442 lines
18 KiB
Python
442 lines
18 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Integration with Deepspeed
|
|
"""
|
|
import copy
|
|
import importlib.metadata as importlib_metadata
|
|
import importlib.util
|
|
import weakref
|
|
from functools import partialmethod
|
|
|
|
from ..dependency_versions_check import dep_version_check
|
|
from ..utils import is_accelerate_available, is_torch_available, is_torch_mlu_available, logging
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
def is_deepspeed_available():
|
|
package_exists = importlib.util.find_spec("deepspeed") is not None
|
|
|
|
# Check we're not importing a "deepspeed" directory somewhere but the actual library by trying to grab the version
|
|
# AND checking it has an author field in the metadata that is HuggingFace.
|
|
if package_exists:
|
|
try:
|
|
if is_torch_mlu_available():
|
|
_ = importlib_metadata.metadata("deepspeed-mlu")
|
|
return True
|
|
_ = importlib_metadata.metadata("deepspeed")
|
|
return True
|
|
except importlib_metadata.PackageNotFoundError:
|
|
return False
|
|
|
|
|
|
if is_accelerate_available() and is_deepspeed_available():
|
|
from accelerate.utils.deepspeed import HfDeepSpeedConfig as DeepSpeedConfig
|
|
else:
|
|
# Inherits from a dummy `object` if accelerate is not available, so that python succeeds to import this file.
|
|
# Deepspeed glue code will never inherit this dummy object as it checks if accelerate is available.
|
|
from builtins import object as DeepSpeedConfig
|
|
|
|
|
|
class HfDeepSpeedConfig(DeepSpeedConfig):
|
|
"""
|
|
This object contains a DeepSpeed configuration dictionary and can be quickly queried for things like zero stage.
|
|
|
|
A `weakref` of this object is stored in the module's globals to be able to access the config from areas where
|
|
things like the Trainer object is not available (e.g. `from_pretrained` and `_get_resized_embeddings`). Therefore
|
|
it's important that this object remains alive while the program is still running.
|
|
|
|
[`Trainer`] uses the `HfTrainerDeepSpeedConfig` subclass instead. That subclass has logic to sync the configuration
|
|
with values of [`TrainingArguments`] by replacing special placeholder values: `"auto"`. Without this special logic
|
|
the DeepSpeed configuration is not modified in any way.
|
|
|
|
Args:
|
|
config_file_or_dict (`Union[str, Dict]`): path to DeepSpeed config file or dict.
|
|
|
|
"""
|
|
|
|
def __init__(self, config_file_or_dict):
|
|
# set global weakref object
|
|
set_hf_deepspeed_config(self)
|
|
dep_version_check("accelerate")
|
|
dep_version_check("deepspeed")
|
|
super().__init__(config_file_or_dict)
|
|
|
|
|
|
class HfTrainerDeepSpeedConfig(HfDeepSpeedConfig):
|
|
"""
|
|
The `HfTrainerDeepSpeedConfig` object is meant to be created during `TrainingArguments` object creation and has the
|
|
same lifespan as the latter.
|
|
"""
|
|
|
|
def __init__(self, config_file_or_dict):
|
|
super().__init__(config_file_or_dict)
|
|
self._dtype = None
|
|
self.mismatches = []
|
|
|
|
def dtype(self):
|
|
if self._dtype is None:
|
|
raise ValueError("trainer_config_process() wasn't called yet to tell dtype")
|
|
return self._dtype
|
|
|
|
def is_auto(self, ds_key_long):
|
|
val = self.get_value(ds_key_long)
|
|
if val is None:
|
|
return False
|
|
else:
|
|
return val == "auto"
|
|
|
|
def fill_match(self, ds_key_long, hf_val, hf_key=None, must_match=True):
|
|
"""
|
|
A utility method that massages the config file and can optionally verify that the values match.
