1338 lines
57 KiB
Python
1338 lines
57 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" PyTorch ConvBERT model."""
|
|
|
|
|
|
import math
|
|
import os
|
|
from operator import attrgetter
|
|
from typing import Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
|
|
from ...activations import ACT2FN, get_activation
|
|
from ...modeling_outputs import (
|
|
BaseModelOutputWithCrossAttentions,
|
|
MaskedLMOutput,
|
|
MultipleChoiceModelOutput,
|
|
QuestionAnsweringModelOutput,
|
|
SequenceClassifierOutput,
|
|
TokenClassifierOutput,
|
|
)
|
|
from ...modeling_utils import PreTrainedModel, SequenceSummary
|
|
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
|
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
|
from .configuration_convbert import ConvBertConfig
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
_CHECKPOINT_FOR_DOC = "YituTech/conv-bert-base"
|
|
_CONFIG_FOR_DOC = "ConvBertConfig"
|
|
|
|
|
|
from ..deprecated._archive_maps import CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
|
|
|
|
|
def load_tf_weights_in_convbert(model, config, tf_checkpoint_path):
|
|
"""Load tf checkpoints in a pytorch model."""
|
|
try:
|
|
import tensorflow as tf
|
|
except ImportError:
|
|
logger.error(
|
|
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
|
"https://www.tensorflow.org/install/ for installation instructions."
|
|
)
|
|
raise
|
|
tf_path = os.path.abspath(tf_checkpoint_path)
|
|
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
|
# Load weights from TF model
|
|
init_vars = tf.train.list_variables(tf_path)
|
|
tf_data = {}
|
|
for name, shape in init_vars:
|
|
logger.info(f"Loading TF weight {name} with shape {shape}")
|
|
array = tf.train.load_variable(tf_path, name)
|
|
tf_data[name] = array
|
|
|
|
param_mapping = {
|
|
"embeddings.word_embeddings.weight": "electra/embeddings/word_embeddings",
|
|
"embeddings.position_embeddings.weight": "electra/embeddings/position_embeddings",
|
|
"embeddings.token_type_embeddings.weight": "electra/embeddings/token_type_embeddings",
|
|
"embeddings.LayerNorm.weight": "electra/embeddings/LayerNorm/gamma",
|
|
"embeddings.LayerNorm.bias": "electra/embeddings/LayerNorm/beta",
|
|
"embeddings_project.weight": "electra/embeddings_project/kernel",
|
|
"embeddings_project.bias": "electra/embeddings_project/bias",
|
|
}
|
|
if config.num_groups > 1:
|
|
group_dense_name = "g_dense"
|
|
else:
|
|
group_dense_name = "dense"
|
|
|
|
for j in range(config.num_hidden_layers):
|
|
param_mapping[
|
|
f"encoder.layer.{j}.attention.self.query.weight"
|
|
] = f"electra/encoder/layer_{j}/attention/self/query/kernel"
|
|
param_mapping[
|
|
f"encoder.layer.{j}.attention.self.query.bias"
|
|
] = f"electra/encoder/layer_{j}/attention/self/query/bias"
|
|
param_mapping[
|
|
f"encoder.layer.{j}.attention.self.key.weight"
|
|
] = f"electra/encoder/layer_{j}/attention/self/key/kernel"
|
|
param_mapping[
|
|
f"encoder.layer.{j}.attention.self.key.bias"
|
|
] = f"electra/encoder/layer_{j}/attention/self/key/bias"
|
|
param_mapping[
|
|
f"encoder.layer.{j}.attention.self.value.weight"
|
|
] = f"electra/encoder/layer_{j}/attention/self/value/kernel"
|
|
param_mapping[
|
|
f"encoder.layer.{j}.attention.self.value.bias"
|
|
] = f"electra/encoder/layer_{j}/attention/self/value/bias"
|
|
param_mapping[
|
|
f"encoder.layer.{j}.attention.self.key_conv_attn_layer.depthwise.weight"
|
|
] = f"electra/encoder/layer_{j}/attention/self/conv_attn_key/depthwise_kernel"
|
|
param_mapping[
|
|
f"encoder.layer.{j}.attention.self.key_conv_attn_layer.pointwise.weight"
|
|
] = f"electra/encoder/layer_{j}/attention/self/conv_attn_key/pointwise_kernel"
|
|
param_mapping[
|
|
f"encoder.layer.{j}.attention.self.key_conv_attn_layer.bias"
|
|
] = f"electra/encoder/layer_{j}/attention/self/conv_attn_key/bias"
|
|
param_mapping[
|
|
f"encoder.layer.{j}.attention.self.conv_kernel_layer.weight"
|
|
] = f"electra/encoder/layer_{j}/attention/self/conv_attn_kernel/kernel"
|
|
param_mapping[
|
|
f"encoder.layer.{j}.attention.self.conv_kernel_layer.bias"
|
|
] = f"electra/encoder/layer_{j}/attention/self/conv_attn_kernel/bias"
|
|
param_mapping[
