436 lines
20 KiB
Python
436 lines
20 KiB
Python
from dataclasses import dataclass
|
|
from typing import Any, Dict, List, Optional, Tuple
|
|
|
|
import torch
|
|
|
|
from .configuration_utils import PretrainedConfig
|
|
from .utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class Cache:
|
|
"""
|
|
Base, abstract class for all caches. The actual data structure is specific to each subclass.
|
|
"""
|
|
|
|
def update(
|
|
self,
|
|
key_states: torch.Tensor,
|
|
value_states: torch.Tensor,
|
|
layer_idx: int,
|
|
cache_kwargs: Optional[Dict[str, Any]] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
|
|
|
Parameters:
|
|
key_states (`torch.Tensor`):
|
|
The new key states to cache.
|
|
value_states (`torch.Tensor`):
|
|
The new value states to cache.
|
|
layer_idx (`int`):
|
|
The index of the layer to cache the states for.
|
|
cache_kwargs (`Dict[str, Any]`, `optional`):
|
|
Additional arguments for the cache subclass. These are specific to each subclass and allow new types of
|
|
cache to be created.
|
|
|
|
Return:
|
|
A tuple containing the updated key and value states.
|
|
"""
|
|
raise NotImplementedError("Make sure to implement `update` in a subclass.")
|
|
|
|
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
|
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
|
raise NotImplementedError("Make sure to implement `get_seq_length` in a subclass.")
|
|
|
|
def get_max_length(self) -> Optional[int]:
|
|
"""Returns the maximum sequence length of the cached states, if there is any."""
|
|
raise NotImplementedError("Make sure to implement `get_max_length` in a subclass.")
|
|
|
|
def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
|
|
"""Given the sequence length of the new inputs, returns the usable length of the cache."""
|
|
# Cache without size limit -> all cache is usable
|
|
# Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
|
|
# length, we will need to evict part of the cache (and thus not all cache is usable)
|
|
max_length = self.get_max_length()
|
|
previous_seq_length = self.get_seq_length(layer_idx)
|
|
if max_length is not None and previous_seq_length + new_seq_length > max_length:
|
|
return max_length - new_seq_length
|
|
return previous_seq_length
|
|
|
|
@property
|
|
def seen_tokens(self):
|
|
logger.warning_once(
|
|
"The `seen_tokens` attribute is deprecated and will be removed in v4.41. Use the `cache_position` "
|
|
"model input instead."
|
|
)
|
|
if hasattr(self, "_seen_tokens"):
|
|
return self._seen_tokens
|
|
else:
|
|
return None
|
|
|
|
|
|
class DynamicCache(Cache):
|
|
"""
|
|
A cache that grows dynamically as more tokens are generated. This is the default for generative models.
|
|
|
|
It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
|
|
`[batch_size, num_heads, seq_len, head_dim]`.
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
self.key_cache: List[torch.Tensor] = []
|
|
self.value_cache: List[torch.Tensor] = []
|
|
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
|
|
|
|
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
|
|
"""
|
|
Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
|
|
sequence length.
|
|
"""
|
|
if layer_idx < len(self):
|
|
return (self.key_cache[layer_idx], self.value_cache[layer_idx])
|
|
else:
|
|
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
|
|
|
|
def __iter__(self):
|
|
"""
|
|
Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
|
|
keys and values
|
|
"""
|
|
for layer_idx in range(len(self)):
|
|
yield (self.key_cache[layer_idx], self.value_cache[layer_idx])
|
|
|
|
def __len__(self):
|
|
"""
|
|
Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
|
|
to the number of layers in the model.
|
|
"""
|
|
return len(self.key_cache)
|
|
|
|
def update(
|
|
self,
|
|
key_states: torch.Tensor,
|
|
value_states: torch.Tensor,
|
|
layer_idx: int,
|
|
cache_kwargs: Optional[Dict[str, Any]] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
|
|
|
Parameters:
|
|
key_states (`torch.Tensor`):
|
|
The new key states to cache.
|
|
value_states (`torch.Tensor`):
|
|
The new value states to cache.
|
|
layer_idx (`int`):
|
|
The index of the layer to cache the states for.
|
|
cache_kwargs (`Dict[str, Any]`, `optional`):
|
|
Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
|
|
|
|
Return:
|
|
A tuple containing the updated key and value states.