|
|
|
|
1. Replace "auto" values with `TrainingArguments` value.
|
|
|
|
2. If it wasn't "auto" and `must_match` is true, then check that DS config matches Trainer
|
|
config values and if mismatched add the entry to `self.mismatched` - will assert during
|
|
`trainer_config_finalize` for one or more mismatches.
|
|
|
|
"""
|
|
config, ds_key = self.find_config_node(ds_key_long)
|
|
if config is None:
|
|
return
|
|
|
|
if config.get(ds_key) == "auto":
|
|
config[ds_key] = hf_val
|
|
return
|
|
|
|
if not must_match:
|
|
return
|
|
|
|
ds_val = config.get(ds_key)
|
|
if ds_val is not None and ds_val != hf_val:
|
|
self.mismatches.append(f"- ds {ds_key_long}={ds_val} vs hf {hf_key}={hf_val}")
|
|
|
|
fill_only = partialmethod(fill_match, must_match=False)
|
|
|
|
def trainer_config_process(self, args, auto_find_batch_size=False):
|
|
"""
|
|
Adjust the config with `TrainingArguments` values. This stage is run during `TrainingArguments` object
|
|
creation.
|
|
"""
|
|
# DeepSpeed does:
|
|
# train_batch_size = world_size * train_micro_batch_size_per_gpu * gradient_accumulation_steps
|
|
train_batch_size = args.world_size * args.per_device_train_batch_size * args.gradient_accumulation_steps
|
|
self.fill_match(
|
|
"train_micro_batch_size_per_gpu",
|
|
args.per_device_train_batch_size,
|
|
"per_device_train_batch_size",
|
|
not auto_find_batch_size,
|
|
)
|
|
self.fill_match(
|
|
"gradient_accumulation_steps",
|
|
args.gradient_accumulation_steps,
|
|
"gradient_accumulation_steps",
|
|
)
|
|
self.fill_match(
|
|
"train_batch_size",
|
|
train_batch_size,
|
|
"train_batch_size (calculated)",
|
|
not auto_find_batch_size,
|
|
)
|
|
self.fill_match("gradient_clipping", args.max_grad_norm, "max_grad_norm")
|
|
|
|
self.fill_match("optimizer.params.lr", args.learning_rate, "learning_rate")
|
|
self.fill_match(
|
|
"optimizer.params.betas",
|
|
[args.adam_beta1, args.adam_beta2],
|
|
"adam_beta1+adam_beta2",
|
|
)
|
|
self.fill_match("optimizer.params.eps", args.adam_epsilon, "adam_epsilon")
|
|
self.fill_match("optimizer.params.weight_decay", args.weight_decay, "weight_decay")
|
|
|
|
self.fill_only("scheduler.params.warmup_min_lr", 0) # not a trainer arg
|
|
self.fill_match("scheduler.params.warmup_max_lr", args.learning_rate, "learning_rate")
|
|
# total_num_steps - will get set in trainer_config_finalize
|
|
|
|
# fp16
|
|
if args.fp16 or args.fp16_full_eval:
|
|
fp16_backend = "apex" if args.fp16_backend == "apex" else "amp"
|
|
else:
|
|
fp16_backend = None
|
|
|
|
if args.save_on_each_node:
|
|
# deepspeed uses shared storage by default. Let's override this setting if save_on_each_node == True
|
|
self.config["checkpoint"] = self.config.get("checkpoint", {})
|
|
self.config["checkpoint"]["use_node_local_storage"] = args.save_on_each_node
|
|
|
|
# amp: similar to the pytorch native amp - it has a bunch of optional params but we won't set
|
|
# any here unless the user did the work
|
|
self.fill_match(
|
|
"fp16.enabled",
|
|
((args.fp16 or args.fp16_full_eval) and fp16_backend == "amp"),
|
|
"fp16|fp16_full_eval+fp16_backend(amp)",
|
|
)
|
|
|
|
# apex: delegates amp work to apex (which needs to be available), but it cannot be used with any
|
|
# ZeRO features
|
|
self.fill_match("amp.enabled", fp16_backend == "apex", "fp16+fp16_backend(apex)")
|
|
self.fill_match("amp.opt_level", args.fp16_opt_level, "fp16_opt_level")
|
|
|
|
self.fill_match("bf16.enabled", (args.bf16 or args.bf16_full_eval), "bf16|bf16_full_eval")
|
|
|
|
# deepspeed's default mode is fp16 unless there is a config that says differently
|
|
if self.is_true("bf16.enabled"):
|
|
self._dtype = torch.bfloat16
|
|
elif self.is_false("fp16.enabled"):
|
|
self._dtype = torch.float32
|
|
else:
|
|
self._dtype = torch.float16
|
|
|
|
def trainer_config_finalize(self, args, model, num_training_steps):
|
|
"""
|
|
This stage is run after we have the model and know num_training_steps.