|
|
f"encoder.layer.{j}.attention.self.conv_out_layer.weight"
|
|
] = f"electra/encoder/layer_{j}/attention/self/conv_attn_point/kernel"
|
|
param_mapping[
|
|
f"encoder.layer.{j}.attention.self.conv_out_layer.bias"
|
|
] = f"electra/encoder/layer_{j}/attention/self/conv_attn_point/bias"
|
|
param_mapping[
|
|
f"encoder.layer.{j}.attention.output.dense.weight"
|
|
] = f"electra/encoder/layer_{j}/attention/output/dense/kernel"
|
|
param_mapping[
|
|
f"encoder.layer.{j}.attention.output.LayerNorm.weight"
|
|
] = f"electra/encoder/layer_{j}/attention/output/LayerNorm/gamma"
|
|
param_mapping[
|
|
f"encoder.layer.{j}.attention.output.dense.bias"
|
|
] = f"electra/encoder/layer_{j}/attention/output/dense/bias"
|
|
param_mapping[
|
|
f"encoder.layer.{j}.attention.output.LayerNorm.bias"
|
|
] = f"electra/encoder/layer_{j}/attention/output/LayerNorm/beta"
|
|
param_mapping[
|
|
f"encoder.layer.{j}.intermediate.dense.weight"
|
|
] = f"electra/encoder/layer_{j}/intermediate/{group_dense_name}/kernel"
|
|
param_mapping[
|
|
f"encoder.layer.{j}.intermediate.dense.bias"
|
|
] = f"electra/encoder/layer_{j}/intermediate/{group_dense_name}/bias"
|
|
param_mapping[
|
|
f"encoder.layer.{j}.output.dense.weight"
|
|
] = f"electra/encoder/layer_{j}/output/{group_dense_name}/kernel"
|
|
param_mapping[
|
|
f"encoder.layer.{j}.output.dense.bias"
|
|
] = f"electra/encoder/layer_{j}/output/{group_dense_name}/bias"
|
|
param_mapping[
|
|
f"encoder.layer.{j}.output.LayerNorm.weight"
|
|
] = f"electra/encoder/layer_{j}/output/LayerNorm/gamma"
|
|
param_mapping[f"encoder.layer.{j}.output.LayerNorm.bias"] = f"electra/encoder/layer_{j}/output/LayerNorm/beta"
|
|
|
|
for param in model.named_parameters():
|
|
param_name = param[0]
|
|
retriever = attrgetter(param_name)
|
|
result = retriever(model)
|
|
tf_name = param_mapping[param_name]
|
|
value = torch.from_numpy(tf_data[tf_name])
|
|
logger.info(f"TF: {tf_name}, PT: {param_name} ")
|
|
if tf_name.endswith("/kernel"):
|
|
if not tf_name.endswith("/intermediate/g_dense/kernel"):
|
|
if not tf_name.endswith("/output/g_dense/kernel"):
|
|
value = value.T
|
|
if tf_name.endswith("/depthwise_kernel"):
|
|
value = value.permute(1, 2, 0) # 2, 0, 1
|
|
if tf_name.endswith("/pointwise_kernel"):
|
|
value = value.permute(2, 1, 0) # 2, 1, 0
|
|
if tf_name.endswith("/conv_attn_key/bias"):
|
|
value = value.unsqueeze(-1)
|
|
result.data = value
|
|
return model
|
|
|
|
|
|
class ConvBertEmbeddings(nn.Module):
|
|
"""Construct the embeddings from word, position and token_type embeddings."""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
|
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
|
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
|
|
|
|
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
|
# any TensorFlow checkpoint file
|
|
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
|
self.register_buffer(
|
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
|
)
|
|
self.register_buffer(
|
|
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
) -> torch.LongTensor:
|
|
if input_ids is not None:
|
|
input_shape = input_ids.size()
|
|
else:
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
|
|
seq_length = input_shape[1]
|
|
|
|
if position_ids is None:
|
|
position_ids = self.position_ids[:, :seq_length]
|
|
|
|
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
|
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
|
# issue #5664
|
|
if token_type_ids is None:
|
|
if hasattr(self, "token_type_ids"):
|
|
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
|
token_type_ids = buffered_token_type_ids_expanded
|
|
else:
|
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.word_embeddings(input_ids)
|
|
position_embeddings = self.position_embeddings(position_ids)
|
|
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
|
|
|
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
|
|
embeddings = self.LayerNorm(embeddings)
|
|
embeddings = self.dropout(embeddings)
|
|
return embeddings
|
|
|
|
|
|
class ConvBertPreTrainedModel(PreTrainedModel):
|
|
"""
|
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
|
models.