|
|
"""
|
|
# Update the number of seen tokens
|
|
if layer_idx == 0:
|
|
self._seen_tokens += key_states.shape[-2]
|
|
|
|
# Update the cache
|
|
if len(self.key_cache) <= layer_idx:
|
|
self.key_cache.append(key_states)
|
|
self.value_cache.append(value_states)
|
|
else:
|
|
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
|
|
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
|
|
|
|
return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
|
|
|
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
|
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
|
if len(self.key_cache) <= layer_idx:
|
|
return 0
|
|
return self.key_cache[layer_idx].shape[-2]
|
|
|
|
def get_max_length(self) -> Optional[int]:
|
|
"""Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
|
|
return None
|
|
|
|
def reorder_cache(self, beam_idx: torch.LongTensor):
|
|
"""Reorders the cache for beam search, given the selected beam indices."""
|
|
for layer_idx in range(len(self.key_cache)):
|
|
device = self.key_cache[layer_idx].device
|
|
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
|
|
device = self.value_cache[layer_idx].device
|
|
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
|
|
|
|
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
|
|
"""Converts the `DynamicCache` instance into the its equivalent in the legacy cache format."""
|
|
legacy_cache = ()
|
|
for layer_idx in range(len(self)):
|
|
legacy_cache += ((self.key_cache[layer_idx], self.value_cache[layer_idx]),)
|
|
return legacy_cache
|
|
|
|
@classmethod
|
|
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
|
|
"""Converts a cache in the legacy cache format into an equivalent `DynamicCache`."""
|
|
cache = cls()
|
|
if past_key_values is not None:
|
|
for layer_idx in range(len(past_key_values)):
|
|
key_states, value_states = past_key_values[layer_idx]
|
|
cache.update(key_states, value_states, layer_idx)
|
|
return cache
|
|
|
|
|
|
class SinkCache(Cache):
|
|
"""
|
|
A cache that as described in the [Attention Sinks paper](https://arxiv.org/abs/2309.17453). It allows the model to
|
|
generate beyond the length of its context window, without losing fluency in the conversation. As it discards past
|
|
tokens, the model will lose the ability to generate tokens that depend on the context that was discarded.
|
|
|
|
It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
|
|
`[batch_size, num_heads, seq_len, head_dim]`.
|
|
|
|
Parameters:
|
|
window_length (`int`):
|
|
The length of the context window.
|
|
num_sink_tokens (`int`):
|
|
The number of sink tokens. See the original paper for more information.
|
|
"""
|
|
|
|
def __init__(self, window_length: int, num_sink_tokens: int) -> None:
|
|
self.key_cache: List[torch.Tensor] = []
|
|
self.value_cache: List[torch.Tensor] = []
|
|
self.window_length = window_length
|
|
self.num_sink_tokens = num_sink_tokens
|
|
self.cos_sin_cache = {}
|
|
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
|
|
|
|
@staticmethod
|
|
def _rotate_half(x):
|
|
x1 = x[..., : x.shape[-1] // 2]
|
|
x2 = x[..., x.shape[-1] // 2 :]
|
|
return torch.cat((-x2, x1), dim=-1)
|
|
|
|
def _apply_key_rotary_pos_emb(
|
|
self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
|
) -> torch.Tensor:
|
|
rotated_key_states = (key_states * cos) + (self._rotate_half(key_states) * sin)
|
|
return rotated_key_states
|
|
|
|
def _get_rerotation_cos_sin(
|
|
self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
if key_states.shape[-2] not in self.cos_sin_cache:
|
|
# Upcast to float32 temporarily for better accuracy
|
|
cos = cos.to(torch.float32)
|
|
sin = sin.to(torch.float32)
|
|
|
|
# Compute the cos and sin required for back- and forward-rotating to one position earlier in the sequence
|
|
original_cos = cos[self.num_sink_tokens + key_states.shape[-2] :]
|
|
shifted_cos = cos[self.num_sink_tokens : -key_states.shape[-2]]
|
|
original_sin = sin[self.num_sink_tokens + key_states.shape[-2] :]
|
|
shifted_sin = sin[self.num_sink_tokens : -key_states.shape[-2]]
|
|
rerotation_cos = original_cos * shifted_cos + original_sin * shifted_sin
|
|
rerotation_sin = -original_sin * shifted_cos + original_cos * shifted_sin
|
|
|
|
self.cos_sin_cache[key_states.shape[-2]] = (
|
|
rerotation_cos.to(key_states.dtype).unsqueeze(0),
|
|
rerotation_sin.to(key_states.dtype).unsqueeze(0),
|
|
)
|
|
return self.cos_sin_cache[key_states.shape[-2]]
|
|
|
|
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
|
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
|
# Workaround to make 'key_states.shape[-2] + past_key_value.get_seq_length(self.layer_idx)' <= window_length
|
|
if len(self.key_cache) <= layer_idx:
|
|
return 0
|
|
return self.key_cache[layer_idx].shape[-2]
|
|
|
|
def get_max_length(self) -> Optional[int]:
|
|
"""Returns the maximum sequence length of the cached states."""
