634 lines
27 KiB
Python
634 lines
27 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Utilities to dynamically load objects from the Hub."""
|
|
import filecmp
|
|
import importlib
|
|
import os
|
|
import re
|
|
import shutil
|
|
import signal
|
|
import sys
|
|
import typing
|
|
import warnings
|
|
from pathlib import Path
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
from huggingface_hub import try_to_load_from_cache
|
|
|
|
from .utils import (
|
|
HF_MODULES_CACHE,
|
|
TRANSFORMERS_DYNAMIC_MODULE_NAME,
|
|
cached_file,
|
|
extract_commit_hash,
|
|
is_offline_mode,
|
|
logging,
|
|
)
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
def init_hf_modules():
|
|
"""
|
|
Creates the cache directory for modules with an init, and adds it to the Python path.
|
|
"""
|
|
# This function has already been executed if HF_MODULES_CACHE already is in the Python path.
|
|
if HF_MODULES_CACHE in sys.path:
|
|
return
|
|
|
|
sys.path.append(HF_MODULES_CACHE)
|
|
os.makedirs(HF_MODULES_CACHE, exist_ok=True)
|
|
init_path = Path(HF_MODULES_CACHE) / "__init__.py"
|
|
if not init_path.exists():
|
|
init_path.touch()
|
|
importlib.invalidate_caches()
|
|
|
|
|
|
def create_dynamic_module(name: Union[str, os.PathLike]):
|
|
"""
|
|
Creates a dynamic module in the cache directory for modules.
|
|
|
|
Args:
|
|
name (`str` or `os.PathLike`):
|
|
The name of the dynamic module to create.
|
|
"""
|
|
init_hf_modules()
|
|
dynamic_module_path = (Path(HF_MODULES_CACHE) / name).resolve()
|
|
# If the parent module does not exist yet, recursively create it.
|
|
if not dynamic_module_path.parent.exists():
|
|
create_dynamic_module(dynamic_module_path.parent)
|
|
os.makedirs(dynamic_module_path, exist_ok=True)
|
|
init_path = dynamic_module_path / "__init__.py"
|
|
if not init_path.exists():
|
|
init_path.touch()
|
|
# It is extremely important to invalidate the cache when we change stuff in those modules, or users end up
|
|
# with errors about module that do not exist. Same for all other `invalidate_caches` in this file.
|
|
importlib.invalidate_caches()
|
|
|
|
|
|
def get_relative_imports(module_file: Union[str, os.PathLike]) -> List[str]:
|
|
"""
|
|
Get the list of modules that are relatively imported in a module file.
|
|
|
|
Args:
|
|
module_file (`str` or `os.PathLike`): The module file to inspect.
|
|
|
|
Returns:
|
|
`List[str]`: The list of relative imports in the module.
|
|
"""
|
|
with open(module_file, "r", encoding="utf-8") as f:
|
|
content = f.read()
|
|
|
|
# Imports of the form `import .xxx`
|
|
relative_imports = re.findall(r"^\s*import\s+\.(\S+)\s*$", content, flags=re.MULTILINE)
|
|
# Imports of the form `from .xxx import yyy`
|
|
relative_imports += re.findall(r"^\s*from\s+\.(\S+)\s+import", content, flags=re.MULTILINE)
|
|
# Unique-ify
|
|
return list(set(relative_imports))
|
|
|
|
|
|
def get_relative_import_files(module_file: Union[str, os.PathLike]) -> List[str]:
|
|
"""
|
|
Get the list of all files that are needed for a given module. Note that this function recurses through the relative
|
|
imports (if a imports b and b imports c, it will return module files for b and c).
|
|
|
|
Args:
|
|
module_file (`str` or `os.PathLike`): The module file to inspect.
|
|
|
|
Returns:
|
|
`List[str]`: The list of all relative imports a given module needs (recursively), which will give us the list
|
|
of module files a given module needs.