|
|
"""
|
|
|
|
config_class = ConvBertConfig
|
|
load_tf_weights = load_tf_weights_in_convbert
|
|
base_model_prefix = "convbert"
|
|
supports_gradient_checkpointing = True
|
|
|
|
def _init_weights(self, module):
|
|
"""Initialize the weights"""
|
|
if isinstance(module, nn.Linear):
|
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
elif isinstance(module, nn.LayerNorm):
|
|
module.bias.data.zero_()
|
|
module.weight.data.fill_(1.0)
|
|
|
|
|
|
class SeparableConv1D(nn.Module):
|
|
"""This class implements separable convolution, i.e. a depthwise and a pointwise layer"""
|
|
|
|
def __init__(self, config, input_filters, output_filters, kernel_size, **kwargs):
|
|
super().__init__()
|
|
self.depthwise = nn.Conv1d(
|
|
input_filters,
|
|
input_filters,
|
|
kernel_size=kernel_size,
|
|
groups=input_filters,
|
|
padding=kernel_size // 2,
|
|
bias=False,
|
|
)
|
|
self.pointwise = nn.Conv1d(input_filters, output_filters, kernel_size=1, bias=False)
|
|
self.bias = nn.Parameter(torch.zeros(output_filters, 1))
|
|
|
|
self.depthwise.weight.data.normal_(mean=0.0, std=config.initializer_range)
|
|
self.pointwise.weight.data.normal_(mean=0.0, std=config.initializer_range)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
x = self.depthwise(hidden_states)
|
|
x = self.pointwise(x)
|
|
x += self.bias
|
|
return x
|
|
|
|
|
|
class ConvBertSelfAttention(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
|
raise ValueError(
|
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
|
f"heads ({config.num_attention_heads})"
|
|
)
|
|
|
|
new_num_attention_heads = config.num_attention_heads // config.head_ratio
|
|
if new_num_attention_heads < 1:
|
|
self.head_ratio = config.num_attention_heads
|
|
self.num_attention_heads = 1
|
|
else:
|
|
self.num_attention_heads = new_num_attention_heads
|
|
self.head_ratio = config.head_ratio
|
|
|
|
self.conv_kernel_size = config.conv_kernel_size
|
|
if config.hidden_size % self.num_attention_heads != 0:
|
|
raise ValueError("hidden_size should be divisible by num_attention_heads")
|
|
|
|
self.attention_head_size = (config.hidden_size // self.num_attention_heads) // 2
|
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
|
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
|
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
|
|
|
self.key_conv_attn_layer = SeparableConv1D(
|
|
config, config.hidden_size, self.all_head_size, self.conv_kernel_size
|
|
)
|
|
self.conv_kernel_layer = nn.Linear(self.all_head_size, self.num_attention_heads * self.conv_kernel_size)
|
|
self.conv_out_layer = nn.Linear(config.hidden_size, self.all_head_size)
|
|
|
|
self.unfold = nn.Unfold(
|
|
kernel_size=[self.conv_kernel_size, 1], padding=[int((self.conv_kernel_size - 1) / 2), 0]
|
|
)
|
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
|
|
|
def transpose_for_scores(self, x):
|
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
|
x = x.view(*new_x_shape)
|
|
return x.permute(0, 2, 1, 3)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
mixed_query_layer = self.query(hidden_states)
|
|
batch_size = hidden_states.size(0)