|
|
return self.window_length
|
|
|
|
def update(
|
|
self,
|
|
key_states: torch.Tensor,
|
|
value_states: torch.Tensor,
|
|
layer_idx: int,
|
|
cache_kwargs: Optional[Dict[str, Any]] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
|
|
|
Parameters:
|
|
key_states (`torch.Tensor`):
|
|
The new key states to cache.
|
|
value_states (`torch.Tensor`):
|
|
The new value states to cache.
|
|
layer_idx (`int`):
|
|
The index of the layer to cache the states for.
|
|
cache_kwargs (`Dict[str, Any]`, `optional`):
|
|
Additional arguments for the cache subclass. The following arguments can be used in `SinkCache`: `sin`,
|
|
`cos` and `partial_rotation_size`. These arguments are used with models using RoPE, to recompute the
|
|
rotation as the tokens are shifted.
|
|
|
|
Return:
|
|
A tuple containing the updated key and value states.
|
|
"""
|
|
# Optional kwargs for `SinkCache` -- needed on models using RoPE. `partial_rotation_size` is used on models
|
|
# with partially rotated position embeddings, like Phi or Persimmon.
|
|
sin = cache_kwargs.get("sin")
|
|
cos = cache_kwargs.get("cos")
|
|
partial_rotation_size = cache_kwargs.get("partial_rotation_size")
|
|
using_rope = cos is not None and sin is not None
|
|
|
|
# Update the number of seen tokens
|
|
if layer_idx == 0:
|
|
self._seen_tokens += key_states.shape[-2]
|
|
|
|
# [bsz, num_heads, seq_len, head_dim]
|
|
if len(self.key_cache) <= layer_idx:
|
|
# Empty cache
|
|
self.key_cache.append(key_states)
|
|
self.value_cache.append(value_states)
|
|
|
|
elif key_states.shape[-2] + self.get_seq_length(layer_idx) < self.window_length:
|
|
# Growing cache
|
|
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
|
|
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
|
|
|
|
else:
|
|
# Shifting cache
|
|
keys_to_keep = self.key_cache[layer_idx][
|
|
:, :, -self.window_length + self.num_sink_tokens + key_states.shape[-2] :
|
|
]
|
|
|
|
# On RoPE models, we need to recompute the Key rotation as the tokens are shifted
|
|
if using_rope:
|
|
rerotation_cos, rerotation_sin = self._get_rerotation_cos_sin(
|
|
key_states, cos[: self.window_length], sin[: self.window_length]
|
|
)
|
|
if partial_rotation_size is not None:
|
|
keys_to_keep, keys_pass = (
|
|
keys_to_keep[..., :partial_rotation_size],
|
|
keys_to_keep[..., partial_rotation_size:],
|
|
)
|
|
keys_to_keep = self._apply_key_rotary_pos_emb(keys_to_keep, rerotation_cos, rerotation_sin)
|
|
if partial_rotation_size is not None:
|
|
keys_to_keep = torch.cat((keys_to_keep, keys_pass), dim=-1)
|
|
|
|
# Concatenate sink tokens, shifted & rotated tokens (if needed), and new tokens
|
|
sink_keys = self.key_cache[layer_idx][:, :, : self.num_sink_tokens]
|
|
self.key_cache[layer_idx] = torch.cat([sink_keys, keys_to_keep, key_states], dim=-2)
|
|
|
|
sink_values = self.value_cache[layer_idx][:, :, : self.num_sink_tokens]
|
|
values_to_keep = self.value_cache[layer_idx][
|
|
:, :, -self.window_length + self.num_sink_tokens + value_states.shape[-2] :
|
|
]
|
|
self.value_cache[layer_idx] = torch.cat([sink_values, values_to_keep, value_states], dim=-2)
|
|
|
|
return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
|
|
|
def reorder_cache(self, beam_idx: torch.LongTensor):
|
|
"""Reorders the cache for beam search, given the selected beam indices."""