|
|
"""
|
|
no_change = False
|
|
files_to_check = [module_file]
|
|
all_relative_imports = []
|
|
|
|
# Let's recurse through all relative imports
|
|
while not no_change:
|
|
new_imports = []
|
|
for f in files_to_check:
|
|
new_imports.extend(get_relative_imports(f))
|
|
|
|
module_path = Path(module_file).parent
|
|
new_import_files = [str(module_path / m) for m in new_imports]
|
|
new_import_files = [f for f in new_import_files if f not in all_relative_imports]
|
|
files_to_check = [f"{f}.py" for f in new_import_files]
|
|
|
|
no_change = len(new_import_files) == 0
|
|
all_relative_imports.extend(files_to_check)
|
|
|
|
return all_relative_imports
|
|
|
|
|
|
def get_imports(filename: Union[str, os.PathLike]) -> List[str]:
|
|
"""
|
|
Extracts all the libraries (not relative imports this time) that are imported in a file.
|
|
|
|
Args:
|
|
filename (`str` or `os.PathLike`): The module file to inspect.
|
|
|
|
Returns:
|
|
`List[str]`: The list of all packages required to use the input module.
|
|
"""
|
|
with open(filename, "r", encoding="utf-8") as f:
|
|
content = f.read()
|
|
|
|
# filter out try/except block so in custom code we can have try/except imports
|
|
content = re.sub(r"\s*try\s*:\s*.*?\s*except\s*.*?:", "", content, flags=re.MULTILINE | re.DOTALL)
|
|
|
|
# Imports of the form `import xxx`
|
|
imports = re.findall(r"^\s*import\s+(\S+)\s*$", content, flags=re.MULTILINE)
|
|
# Imports of the form `from xxx import yyy`
|
|
imports += re.findall(r"^\s*from\s+(\S+)\s+import", content, flags=re.MULTILINE)
|
|
# Only keep the top-level module
|
|
imports = [imp.split(".")[0] for imp in imports if not imp.startswith(".")]
|
|
return list(set(imports))
|
|
|
|
|
|
def check_imports(filename: Union[str, os.PathLike]) -> List[str]:
|
|
"""
|
|
Check if the current Python environment contains all the libraries that are imported in a file. Will raise if a
|
|
library is missing.
|
|
|
|
Args:
|
|
filename (`str` or `os.PathLike`): The module file to check.
|
|
|
|
Returns:
|
|
`List[str]`: The list of relative imports in the file.
|
|
"""
|
|
imports = get_imports(filename)
|
|
missing_packages = []
|
|
for imp in imports:
|
|
try:
|
|
importlib.import_module(imp)
|
|
except ImportError:
|
|
missing_packages.append(imp)
|
|
|
|
if len(missing_packages) > 0:
|
|
raise ImportError(
|
|
"This modeling file requires the following packages that were not found in your environment: "
|
|
f"{', '.join(missing_packages)}. Run `pip install {' '.join(missing_packages)}`"
|
|
)
|
|
|
|
return get_relative_imports(filename)
|
|
|
|
|
|
def get_class_in_module(class_name: str, module_path: Union[str, os.PathLike]) -> typing.Type:
|
|
"""
|
|
Import a module on the cache directory for modules and extract a class from it.
|
|
|
|
Args:
|
|
class_name (`str`): The name of the class to import.
|
|
module_path (`str` or `os.PathLike`): The path to the module to import.
|
|
|
|
Returns:
|
|
`typing.Type`: The class looked for.
|
|
"""
|
|
name = os.path.normpath(module_path).replace(".py", "").replace(os.path.sep, ".")
|
|
module_path = str(Path(HF_MODULES_CACHE) / module_path)
|
|
module = importlib.machinery.SourceFileLoader(name, module_path).load_module()
|
|
return getattr(module, class_name)
|
|
|
|
|
|
def get_cached_module_file(
|
|
pretrained_model_name_or_path: Union[str, os.PathLike],
|
|
module_file: str,
|
|
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
|
force_download: bool = False,
|
|
resume_download: bool = False,
|
|
proxies: Optional[Dict[str, str]] = None,
|
|
token: Optional[Union[bool, str]] = None,
|
|
revision: Optional[str] = None,
|
|
local_files_only: bool = False,
|
|
repo_type: Optional[str] = None,
|
|
_commit_hash: Optional[str] = None,
|
|
**deprecated_kwargs,
|
|
) -> str:
|
|
"""
|
|
Prepares Downloads a module from a local folder or a distant repo and returns its path inside the cached
|
|
Transformers module.
|
|
|
|
Args:
|
|
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
|
This can be either:
|
|
|
|
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
|
|
huggingface.co.
