171 lines
6.1 KiB
Python
171 lines
6.1 KiB
Python
import importlib
|
|
import os
|
|
import random
|
|
from typing import Dict, List, Tuple
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from trainer.logger import logger
|
|
from trainer.torch import NoamLR, StepwiseGradualLR
|
|
from trainer.utils.distributed import rank_zero_logger_info
|
|
|
|
|
|
def is_apex_available():
|
|
return importlib.util.find_spec("apex") is not None
|
|
|
|
|
|
def is_mlflow_available():
|
|
return importlib.util.find_spec("mlflow") is not None
|
|
|
|
|
|
def is_aim_available():
|
|
return importlib.util.find_spec("aim") is not None
|
|
|
|
|
|
def is_wandb_available():
|
|
return importlib.util.find_spec("wandb") is not None
|
|
|
|
|
|
def is_clearml_available():
|
|
return importlib.util.find_spec("clearml") is not None
|
|
|
|
|
|
def print_training_env(args, config):
|
|
"""Print training environment."""
|
|
rank_zero_logger_info(" > Training Environment:", logger)
|
|
|
|
if args.use_accelerate:
|
|
rank_zero_logger_info(" | > Backend: Accelerate", logger)
|
|
else:
|
|
rank_zero_logger_info(" | > Backend: Torch", logger)
|
|
|
|
if config.mixed_precision:
|
|
rank_zero_logger_info(" | > Mixed precision: True", logger)
|
|
rank_zero_logger_info(f" | > Precision: {config.precision}", logger)
|
|
else:
|
|
rank_zero_logger_info(" | > Mixed precision: False", logger)
|
|
rank_zero_logger_info(" | > Precision: float32", logger)
|
|
|
|
if torch.cuda.is_available() and torch.cuda.device_count() > 0:
|
|
rank_zero_logger_info(f" | > Current device: {torch.cuda.current_device()}", logger)
|
|
rank_zero_logger_info(f" | > Num. of GPUs: {torch.cuda.device_count()}", logger)
|
|
|
|
rank_zero_logger_info(f" | > Num. of CPUs: {os.cpu_count()}", logger)
|
|
rank_zero_logger_info(f" | > Num. of Torch Threads: {torch.get_num_threads()}", logger)
|
|
rank_zero_logger_info(f" | > Torch seed: {torch.initial_seed()}", logger)
|
|
rank_zero_logger_info(f" | > Torch CUDNN: {torch.backends.cudnn.enabled}", logger)
|
|
rank_zero_logger_info(f" | > Torch CUDNN deterministic: {torch.backends.cudnn.deterministic}", logger)
|
|
rank_zero_logger_info(f" | > Torch CUDNN benchmark: {torch.backends.cudnn.benchmark}", logger)
|
|
rank_zero_logger_info(f" | > Torch TF32 MatMul: {torch.backends.cuda.matmul.allow_tf32}", logger)
|
|
|
|
|
|
def setup_torch_training_env(
|
|
args: "TrainerArgs",
|
|
cudnn_enable: bool,
|
|
cudnn_benchmark: bool,
|
|
cudnn_deterministic: bool,
|
|
use_ddp: bool = False,
|
|
training_seed=54321,
|
|
allow_tf32: bool = False,
|
|
gpu=None,
|
|
) -> Tuple[bool, int]:
|
|
"""Setup PyTorch environment for training.
|
|
|
|
Args:
|
|
cudnn_enable (bool): Enable/disable CUDNN.
|
|
cudnn_benchmark (bool): Enable/disable CUDNN benchmarking. Better to set to False if input sequence length is
|
|
variable between batches.
|
|
cudnn_deterministic (bool): Enable/disable CUDNN deterministic mode.
|
|
use_ddp (bool): DDP flag. True if DDP is enabled, False otherwise.
|
|
allow_tf32 (bool): Enable/disable TF32. TF32 is only available on Ampere GPUs.
|
|
torch_seed (int): Seed for torch random number generator.
|
|
|
|
Returns:
|
|
Tuple[bool, int]: is cuda on or off and number of GPUs in the environment.