|
|
for layer_idx in range(len(self.key_cache)):
|
|
device = self.key_cache[layer_idx].device
|
|
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
|
|
device = self.value_cache[layer_idx].device
|
|
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
|
|
|
|
|
|
class StaticCache(Cache):
|
|
"""
|
|
Static Cache class to be used with `torch.compile(model)`.
|
|
|
|
Parameters:
|
|
config (`PretrainedConfig):
|
|
The configuration file defining the `max_position_embeddings`, `hidden_size` and `num_attention_heads`
|
|
required to initialize the static cache.
|
|
max_batch_size (`int`):
|
|
The maximum batch size with which the model will be used.
|
|
max_cache_len (`int`):
|
|
The maximum sequence length with which the model will be used.
|
|
device (`torch.device`):
|
|
The device on which the cache should be initialized. Should be the same as the layer.
|
|
dtype (*optional*, defaults to `torch.float32`):
|
|
The default `dtype` to use when initializing the layer.
|
|
"""
|
|
|
|
def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None:
|
|
super().__init__()
|
|
self.max_batch_size = max_batch_size
|
|
self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
|
|
# Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
|
|
self.head_dim = (
|
|
config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
|
|
)
|
|
|
|
self.dtype = dtype if dtype is not None else torch.float32
|
|
self.num_key_value_heads = (
|
|
config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
|
|
)
|
|
|
|
cache_shape = (max_batch_size, self.num_key_value_heads, self.max_cache_len, self.head_dim)
|
|
self.key_cache: torch.Tensor = torch.zeros(cache_shape, dtype=self.dtype, device=device)
|
|
self.value_cache: torch.Tensor = torch.zeros(cache_shape, dtype=self.dtype, device=device)
|
|
|
|
def update(
|
|
self,
|
|
key_states: torch.Tensor,
|
|
value_states: torch.Tensor,
|
|
layer_idx: int,
|
|
cache_kwargs: Optional[Dict[str, Any]] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
|
It is VERY important to index using a tensor, otherwise you introduce a copy to the device.
|
|
|
|
Parameters:
|
|
key_states (`torch.Tensor`):
|
|
The new key states to cache.
|
|
value_states (`torch.Tensor`):
|
|
The new value states to cache.
|
|
layer_idx (`int`):
|
|
The index of the layer to cache the states for. Kept for backward compatibility
|
|
cache_kwargs (`Dict[str, Any]`, `optional`):
|
|
Additional arguments for the cache subclass. The `StaticCache` just needs the `q_len`
|
|
to know how much of the cache it should overwrite.
|
|
|
|
Return:
|
|
A tuple containing the updated key and value states.
|
|
"""
|
|
new_cache_positions = cache_kwargs.get("cache_position")
|
|
k_out = self.key_cache
|
|
v_out = self.value_cache
|
|
|
|
k_out[:, :, new_cache_positions] = key_states
|
|
v_out[:, :, new_cache_positions] = value_states
|
|
|
|
return k_out, v_out
|
|
|
|
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
|
"""Returns the sequence length of the cached states that were seen by the model. `layer_idx` kept for BC"""
|
|
# Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
|
|
# limit the check to the first batch member and head dimension.
|
|
# TODO: This is error prone, a filled cache may be `0.0`. Let's use a stateless integer instead, after
|
|
# https://github.com/pytorch/pytorch/issues/120248 is fixed
|
|
return (self.key_cache[0, 0].any(dim=-1)).sum()
|
|
|
|
def get_max_length(self) -> Optional[int]:
|
|
"""Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
|
|
return self.max_cache_len
|
|
|
|
def reorder_cache(self, beam_idx: torch.LongTensor):
|
|
"""Reorders the cache for beam search, given the selected beam indices."""
|
|
device = self.key_cache.device
|
|
self.key_cache = self.key_cache.index_select(0, beam_idx.to(device))
|
|
device = self.value_cache.device
|
|
self.value_cache = self.value_cache.index_select(0, beam_idx.to(device))
|
|
|
|
def to_legacy_cache(self):
|
|
"""Dummy function for BC. We have to keep it because otherwise the call in the forward of models will break it"""
|
|
return None
|