|
|
- a path to a *directory* containing a configuration file saved using the
|
|
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
|
|
|
|
module_file (`str`):
|
|
The name of the module file containing the class to look for.
|
|
cache_dir (`str` or `os.PathLike`, *optional*):
|
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
|
|
cache should not be used.
|
|
force_download (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to force to (re-)download the configuration files and override the cached versions if they
|
|
exist.
|
|
resume_download (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
|
|
proxies (`Dict[str, str]`, *optional*):
|
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
|
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
|
token (`str` or *bool*, *optional*):
|
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
|
when running `huggingface-cli login` (stored in `~/.huggingface`).
|
|
revision (`str`, *optional*, defaults to `"main"`):
|
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
|
identifier allowed by git.
|
|
local_files_only (`bool`, *optional*, defaults to `False`):
|
|
If `True`, will only try to load the tokenizer configuration from local files.
|
|
repo_type (`str`, *optional*):
|
|
Specify the repo type (useful when downloading from a space for instance).
|
|
|
|
<Tip>
|
|
|
|
Passing `token=True` is required when you want to use a private model.
|
|
|
|
</Tip>
|
|
|
|
Returns:
|
|
`str`: The path to the module inside the cache.
|
|
"""
|
|
use_auth_token = deprecated_kwargs.pop("use_auth_token", None)
|
|
if use_auth_token is not None:
|
|
warnings.warn(
|
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
|
FutureWarning,
|
|
)
|
|
if token is not None:
|
|
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
|
token = use_auth_token
|
|
|
|
if is_offline_mode() and not local_files_only:
|
|
logger.info("Offline mode: forcing local_files_only=True")
|
|
local_files_only = True
|
|
|
|
# Download and cache module_file from the repo `pretrained_model_name_or_path` of grab it if it's a local file.
|
|
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
|
is_local = os.path.isdir(pretrained_model_name_or_path)
|
|
if is_local:
|
|
submodule = os.path.basename(pretrained_model_name_or_path)
|
|
else:
|
|
submodule = pretrained_model_name_or_path.replace("/", os.path.sep)
|
|
cached_module = try_to_load_from_cache(
|
|
pretrained_model_name_or_path, module_file, cache_dir=cache_dir, revision=_commit_hash, repo_type=repo_type
|
|
)
|
|
|
|
new_files = []
|
|
try:
|
|
# Load from URL or cache if already cached
|
|
resolved_module_file = cached_file(
|
|
pretrained_model_name_or_path,
|
|
module_file,
|
|
cache_dir=cache_dir,
|
|
force_download=force_download,
|
|
proxies=proxies,
|
|
resume_download=resume_download,
|
|
local_files_only=local_files_only,
|
|
token=token,
|
|
revision=revision,
|
|
repo_type=repo_type,
|
|
_commit_hash=_commit_hash,
|
|
)
|
|
if not is_local and cached_module != resolved_module_file:
|
|
new_files.append(module_file)
|
|
|
|
except EnvironmentError:
|
|
logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}.")
|
|
raise
|
|
|
|
# Check we have all the requirements in our environment
|
|
modules_needed = check_imports(resolved_module_file)
|
|
|
|
# Now we move the module inside our cached dynamic modules.
|
|
full_submodule = TRANSFORMERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
|
|
create_dynamic_module(full_submodule)
|
|
submodule_path = Path(HF_MODULES_CACHE) / full_submodule
|
|
if submodule == os.path.basename(pretrained_model_name_or_path):
|
|
# We copy local files to avoid putting too many folders in sys.path. This copy is done when the file is new or
|
|
# has changed since last copy.
|
|
if not (submodule_path / module_file).exists() or not filecmp.cmp(
|
|
resolved_module_file, str(submodule_path / module_file)
|
|
):
|
|
shutil.copy(resolved_module_file, submodule_path / module_file)
|
|
importlib.invalidate_caches()
|
|
for module_needed in modules_needed:
|
|
module_needed = f"{module_needed}.py"
|
|
module_needed_file = os.path.join(pretrained_model_name_or_path, module_needed)
|
|
if not (submodule_path / module_needed).exists() or not filecmp.cmp(
|
|
module_needed_file, str(submodule_path / module_needed)
|
|
):
|
|
shutil.copy(module_needed_file, submodule_path / module_needed)
|
|
importlib.invalidate_caches()
|
|
else:
|
|
# Get the commit hash
|
|
commit_hash = extract_commit_hash(resolved_module_file, _commit_hash)