|
|
|
|
Now we can complete the configuration process.
|
|
"""
|
|
# zero
|
|
|
|
# deal with config keys that use `auto` value and rely on model's hidden_size
|
|
hidden_size_based_keys = [
|
|
"zero_optimization.reduce_bucket_size",
|
|
"zero_optimization.stage3_prefetch_bucket_size",
|
|
"zero_optimization.stage3_param_persistence_threshold",
|
|
]
|
|
hidden_size_auto_keys = [x for x in hidden_size_based_keys if self.is_auto(x)]
|
|
|
|
if len(hidden_size_auto_keys) > 0:
|
|
if hasattr(model.config, "hidden_size"):
|
|
hidden_size = model.config.hidden_size
|
|
elif hasattr(model.config, "hidden_sizes"):
|
|
# if there are many hidden sizes pick the largest one
|
|
hidden_size = max(model.config.hidden_sizes)
|
|
else:
|
|
raise ValueError(
|
|
"The model's config file has neither `hidden_size` nor `hidden_sizes` entry, "
|
|
"therefore it's not possible to automatically fill out the following `auto` entries "
|
|
f"in the DeepSpeed config file: {hidden_size_auto_keys}. You can fix that by replacing "
|
|
"`auto` values for these keys with an integer value of your choice."
|
|
)
|
|
|
|
self.fill_only("zero_optimization.reduce_bucket_size", hidden_size * hidden_size)
|
|
if self.is_zero3():
|
|
# automatically assign the optimal config values based on model config
|
|
self.fill_only(
|
|
"zero_optimization.stage3_prefetch_bucket_size",
|
|
0.9 * hidden_size * hidden_size,
|
|
)
|
|
self.fill_only(
|
|
"zero_optimization.stage3_param_persistence_threshold",
|
|
10 * hidden_size,
|
|
)
|
|
|
|
# scheduler
|
|
self.fill_match(
|
|
"scheduler.params.total_num_steps",
|
|
num_training_steps,
|
|
"num_training_steps (calculated)",
|
|
)
|
|
self.fill_match(
|
|
"scheduler.params.warmup_num_steps",
|
|
args.get_warmup_steps(num_training_steps),
|
|
"warmup_steps",
|
|
)
|
|
|
|
if len(self.mismatches) > 0:
|
|
mismatches = "\n".join(self.mismatches)
|
|
raise ValueError(
|
|
"Please correct the following DeepSpeed config values that mismatch TrainingArguments"
|
|
f" values:\n{mismatches}\nThe easiest method is to set these DeepSpeed config values to 'auto'."
|
|
)
|
|
|
|
|
|
# keep the config object global to be able to access it anywhere during TrainingArguments life-cycle
|
|
_hf_deepspeed_config_weak_ref = None
|
|
|
|
|
|
def set_hf_deepspeed_config(hf_deepspeed_config_obj):