|
|
# If this is instantiated as a cross-attention module, the keys
|
|
# and values come from an encoder; the attention mask needs to be
|
|
# such that the encoder's padding tokens are not attended to.
|
|
if encoder_hidden_states is not None:
|
|
mixed_key_layer = self.key(encoder_hidden_states)
|
|
mixed_value_layer = self.value(encoder_hidden_states)
|
|
else:
|
|
mixed_key_layer = self.key(hidden_states)
|
|
mixed_value_layer = self.value(hidden_states)
|
|
|
|
mixed_key_conv_attn_layer = self.key_conv_attn_layer(hidden_states.transpose(1, 2))
|
|
mixed_key_conv_attn_layer = mixed_key_conv_attn_layer.transpose(1, 2)
|
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer)
|
|
key_layer = self.transpose_for_scores(mixed_key_layer)
|
|
value_layer = self.transpose_for_scores(mixed_value_layer)
|
|
conv_attn_layer = torch.multiply(mixed_key_conv_attn_layer, mixed_query_layer)
|
|
|
|
conv_kernel_layer = self.conv_kernel_layer(conv_attn_layer)
|
|
conv_kernel_layer = torch.reshape(conv_kernel_layer, [-1, self.conv_kernel_size, 1])
|
|
conv_kernel_layer = torch.softmax(conv_kernel_layer, dim=1)
|
|
|
|
conv_out_layer = self.conv_out_layer(hidden_states)
|
|
conv_out_layer = torch.reshape(conv_out_layer, [batch_size, -1, self.all_head_size])
|
|
conv_out_layer = conv_out_layer.transpose(1, 2).contiguous().unsqueeze(-1)
|
|
conv_out_layer = nn.functional.unfold(
|
|
conv_out_layer,
|
|
kernel_size=[self.conv_kernel_size, 1],
|
|
dilation=1,
|
|
padding=[(self.conv_kernel_size - 1) // 2, 0],
|
|
stride=1,
|
|
)
|
|
conv_out_layer = conv_out_layer.transpose(1, 2).reshape(
|
|
batch_size, -1, self.all_head_size, self.conv_kernel_size
|
|
)
|
|
conv_out_layer = torch.reshape(conv_out_layer, [-1, self.attention_head_size, self.conv_kernel_size])
|
|
conv_out_layer = torch.matmul(conv_out_layer, conv_kernel_layer)
|
|
conv_out_layer = torch.reshape(conv_out_layer, [-1, self.all_head_size])
|
|
|
|
# Take the dot product between "query" and "key" to get the raw attention scores.
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
|
if attention_mask is not None:
|
|
# Apply the attention mask is (precomputed for all layers in ConvBertModel forward() function)
|
|
attention_scores = attention_scores + attention_mask
|
|
|
|
# Normalize the attention scores to probabilities.
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
|
|
|
# This is actually dropping out entire tokens to attend to, which might
|
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
|
attention_probs = self.dropout(attention_probs)
|
|
|
|
# Mask heads if we want to
|
|
if head_mask is not None:
|
|
attention_probs = attention_probs * head_mask
|
|
|
|
context_layer = torch.matmul(attention_probs, value_layer)
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
|
|
|
conv_out = torch.reshape(conv_out_layer, [batch_size, -1, self.num_attention_heads, self.attention_head_size])
|
|
context_layer = torch.cat([context_layer, conv_out], 2)
|
|
|
|
# conv and context
|
|
new_context_layer_shape = context_layer.size()[:-2] + (
|
|
self.num_attention_heads * self.attention_head_size * 2,
|
|
)
|
|
context_layer = context_layer.view(*new_context_layer_shape)
|
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
|
return outputs
|
|
|
|
|
|
class ConvBertSelfOutput(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
|
return hidden_states
|
|
|
|
|
|
class ConvBertAttention(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.self = ConvBertSelfAttention(config)
|
|
self.output = ConvBertSelfOutput(config)
|
|
self.pruned_heads = set()
|
|
|
|
def prune_heads(self, heads):
|
|
if len(heads) == 0:
|
|
return
|
|
heads, index = find_pruneable_heads_and_indices(
|
|
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
|
)
|
|
|
|
# Prune linear layers
|
|
self.self.query = prune_linear_layer(self.self.query, index)
|
|
self.self.key = prune_linear_layer(self.self.key, index)
|
|
self.self.value = prune_linear_layer(self.self.value, index)
|
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
|
|
|
# Update hyper params and store pruned heads
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
|
self.pruned_heads = self.pruned_heads.union(heads)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
) -> Tuple[torch.Tensor, Optional[torch.FloatTensor]]:
|
|
self_outputs = self.self(
|
|
hidden_states,
|
|
attention_mask,
|
|
head_mask,
|
|
encoder_hidden_states,
|
|
output_attentions,
|
|
)
|
|
attention_output = self.output(self_outputs[0], hidden_states)
