372 lines
18 KiB
Python
372 lines
18 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Sequence feature extraction class for common feature extractors to preprocess sequences.
|
|
"""
|
|
from typing import Dict, List, Optional, Union
|
|
|
|
import numpy as np
|
|
|
|
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
|
|
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class SequenceFeatureExtractor(FeatureExtractionMixin):
|
|
"""
|
|
This is a general feature extraction class for speech recognition.
|
|
|
|
Args:
|
|
feature_size (`int`):
|
|
The feature dimension of the extracted features.
|
|
sampling_rate (`int`):
|
|
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
|
|
padding_value (`float`):
|
|
The value that is used to fill the padding values / vectors.
|
|
"""
|
|
|
|
def __init__(self, feature_size: int, sampling_rate: int, padding_value: float, **kwargs):
|
|
self.feature_size = feature_size
|
|
self.sampling_rate = sampling_rate
|
|
self.padding_value = padding_value
|
|
|
|
self.padding_side = kwargs.pop("padding_side", "right")
|
|
self.return_attention_mask = kwargs.pop("return_attention_mask", True)
|
|
|
|
super().__init__(**kwargs)
|
|
|
|
def pad(
|
|
self,
|
|
processed_features: Union[
|
|
BatchFeature,
|
|
List[BatchFeature],
|
|
Dict[str, BatchFeature],
|
|
Dict[str, List[BatchFeature]],
|
|
List[Dict[str, BatchFeature]],
|
|
],
|
|
padding: Union[bool, str, PaddingStrategy] = True,
|
|
max_length: Optional[int] = None,
|
|
truncation: bool = False,
|
|
pad_to_multiple_of: Optional[int] = None,
|
|
return_attention_mask: Optional[bool] = None,
|
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
|
) -> BatchFeature:
|
|
"""
|
|
Pad input values / input vectors or a batch of input values / input vectors up to predefined length or to the
|
|
max sequence length in the batch.
|
|
|
|
Padding side (left/right) padding values are defined at the feature extractor level (with `self.padding_side`,
|
|
`self.padding_value`)
|
|
|
|
<Tip>
|
|
|
|
If the `processed_features` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
|
|
result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of
|
|
PyTorch tensors, you will lose the specific device of your tensors however.
|
|
|
|
</Tip>
|
|
|
|
Args:
|
|
processed_features ([`BatchFeature`], list of [`BatchFeature`], `Dict[str, List[float]]`, `Dict[str, List[List[float]]` or `List[Dict[str, List[float]]]`):
|
|
Processed inputs. Can represent one input ([`BatchFeature`] or `Dict[str, List[float]]`) or a batch of
|
|
input values / vectors (list of [`BatchFeature`], *Dict[str, List[List[float]]]* or *List[Dict[str,
|
|
List[float]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader
|
|
collate function.
|
|
|
|
Instead of `List[float]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors),
|
|
see the note above for the return type.
|
|
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
|
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
|
index) among:
|
|
|
|
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
|
sequence if provided).
|
|
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
|
acceptable input length for the model if that argument is not provided.
|
|
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
|
lengths).
|
|
max_length (`int`, *optional*):
|
|
Maximum length of the returned list and optionally padding length (see above).
|
|
truncation (`bool`):
|
|
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
|
pad_to_multiple_of (`int`, *optional*):
|
|
If set will pad the sequence to a multiple of the provided value.
|
|
|
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
|
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
|
|
return_attention_mask (`bool`, *optional*):
|
|
Whether to return the attention mask. If left to the default, will return the attention mask according
|
|
to the specific feature_extractor's default.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
|
If set, will return tensors instead of list of python integers. Acceptable values are:
|
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
|
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
|
- `'np'`: Return Numpy `np.ndarray` objects.