|
|
# this is a special weakref global object to allow us to get to Deepspeed config from APIs
|
|
# that don't have an easy way to get to the Deepspeed config outside of the Trainer domain.
|
|
global _hf_deepspeed_config_weak_ref
|
|
# will go away automatically when HfDeepSpeedConfig is destroyed (when TrainingArguments is destroyed)
|
|
_hf_deepspeed_config_weak_ref = weakref.ref(hf_deepspeed_config_obj)
|
|
|
|
|
|
def unset_hf_deepspeed_config():
|
|
# useful for unit tests to ensure the global state doesn't leak - call from `tearDown` method
|
|
global _hf_deepspeed_config_weak_ref
|
|
_hf_deepspeed_config_weak_ref = None
|
|
|
|
|
|
def is_deepspeed_zero3_enabled():
|
|
if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None:
|
|
return _hf_deepspeed_config_weak_ref().is_zero3()
|
|
else:
|
|
return False
|
|
|
|
|
|
def deepspeed_config():
|
|
if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None:
|
|
return _hf_deepspeed_config_weak_ref().config
|
|
else:
|
|
return None
|
|
|
|
|
|
def deepspeed_optim_sched(trainer, hf_deepspeed_config, args, num_training_steps, model_parameters):
|
|
"""
|
|
A convenience wrapper that deals with optimizer and lr scheduler configuration.
|
|
"""
|
|
from accelerate.utils import DummyOptim, DummyScheduler
|
|
|
|
config = hf_deepspeed_config.config
|
|
|
|
# Mixing and matching DS schedulers and optimizers is supported unless Offload is enabled in which case it's:
|
|
# 1. DS scheduler + DS optimizer: Yes
|
|
# 2. HF scheduler + HF optimizer: Mostly*
|
|
# 3. DS scheduler + HF optimizer: Mostly*
|
|
# 4. HF scheduler + DS optimizer: Yes
|
|
#
|
|
# Mostly*: All non-native DeepSpeed optimizers that have both CPU and GPU implementation should work (except LAMB)
|
|
|
|
optimizer = None
|
|
if "optimizer" in config:
|
|
if args.adafactor:
|
|
raise ValueError(
|
|
"--adafactor was passed, but also found `optimizer` configured in the DeepSpeed config. "
|
|
"Only one optimizer can be configured."
|
|
)
|
|
optimizer = DummyOptim(params=model_parameters)
|
|
else:
|
|
if hf_deepspeed_config.is_offload():
|
|
logger.info(
|
|
"Detected ZeRO Offload and non-DeepSpeed optimizers: This combination should work as long as the"
|
|
" custom optimizer has both CPU and GPU implementation (except LAMB)"
|
|
)
|
|
|
|
# ds supports Adam, OneBitAdam, and Lamb optimizers and can import other optimizers from torch.
|
|
# But trainer uses AdamW by default.
|
|
optimizer = trainer.create_optimizer()
|
|
# To use other optimizers requires voiding warranty with: `zero_allow_untested_optimizer`
|
|
config["zero_allow_untested_optimizer"] = True
|
|
|
|
lr_scheduler = None
|
|
if "scheduler" in config:
|
|
lr_scheduler = DummyScheduler(optimizer)
|
|
else:
|
|
if isinstance(optimizer, DummyOptim):
|
|
|
|
def _lr_scheduler_callable(optimizer):
|
|
# create a shallow copy first, so later modifications do not affect original trainer
|
|
trainer_copy = copy.copy(trainer)
|
|
# at the time _lr_scheduler_callable is called, trainer.lr_scheduler has been set
|
|
# update it to None so that we can re-create a new scheduler
|
|
trainer_copy.lr_scheduler = None
|
|
lr_scheduler = trainer_copy.create_scheduler(
|
|
num_training_steps=num_training_steps, optimizer=optimizer
|
|
)
|
|
return lr_scheduler
|
|
|
|
lr_scheduler = DummyScheduler(optimizer, lr_scheduler_callable=_lr_scheduler_callable)
|
|
else:
|
|
lr_scheduler = trainer.create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer)
|
|
|
|
return optimizer, lr_scheduler
|
|
|
|
|
|
def deepspeed_init(trainer, num_training_steps, inference=False):
|
|
"""
|
|
Init DeepSpeed, after updating the DeepSpeed configuration with any relevant Trainer's args.