|
|
"""
|
|
# clear cache before training
|
|
torch.cuda.empty_cache()
|
|
|
|
# set_nvidia_flags
|
|
# set the correct cuda visible devices (using pci order)
|
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
if "CUDA_VISIBLE_DEVICES" not in os.environ and gpu is not None:
|
|
torch.cuda.set_device(int(gpu))
|
|
num_gpus = 1
|
|
else:
|
|
num_gpus = torch.cuda.device_count()
|
|
|
|
if num_gpus > 1 and (not use_ddp and not args.use_accelerate):
|
|
raise RuntimeError(
|
|
f" [!] {num_gpus} active GPUs. Define the target GPU by `CUDA_VISIBLE_DEVICES`. For multi-gpu training use `TTS/bin/distribute.py`."
|
|
)
|
|
|
|
random.seed(training_seed)
|
|
os.environ["PYTHONHASHSEED"] = str(training_seed)
|
|
np.random.seed(training_seed)
|
|
torch.manual_seed(training_seed)
|
|
torch.cuda.manual_seed(training_seed)
|
|
|
|
# set torch backend flags.
|
|
# set them true if they are already set true
|
|
torch.backends.cudnn.deterministic = cudnn_deterministic or torch.backends.cudnn.deterministic
|
|
torch.backends.cudnn.enabled = cudnn_enable or torch.backends.cudnn.enabled
|
|
torch.backends.cudnn.benchmark = cudnn_benchmark or torch.backends.cudnn.benchmark
|
|
torch.backends.cuda.matmul.allow_tf32 = allow_tf32 or torch.backends.cuda.matmul.allow_tf32
|
|
|
|
use_cuda = torch.cuda.is_available()
|
|
return use_cuda, num_gpus
|
|
|
|
|
|
def get_scheduler(
|
|
lr_scheduler: str, lr_scheduler_params: Dict, optimizer: torch.optim.Optimizer
|
|
) -> torch.optim.lr_scheduler._LRScheduler: # pylint: disable=protected-access
|
|
"""Find, initialize and return a Torch scheduler.
|
|
|
|
Args:
|
|
lr_scheduler (str): Scheduler name.
|
|
lr_scheduler_params (Dict): Scheduler parameters.
|
|
optimizer (torch.optim.Optimizer): Optimizer to pass to the scheduler.
|
|
|
|
Returns:
|
|
torch.optim.lr_scheduler._LRScheduler: Functional scheduler.
|
|
"""
|
|
if lr_scheduler is None:
|
|
return None
|
|
if lr_scheduler.lower() == "noamlr":
|
|
scheduler = NoamLR
|
|
elif lr_scheduler.lower() == "stepwisegraduallr":
|
|
scheduler = StepwiseGradualLR
|
|
else:
|
|
scheduler = getattr(torch.optim.lr_scheduler, lr_scheduler)
|
|
return scheduler(optimizer, **lr_scheduler_params)
|
|
|
|
|
|
def get_optimizer(
|
|
optimizer_name: str,
|
|
optimizer_params: dict,
|
|
lr: float,
|
|
model: torch.nn.Module = None,
|
|
parameters: List = None,
|
|
) -> torch.optim.Optimizer:
|
|
"""Find, initialize and return a Torch optimizer.
|
|
|
|
Args:
|
|
optimizer_name (str): Optimizer name.
|
|
optimizer_params (dict): Optimizer parameters.
|
|
lr (float): Initial learning rate.
|
|
model (torch.nn.Module): Model to pass to the optimizer.
|
|
|
|
Returns:
|
|
torch.optim.Optimizer: Functional optimizer.
|
|
"""
|
|
if optimizer_name.lower() == "radam":
|
|
module = importlib.import_module("TTS.utils.radam")
|
|
optimizer = getattr(module, "RAdam")
|
|
else:
|
|
optimizer = getattr(torch.optim, optimizer_name)
|
|
if model is not None:
|
|
parameters = model.parameters()
|
|
return optimizer(parameters, lr=lr, **optimizer_params)
|