|
|
"""
|
|
# If we have a list of dicts, let's convert it in a dict of lists
|
|
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
|
|
if isinstance(processed_features, (list, tuple)) and isinstance(processed_features[0], (dict, BatchFeature)):
|
|
processed_features = {
|
|
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
|
|
}
|
|
|
|
# The model's main input name, usually `input_values`, has be passed for padding
|
|
if self.model_input_names[0] not in processed_features:
|
|
raise ValueError(
|
|
"You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`"
|
|
f" to this method that includes {self.model_input_names[0]}, but you provided"
|
|
f" {list(processed_features.keys())}"
|
|
)
|
|
|
|
required_input = processed_features[self.model_input_names[0]]
|
|
return_attention_mask = (
|
|
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
|
|
)
|
|
|
|
if len(required_input) == 0:
|
|
if return_attention_mask:
|
|
processed_features["attention_mask"] = []
|
|
return processed_features
|
|
|
|
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
|
|
# and rebuild them afterwards if no return_tensors is specified
|
|
# Note that we lose the specific device the tensor may be on for PyTorch
|
|
|
|
first_element = required_input[0]
|
|
if isinstance(first_element, (list, tuple)):
|
|
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
|
|
index = 0
|
|
while len(required_input[index]) == 0:
|
|
index += 1
|
|
if index < len(required_input):
|
|
first_element = required_input[index][0]
|
|
|
|
if return_tensors is None:
|
|
if is_tf_tensor(first_element):
|
|
return_tensors = "tf"
|
|
elif is_torch_tensor(first_element):
|
|
return_tensors = "pt"
|
|
elif isinstance(first_element, (int, float, list, tuple, np.ndarray)):
|
|
return_tensors = "np"
|
|
else:
|
|
raise ValueError(
|
|
f"type of {first_element} unknown: {type(first_element)}. "
|
|
"Should be one of a python, numpy, pytorch or tensorflow object."
|
|
)
|
|
|
|
for key, value in processed_features.items():
|
|
if isinstance(value[0], (int, float)):
|
|
processed_features[key] = to_numpy(value)
|
|
else:
|
|
processed_features[key] = [to_numpy(v) for v in value]
|
|
|
|
# Convert padding_strategy in PaddingStrategy
|
|
padding_strategy = self._get_padding_strategies(padding=padding, max_length=max_length)
|
|
|
|
required_input = processed_features[self.model_input_names[0]]
|
|
|
|
batch_size = len(required_input)
|
|
if not all(len(v) == batch_size for v in processed_features.values()):
|
|
raise ValueError("Some items in the output dictionary have a different batch size than others.")
|
|
|
|
truncated_inputs = []
|
|
for i in range(batch_size):
|
|
inputs = {k: v[i] for k, v in processed_features.items()}
|
|
# truncation
|
|
inputs_slice = self._truncate(
|
|
inputs,
|
|
max_length=max_length,
|
|
pad_to_multiple_of=pad_to_multiple_of,
|
|
truncation=truncation,
|
|
)
|
|
truncated_inputs.append(inputs_slice)
|
|
|
|
if padding_strategy == PaddingStrategy.LONGEST:
|
|
# make sure that `max_length` cannot be longer than the longest truncated length
|
|
max_length = max(len(input_slice[self.model_input_names[0]]) for input_slice in truncated_inputs)
|
|
padding_strategy = PaddingStrategy.MAX_LENGTH
|
|
|
|
batch_outputs = {}
|
|
for i in range(batch_size):
|
|
# padding
|
|
outputs = self._pad(
|
|
truncated_inputs[i],
|
|
max_length=max_length,
|
|
padding_strategy=padding_strategy,
|
|
pad_to_multiple_of=pad_to_multiple_of,
|
|
return_attention_mask=return_attention_mask,
|
|
)
|
|
|
|
for key, value in outputs.items():
|
|
if key not in batch_outputs:
|
|
batch_outputs[key] = []
|
|
if value.dtype is np.dtype(np.float64):
|
|
value = value.astype(np.float32)
|
|
batch_outputs[key].append(value)
|
|
|
|
return BatchFeature(batch_outputs, tensor_type=return_tensors)
|
|
|
|
def _pad(
|
|
self,
|
|
processed_features: Union[Dict[str, np.ndarray], BatchFeature],
|
|
max_length: Optional[int] = None,
|
|
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
|
pad_to_multiple_of: Optional[int] = None,
|
|
return_attention_mask: Optional[bool] = None,
|
|
) -> dict:
|
|
"""
|
|
Pad inputs (on left/right and up to predefined length or max length in the batch)
|
|
|
|
Args:
|
|
processed_features (`Union[Dict[str, np.ndarray], BatchFeature]`):
|
|
Dictionary of input values (`np.ndarray[float]`) / input vectors (`List[np.ndarray[float]]`) or batch
|
|
of inputs values (`List[np.ndarray[int]]`) / input vectors (`List[np.ndarray[int]]`)
|
|
max_length (`int`, *optional*):
|
|
Maximum length of the returned list and optionally padding length (see below)
|
|
padding_strategy (`PaddingStrategy`, *optional*, default to `PaddingStrategy.DO_NOT_PAD`):
|
|
PaddingStrategy to use for padding.
|
|
|
|
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
|
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
|
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
|
The feature_extractor padding sides are defined in self.padding_side:
|
|
|
|
- 'left': pads on the left of the sequences
|
|
- 'right': pads on the right of the sequences
|
|
pad_to_multiple_of (`int`, *optional*):
|
|
Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to
|
|
enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs
|
|
which benefit from having sequence lengths be a multiple of 128.