|
|
|
|
# The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the
|
|
# benefit of versioning.
|
|
submodule_path = submodule_path / commit_hash
|
|
full_submodule = full_submodule + os.path.sep + commit_hash
|
|
create_dynamic_module(full_submodule)
|
|
|
|
if not (submodule_path / module_file).exists():
|
|
shutil.copy(resolved_module_file, submodule_path / module_file)
|
|
importlib.invalidate_caches()
|
|
# Make sure we also have every file with relative
|
|
for module_needed in modules_needed:
|
|
if not (submodule_path / f"{module_needed}.py").exists():
|
|
get_cached_module_file(
|
|
pretrained_model_name_or_path,
|
|
f"{module_needed}.py",
|
|
cache_dir=cache_dir,
|
|
force_download=force_download,
|
|
resume_download=resume_download,
|
|
proxies=proxies,
|
|
token=token,
|
|
revision=revision,
|
|
local_files_only=local_files_only,
|
|
_commit_hash=commit_hash,
|
|
)
|
|
new_files.append(f"{module_needed}.py")
|
|
|
|
if len(new_files) > 0 and revision is None:
|
|
new_files = "\n".join([f"- {f}" for f in new_files])
|
|
repo_type_str = "" if repo_type is None else f"{repo_type}s/"
|
|
url = f"https://huggingface.co/{repo_type_str}{pretrained_model_name_or_path}"
|
|
logger.warning(
|
|
f"A new version of the following files was downloaded from {url}:\n{new_files}"
|
|
"\n. Make sure to double-check they do not contain any added malicious code. To avoid downloading new "
|
|
"versions of the code file, you can pin a revision."
|
|
)
|
|
|
|
return os.path.join(full_submodule, module_file)
|
|
|
|
|
|
def get_class_from_dynamic_module(
|
|
class_reference: str,
|
|
pretrained_model_name_or_path: Union[str, os.PathLike],
|
|
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
|
force_download: bool = False,
|
|
resume_download: bool = False,
|
|
proxies: Optional[Dict[str, str]] = None,
|
|
token: Optional[Union[bool, str]] = None,
|
|
revision: Optional[str] = None,
|
|
local_files_only: bool = False,
|
|
repo_type: Optional[str] = None,
|
|
code_revision: Optional[str] = None,
|
|
**kwargs,
|
|
) -> typing.Type:
|
|
"""
|
|
Extracts a class from a module file, present in the local folder or repository of a model.
|
|
|
|
<Tip warning={true}>
|
|
|
|
Calling this function will execute the code in the module file found locally or downloaded from the Hub. It should
|
|
therefore only be called on trusted repos.
|
|
|
|
</Tip>
|
|
|
|
|
|
|
|
Args:
|
|
class_reference (`str`):
|
|
The full name of the class to load, including its module and optionally its repo.
|
|
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
|
This can be either:
|
|
|
|
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
|
|
huggingface.co.
|
|
- a path to a *directory* containing a configuration file saved using the
|
|
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
|
|
|
|
This is used when `class_reference` does not specify another repo.
|
|
module_file (`str`):
|
|
The name of the module file containing the class to look for.
|
|
class_name (`str`):
|
|
The name of the class to import in the module.
|
|
cache_dir (`str` or `os.PathLike`, *optional*):
|
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
|
|
cache should not be used.
|
|
force_download (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to force to (re-)download the configuration files and override the cached versions if they
|
|
exist.
|
|
resume_download (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
|
|
proxies (`Dict[str, str]`, *optional*):
|
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
|
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
|
token (`str` or `bool`, *optional*):
|
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
|
when running `huggingface-cli login` (stored in `~/.huggingface`).
|
|
revision (`str`, *optional*, defaults to `"main"`):
|
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
|
identifier allowed by git.
|
|
local_files_only (`bool`, *optional*, defaults to `False`):
|
|
If `True`, will only try to load the tokenizer configuration from local files.
|
|
repo_type (`str`, *optional*):
|
|
Specify the repo type (useful when downloading from a space for instance).