|
|
|
|
If `resume_from_checkpoint` was passed then an attempt to resume from a previously saved checkpoint will be made.
|
|
|
|
Args:
|
|
trainer: Trainer object
|
|
num_training_steps: per single gpu
|
|
resume_from_checkpoint: path to a checkpoint if to resume from after normal DeepSpeedEngine load
|
|
inference: launch in inference mode (no optimizer and no lr scheduler)
|
|
auto_find_batch_size: whether to ignore the `train_micro_batch_size_per_gpu` argument as it's being
|
|
set automatically by the auto batch size finder
|
|
|
|
Returns: optimizer, lr_scheduler
|
|
|
|
We may use `deepspeed_init` more than once during the life of Trainer, when we do - it's a temp hack based on:
|
|
https://github.com/microsoft/DeepSpeed/issues/1394#issuecomment-937405374 until Deepspeed fixes a bug where it
|
|
can't resume from a checkpoint after it did some stepping https://github.com/microsoft/DeepSpeed/issues/1612
|
|
|
|
"""
|
|
from deepspeed.utils import logger as ds_logger
|
|
|
|
model = trainer.model
|
|
args = trainer.args
|
|
|
|
hf_deepspeed_config = trainer.accelerator.state.deepspeed_plugin.hf_ds_config
|
|
|
|
# resume config update - some bits like `model` and `num_training_steps` only become available during train
|
|
hf_deepspeed_config.trainer_config_finalize(args, model, num_training_steps)
|
|
|
|
# set the Deepspeed log level consistent with the Trainer
|
|
ds_logger.setLevel(args.get_process_log_level())
|
|
|
|
if inference:
|
|
# only Z3 makes sense for the inference
|
|
if not hf_deepspeed_config.is_zero3():
|
|
raise ValueError("ZeRO inference only makes sense with ZeRO Stage 3 - please adjust your config")
|
|
|
|
# in case the training config is re-used for inference
|
|
hf_deepspeed_config.del_config_sub_tree("optimizer")
|
|
hf_deepspeed_config.del_config_sub_tree("lr_scheduler")
|
|
optimizer, lr_scheduler = None, None
|
|
model_parameters = None
|
|
else:
|
|
trainer.optimizer = None # important for when deepspeed_init is used as re-init
|
|
model_parameters = list(filter(lambda p: p.requires_grad, model.parameters()))
|
|
optimizer, lr_scheduler = deepspeed_optim_sched(
|
|
trainer, hf_deepspeed_config, args, num_training_steps, model_parameters
|
|
)
|
|
|
|
# keep for quick debug:
|
|
# from pprint import pprint; pprint(config)
|
|
|
|
return optimizer, lr_scheduler
|
|
|
|
|
|
def deepspeed_load_checkpoint(deepspeed_engine, checkpoint_path, load_module_strict=True):
|
|
# it's possible that the user is trying to resume from model_path, which doesn't necessarily
|
|
# contain a deepspeed checkpoint. e.g. examples just check if the dir exists and assume it's
|
|
# a resume from a checkpoint and not just a local pretrained weight. So we check here if the
|
|
# path contains what looks like a deepspeed checkpoint
|
|
import glob
|
|
|
|
deepspeed_checkpoint_dirs = sorted(glob.glob(f"{checkpoint_path}/global_step*"))
|
|
|
|
if len(deepspeed_checkpoint_dirs) > 0:
|
|
logger.info(f"Attempting to resume from {checkpoint_path}")
|
|
# this magically updates self.optimizer and self.lr_scheduler
|
|
load_path, _ = deepspeed_engine.load_checkpoint(
|
|
checkpoint_path,
|
|
load_module_strict=load_module_strict,
|
|
load_optimizer_states=True,
|
|
load_lr_scheduler_states=True,
|
|
)
|
|
if load_path is None:
|
|
raise ValueError(f"[deepspeed] failed to resume from checkpoint {checkpoint_path}")
|
|
else:
|
|
raise ValueError(f"Can't find a valid checkpoint at {checkpoint_path}")
|