|
ts.__name__
|
|
)
|
|
else:
|
|
rc[f"{ts.__module__}.{ts.__name__}"] = ts
|
|
# Rebuild functions
|
|
for f in [
|
|
torch._utils._rebuild_parameter,
|
|
torch._utils._rebuild_tensor,
|
|
torch._utils._rebuild_tensor_v2,
|
|
torch._utils._rebuild_tensor_v3,
|
|
torch._utils._rebuild_sparse_tensor,
|
|
torch._utils._rebuild_meta_tensor_no_storage,
|
|
torch._utils._rebuild_nested_tensor,
|
|
]:
|
|
rc[f"torch._utils.{f.__name__}"] = f
|
|
|
|
# Handles Tensor Subclasses, Tensor's with attributes.
|
|
# NOTE: It calls into above rebuild functions for regular Tensor types.
|
|
rc["torch._tensor._rebuild_from_type_v2"] = torch._tensor._rebuild_from_type_v2
|
|
return rc
|
|
|
|
|
|
class Unpickler:
|
|
def __init__(self, file, *, encoding: str = "bytes"):
|
|
self.encoding = encoding
|
|
self.readline = file.readline
|
|
self.read = file.read
|
|
self.memo: Dict[int, Any] = {}
|
|
|
|
def load(self):
|
|
"""Read a pickled object representation from the open file.
|
|
|
|
Return the reconstituted object hierarchy specified in the file.
|
|
"""
|
|
self.metastack = []
|
|
self.stack: List[Any] = []
|
|
self.append = self.stack.append
|
|
read = self.read
|
|
readline = self.readline
|
|
while True:
|
|
key = read(1)
|
|
if not key:
|
|
raise EOFError
|
|
assert isinstance(key, bytes_types)
|
|
# Risky operators
|
|
if key[0] == GLOBAL[0]:
|
|
module = readline()[:-1].decode("utf-8")
|
|
name = readline()[:-1].decode("utf-8")
|
|
full_path = f"{module}.{name}"
|
|
if full_path in _get_allowed_globals():
|
|
self.append(_get_allowed_globals()[full_path])
|
|
else:
|
|
raise RuntimeError(f"Unsupported class {full_path}")
|
|
elif key[0] == NEWOBJ[0]:
|
|
args = self.stack.pop()
|
|
cls = self.stack.pop()
|
|
if cls is not torch.nn.Parameter:
|
|
raise RuntimeError(f"Trying to instantiate unsupported class {cls}")
|
|
self.append(torch.nn.Parameter(*args))
|
|
elif key[0] == REDUCE[0]:
|
|
args = self.stack.pop()
|
|
func = self.stack[-1]
|
|
if func not in _get_allowed_globals().values():
|
|
raise RuntimeError(
|
|
f"Trying to call reduce for unrecognized function {func}"
|
|
)
|
|
self.stack[-1] = func(*args)
|
|
elif key[0] == BUILD[0]:
|
|
state = self.stack.pop()
|
|
inst = self.stack[-1]
|
|
if type(inst) is torch.Tensor:
|
|
# Legacy unpickling
|
|
inst.set_(*state)
|
|
elif type(inst) is torch.nn.Parameter:
|
|
inst.__setstate__(state)
|
|
elif type(inst) is OrderedDict:
|
|
inst.__dict__.update(state)
|
|
else:
|
|
raise RuntimeError(
|
|
f"Can only build Tensor, parameter or dict objects, but got {type(inst)}"
|
|
)
|
|
# Stack manipulation
|
|
elif key[0] == APPEND[0]:
|
|
item = self.stack.pop()
|
|
list_obj = self.stack[-1]
|
|
if type(list_obj) is not list:
|
|
raise RuntimeError(
|
|
f"Can only append to lists, but got {type(list_obj)}"
|
|
)
|
|
list_obj.append(item)
|
|
elif key[0] == APPENDS[0]:
|
|
items = self.pop_mark()
|
|
list_obj = self.stack[-1]
|
|
if type(list_obj) is not list:
|
|
raise RuntimeError(
|
|
f"Can only extend lists, but got {type(list_obj)}"
|
|
)
|
|
list_obj.extend(items)
|
|
elif key[0] == SETITEM[0]:
|
|
(v, k) = (self.stack.pop(), self.stack.pop())
|
|
self.stack[-1][k] = v
|
|
elif key[0] == SETITEMS[0]:
|
|
items = self.pop_mark()
|
|
for i in range(0, len(items), 2):
|
|
self.stack[-1][items[i]] = items[i + 1]