|
|
code_revision (`str`, *optional*, defaults to `"main"`):
|
|
The specific revision to use for the code on the Hub, if the code leaves in a different repository than the
|
|
rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for
|
|
storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git.
|
|
|
|
<Tip>
|
|
|
|
Passing `token=True` is required when you want to use a private model.
|
|
|
|
</Tip>
|
|
|
|
Returns:
|
|
`typing.Type`: The class, dynamically imported from the module.
|
|
|
|
Examples:
|
|
|
|
```python
|
|
# Download module `modeling.py` from huggingface.co and cache then extract the class `MyBertModel` from this
|
|
# module.
|
|
cls = get_class_from_dynamic_module("modeling.MyBertModel", "sgugger/my-bert-model")
|
|
|
|
# Download module `modeling.py` from a given repo and cache then extract the class `MyBertModel` from this
|
|
# module.
|
|
cls = get_class_from_dynamic_module("sgugger/my-bert-model--modeling.MyBertModel", "sgugger/another-bert-model")
|
|
```"""
|
|
use_auth_token = kwargs.pop("use_auth_token", None)
|
|
if use_auth_token is not None:
|
|
warnings.warn(
|
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
|
FutureWarning,
|
|
)
|
|
if token is not None:
|
|
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
|
token = use_auth_token
|
|
|
|
# Catch the name of the repo if it's specified in `class_reference`
|
|
if "--" in class_reference:
|
|
repo_id, class_reference = class_reference.split("--")
|
|
else:
|
|
repo_id = pretrained_model_name_or_path
|
|
module_file, class_name = class_reference.split(".")
|
|
|
|
if code_revision is None and pretrained_model_name_or_path == repo_id:
|
|
code_revision = revision
|
|
# And lastly we get the class inside our newly created module
|
|
final_module = get_cached_module_file(
|
|
repo_id,
|
|
module_file + ".py",
|
|
cache_dir=cache_dir,
|
|
force_download=force_download,
|
|
resume_download=resume_download,
|
|
proxies=proxies,
|
|
token=token,
|
|
revision=code_revision,
|
|
local_files_only=local_files_only,
|
|
repo_type=repo_type,
|
|
)
|
|
return get_class_in_module(class_name, final_module)
|
|
|
|
|
|
def custom_object_save(obj: Any, folder: Union[str, os.PathLike], config: Optional[Dict] = None) -> List[str]:
|
|
"""
|
|
Save the modeling files corresponding to a custom model/configuration/tokenizer etc. in a given folder. Optionally
|
|
adds the proper fields in a config.
|
|
|
|
Args:
|
|
obj (`Any`): The object for which to save the module files.
|
|
folder (`str` or `os.PathLike`): The folder where to save.
|
|
config (`PretrainedConfig` or dictionary, `optional`):
|
|
A config in which to register the auto_map corresponding to this custom object.
|
|
|
|
Returns:
|
|
`List[str]`: The list of files saved.
|
|
"""
|
|
if obj.__module__ == "__main__":
|
|
logger.warning(
|
|
f"We can't save the code defining {obj} in {folder} as it's been defined in __main__. You should put "
|
|
"this code in a separate module so we can include it in the saved folder and make it easier to share via "
|
|
"the Hub."
|
|
)
|
|
return
|
|
|
|
def _set_auto_map_in_config(_config):
|
|
module_name = obj.__class__.__module__
|
|
last_module = module_name.split(".")[-1]
|
|
full_name = f"{last_module}.{obj.__class__.__name__}"
|
|
# Special handling for tokenizers
|
|
if "Tokenizer" in full_name:
|
|
slow_tokenizer_class = None
|
|
fast_tokenizer_class = None
|
|
if obj.__class__.__name__.endswith("Fast"):