|
|
return_attention_mask (`bool`, *optional*):
|
|
Set to False to avoid returning attention mask (default: set to model specifics)
|
|
"""
|
|
required_input = processed_features[self.model_input_names[0]]
|
|
|
|
if padding_strategy == PaddingStrategy.LONGEST:
|
|
max_length = len(required_input)
|
|
|
|
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
|
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
|
|
|
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) < max_length
|
|
|
|
if return_attention_mask and "attention_mask" not in processed_features:
|
|
processed_features["attention_mask"] = np.ones(len(required_input), dtype=np.int32)
|
|
|
|
if needs_to_be_padded:
|
|
difference = max_length - len(required_input)
|
|
if self.padding_side == "right":
|
|
if return_attention_mask:
|
|
processed_features["attention_mask"] = np.pad(
|
|
processed_features["attention_mask"], (0, difference)
|
|
)
|
|
padding_shape = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
|
|
processed_features[self.model_input_names[0]] = np.pad(
|
|
required_input, padding_shape, "constant", constant_values=self.padding_value
|
|
)
|
|
elif self.padding_side == "left":
|
|
if return_attention_mask:
|
|
processed_features["attention_mask"] = np.pad(
|
|
processed_features["attention_mask"], (difference, 0)
|
|
)
|
|
padding_shape = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
|
|
processed_features[self.model_input_names[0]] = np.pad(
|
|
required_input, padding_shape, "constant", constant_values=self.padding_value
|
|
)
|
|
else:
|
|
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
|
|
|
return processed_features
|
|
|
|
def _truncate(
|
|
self,
|
|
processed_features: Union[Dict[str, np.ndarray], BatchFeature],
|
|
max_length: Optional[int] = None,
|
|
pad_to_multiple_of: Optional[int] = None,
|
|
truncation: Optional[bool] = None,
|
|
):
|
|
"""
|
|
Truncate inputs to predefined length or max length in the batch
|
|
|
|
Args:
|
|
processed_features(`Union[Dict[str, np.ndarray], BatchFeature]`):
|
|
Dictionary of input values (`np.ndarray[float]`) / input vectors (`List[np.ndarray[float]]`) or batch
|
|
of inputs values (`List[np.ndarray[int]]`) / input vectors (`List[np.ndarray[int]]`)
|
|
max_length (`int`, *optional*):
|
|
maximum length of the returned list and optionally padding length (see below)
|
|
pad_to_multiple_of (`int`, *optional*) :
|
|
Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to
|
|
enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs
|
|
which benefit from having sequence lengths be a multiple of 128.
|
|
truncation (`bool`, *optional*):
|
|
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
|
"""
|
|
if not truncation:
|
|
return processed_features
|
|
elif truncation and max_length is None:
|
|
raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined.")
|
|
|
|
required_input = processed_features[self.model_input_names[0]]
|
|
|
|
# find `max_length` that fits `pad_to_multiple_of`
|
|
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
|
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
|
|
|
needs_to_be_truncated = len(required_input) > max_length
|
|
|
|
if needs_to_be_truncated:
|
|
processed_features[self.model_input_names[0]] = processed_features[self.model_input_names[0]][:max_length]
|
|
if "attention_mask" in processed_features:
|
|
processed_features["attention_mask"] = processed_features["attention_mask"][:max_length]
|
|
|
|
return processed_features
|
|
|
|
def _get_padding_strategies(self, padding=False, max_length=None):
|
|
"""
|
|
Find the correct padding strategy
|
|
"""
|
|
|
|
# Get padding strategy
|
|
if padding is not False:
|
|
if padding is True:
|
|
padding_strategy = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
|
|
elif not isinstance(padding, PaddingStrategy):
|
|
padding_strategy = PaddingStrategy(padding)
|
|
elif isinstance(padding, PaddingStrategy):
|
|
padding_strategy = padding
|
|
else:
|
|
padding_strategy = PaddingStrategy.DO_NOT_PAD
|
|
|
|
# Set max length if needed
|
|
if max_length is None:
|
|
if padding_strategy == PaddingStrategy.MAX_LENGTH:
|
|
raise ValueError(
|
|
f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined"
|
|
)
|
|
|
|
# Test if we have a padding value
|
|
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
|
|
raise ValueError(
|
|
"Asking to pad but the feature_extractor does not have a padding value. Please select a value to use"
|
|
" as `padding_value`. For example: `feature_extractor.padding_value = 0.0`."
|
|
)
|
|
|
|
return padding_strategy
|