|
|
elif key[0] == MARK[0]:
|
|
self.metastack.append(self.stack)
|
|
self.stack = []
|
|
self.append = self.stack.append
|
|
elif key[0] == TUPLE[0]:
|
|
items = self.pop_mark()
|
|
self.append(tuple(items))
|
|
elif key[0] == TUPLE1[0]:
|
|
self.stack[-1] = (self.stack[-1],)
|
|
elif key[0] == TUPLE2[0]:
|
|
self.stack[-2:] = [(self.stack[-2], self.stack[-1])]
|
|
elif key[0] == TUPLE3[0]:
|
|
self.stack[-3:] = [(self.stack[-3], self.stack[-2], self.stack[-1])]
|
|
# Basic types construction
|
|
elif key[0] == NONE[0]:
|
|
self.append(None)
|
|
elif key[0] == NEWFALSE[0]:
|
|
self.append(False)
|
|
elif key[0] == NEWTRUE[0]:
|
|
self.append(True)
|
|
elif key[0] == EMPTY_TUPLE[0]:
|
|
self.append(())
|
|
elif key[0] == EMPTY_LIST[0]:
|
|
self.append([])
|
|
elif key[0] == EMPTY_DICT[0]:
|
|
self.append({})
|
|
elif key[0] == EMPTY_SET[0]:
|
|
self.append(set())
|
|
elif key[0] == BININT[0]:
|
|
self.append(unpack("<i", read(4))[0])
|
|
elif key[0] == BININT1[0]:
|
|
self.append(self.read(1)[0])
|
|
elif key[0] == BININT2[0]:
|
|
self.append(unpack("<H", read(2))[0])
|
|
elif key[0] == BINFLOAT[0]:
|
|
self.append(unpack(">d", self.read(8))[0])
|
|
elif key[0] == BINUNICODE[0]:
|
|
strlen = unpack("<I", read(4))[0]
|
|
if strlen > maxsize:
|
|
raise RuntimeError("String is too long")
|
|
strval = str(read(strlen), "utf-8", "surrogatepass")
|
|
self.append(strval)
|
|
elif key[0] == SHORT_BINSTRING[0]:
|
|
strlen = read(1)[0]
|
|
strdata = read(strlen)
|
|
if self.encoding != "bytes":
|
|
strdata = strdata.decode(self.encoding, "strict")
|
|
self.append(strdata)
|
|
elif key[0] == BINPERSID[0]:
|
|
pid = self.stack.pop()
|
|
# Only allow persistent load of storage
|
|
if type(pid) is not tuple and not type(pid) is not int:
|
|
raise RuntimeError(
|
|
f"persistent_load id must be tuple or int, but got {type(pid)}"
|
|
)
|
|
if (
|
|
type(pid) is tuple
|
|
and len(pid) > 0
|
|
and torch.serialization._maybe_decode_ascii(pid[0]) != "storage"
|
|
):
|
|
raise RuntimeError(
|
|
f"Only persistent_load of storage is allowed, but got {pid[0]}"
|
|
)
|
|
self.append(self.persistent_load(pid))
|
|
elif key[0] in [BINGET[0], LONG_BINGET[0]]:
|
|
idx = (read(1) if key[0] == BINGET[0] else unpack("<I", read(4)))[0]
|
|
self.append(self.memo[idx])
|
|
elif key[0] in [BINPUT[0], LONG_BINPUT[0]]:
|
|
i = (read(1) if key[0] == BINPUT[0] else unpack("<I", read(4)))[0]
|
|
if i < 0:
|
|
raise ValueError("negative argument")
|
|
self.memo[i] = self.stack[-1]
|
|
elif key[0] == LONG1[0]:
|
|
n = read(1)[0]
|
|
data = read(n)
|
|
self.append(decode_long(data))
|
|
# First and last deserializer ops
|
|
elif key[0] == PROTO[0]:
|
|
# Read and ignore proto version
|
|
read(1)[0]
|
|
elif key[0] == STOP[0]:
|
|
rc = self.stack.pop()
|
|
return rc
|
|
else:
|
|
raise RuntimeError(f"Unsupported operand {key[0]}")
|
|
|
|
# Return a list of items pushed in the stack after last MARK instruction.
|
|
def pop_mark(self):
|
|
items = self.stack
|
|
self.stack = self.metastack.pop()
|
|
self.append = self.stack.append
|
|
return items
|
|
|
|
def persistent_load(self, pid):
|
|
raise UnpicklingError("unsupported persistent id encountered")
|
|
|
|
|
|
def load(file, *, encoding: str = "ASCII"):
|
|
return Unpickler(file, encoding=encoding).load()
|