|
|
# Fast tokenizer: we have the fast tokenizer class and we may have the slow one has an attribute.
|
|
fast_tokenizer_class = f"{last_module}.{obj.__class__.__name__}"
|
|
if getattr(obj, "slow_tokenizer_class", None) is not None:
|
|
slow_tokenizer = getattr(obj, "slow_tokenizer_class")
|
|
slow_tok_module_name = slow_tokenizer.__module__
|
|
last_slow_tok_module = slow_tok_module_name.split(".")[-1]
|
|
slow_tokenizer_class = f"{last_slow_tok_module}.{slow_tokenizer.__name__}"
|
|
else:
|
|
# Slow tokenizer: no way to have the fast class
|
|
slow_tokenizer_class = f"{last_module}.{obj.__class__.__name__}"
|
|
|
|
full_name = (slow_tokenizer_class, fast_tokenizer_class)
|
|
|
|
if isinstance(_config, dict):
|
|
auto_map = _config.get("auto_map", {})
|
|
auto_map[obj._auto_class] = full_name
|
|
_config["auto_map"] = auto_map
|
|
elif getattr(_config, "auto_map", None) is not None:
|
|
_config.auto_map[obj._auto_class] = full_name
|
|
else:
|
|
_config.auto_map = {obj._auto_class: full_name}
|
|
|
|
# Add object class to the config auto_map
|
|
if isinstance(config, (list, tuple)):
|
|
for cfg in config:
|
|
_set_auto_map_in_config(cfg)
|
|
elif config is not None:
|
|
_set_auto_map_in_config(config)
|
|
|
|
result = []
|
|
# Copy module file to the output folder.
|
|
object_file = sys.modules[obj.__module__].__file__
|
|
dest_file = Path(folder) / (Path(object_file).name)
|
|
shutil.copy(object_file, dest_file)
|
|
result.append(dest_file)
|
|
|
|
# Gather all relative imports recursively and make sure they are copied as well.
|
|
for needed_file in get_relative_import_files(object_file):
|
|
dest_file = Path(folder) / (Path(needed_file).name)
|
|
shutil.copy(needed_file, dest_file)
|
|
result.append(dest_file)
|
|
|
|
return result
|
|
|
|
|
|
def _raise_timeout_error(signum, frame):
|
|
raise ValueError(
|
|
"Loading this model requires you to execute custom code contained in the model repository on your local "
|
|
"machine. Please set the option `trust_remote_code=True` to permit loading of this model."
|
|
)
|
|
|
|
|
|
TIME_OUT_REMOTE_CODE = 15
|
|
|
|
|
|
def resolve_trust_remote_code(trust_remote_code, model_name, has_local_code, has_remote_code):
|
|
if trust_remote_code is None:
|
|
if has_local_code:
|
|
trust_remote_code = False
|
|
elif has_remote_code and TIME_OUT_REMOTE_CODE > 0:
|
|
prev_sig_handler = None
|
|
try:
|
|
prev_sig_handler = signal.signal(signal.SIGALRM, _raise_timeout_error)
|
|
signal.alarm(TIME_OUT_REMOTE_CODE)
|
|
while trust_remote_code is None:
|
|
answer = input(
|
|
f"The repository for {model_name} contains custom code which must be executed to correctly "
|
|
f"load the model. You can inspect the repository content at https://hf.co/{model_name}.\n"
|
|
f"You can avoid this prompt in future by passing the argument `trust_remote_code=True`.\n\n"
|
|
f"Do you wish to run the custom code? [y/N] "
|
|
)
|
|
if answer.lower() in ["yes", "y", "1"]:
|
|
trust_remote_code = True
|
|
elif answer.lower() in ["no", "n", "0", ""]:
|
|
trust_remote_code = False
|
|
signal.alarm(0)
|
|
except Exception:
|
|
# OS which does not support signal.SIGALRM
|
|
raise ValueError(
|
|
f"The repository for {model_name} contains custom code which must be executed to correctly "
|
|
f"load the model. You can inspect the repository content at https://hf.co/{model_name}.\n"
|
|
f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
|
|
)
|
|
finally:
|
|
if prev_sig_handler is not None:
|
|
signal.signal(signal.SIGALRM, prev_sig_handler)
|
|
signal.alarm(0)
|
|
elif has_remote_code:
|
|
# For the CI which puts the timeout at 0
|
|
_raise_timeout_error(None, None)
|
|
|
|
if has_remote_code and not has_local_code and not trust_remote_code:
|
|
raise ValueError(
|
|
f"Loading {model_name} requires you to execute the configuration file in that"
|
|
" repo on your local machine. Make sure you have read the code there to avoid malicious use, then"
|
|
" set the option `trust_remote_code=True` to remove this error."
|
|
)
|
|
|
|
return trust_remote_code
|