|
|
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
|
return outputs
|
|
|
|
|
|
class GroupedLinearLayer(nn.Module):
|
|
def __init__(self, input_size, output_size, num_groups):
|
|
super().__init__()
|
|
self.input_size = input_size
|
|
self.output_size = output_size
|
|
self.num_groups = num_groups
|
|
self.group_in_dim = self.input_size // self.num_groups
|
|
self.group_out_dim = self.output_size // self.num_groups
|
|
self.weight = nn.Parameter(torch.empty(self.num_groups, self.group_in_dim, self.group_out_dim))
|
|
self.bias = nn.Parameter(torch.empty(output_size))
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
batch_size = list(hidden_states.size())[0]
|
|
x = torch.reshape(hidden_states, [-1, self.num_groups, self.group_in_dim])
|
|
x = x.permute(1, 0, 2)
|
|
x = torch.matmul(x, self.weight)
|
|
x = x.permute(1, 0, 2)
|
|
x = torch.reshape(x, [batch_size, -1, self.output_size])
|
|
x = x + self.bias
|
|
return x
|
|
|
|
|
|
class ConvBertIntermediate(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
if config.num_groups == 1:
|
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
else:
|
|
self.dense = GroupedLinearLayer(
|
|
input_size=config.hidden_size, output_size=config.intermediate_size, num_groups=config.num_groups
|
|
)
|
|
if isinstance(config.hidden_act, str):
|
|
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
|
else:
|
|
self.intermediate_act_fn = config.hidden_act
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class ConvBertOutput(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
if config.num_groups == 1:
|
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
else:
|
|
self.dense = GroupedLinearLayer(
|
|
input_size=config.intermediate_size, output_size=config.hidden_size, num_groups=config.num_groups
|
|
)
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
|
return hidden_states
|
|
|
|
|
|
class ConvBertLayer(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
|
self.seq_len_dim = 1
|
|
self.attention = ConvBertAttention(config)
|
|
self.is_decoder = config.is_decoder
|
|
self.add_cross_attention = config.add_cross_attention
|
|
if self.add_cross_attention:
|
|
if not self.is_decoder:
|
|
raise TypeError(f"{self} should be used as a decoder model if cross attention is added")
|
|
self.crossattention = ConvBertAttention(config)
|
|
self.intermediate = ConvBertIntermediate(config)
|
|
self.output = ConvBertOutput(config)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
) -> Tuple[torch.Tensor, Optional[torch.FloatTensor]]:
|
|
self_attention_outputs = self.attention(
|
|
hidden_states,
|
|
attention_mask,
|
|
head_mask,
|
|
output_attentions=output_attentions,
|
|
)
|
|
attention_output = self_attention_outputs[0]
|
|
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
|
|
|
if self.is_decoder and encoder_hidden_states is not None:
|
|
if not hasattr(self, "crossattention"):
|
|
raise AttributeError(
|
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
|
" by setting `config.add_cross_attention=True`"
|
|
)
|
|
cross_attention_outputs = self.crossattention(
|
|
attention_output,
|
|
encoder_attention_mask,
|
|
head_mask,
|
|
encoder_hidden_states,
|
|
output_attentions,
|
|
)
|
|
attention_output = cross_attention_outputs[0]
|
|
outputs = outputs + cross_attention_outputs[1:] # add cross attentions if we output attention weights
|
|
|
|
layer_output = apply_chunking_to_forward(
|
|
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
|
)
|
|
outputs = (layer_output,) + outputs
|
|
return outputs
|
|
|
|
def feed_forward_chunk(self, attention_output):
|
|
intermediate_output = self.intermediate(attention_output)
|
|
layer_output = self.output(intermediate_output, attention_output)
|
|
return layer_output
|
|
|
|
|
|
class ConvBertEncoder(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layer = nn.ModuleList([ConvBertLayer(config) for _ in range(config.num_hidden_layers)])
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
output_hidden_states: Optional[bool] = False,
|
|
return_dict: Optional[bool] = True,
|
|
) -> Union[Tuple, BaseModelOutputWithCrossAttentions]:
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attentions = () if output_attentions else None
|
|
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
|
for i, layer_module in enumerate(self.layer):
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
layer_module.__call__,
|
|
hidden_states,
|
|
attention_mask,
|
|
layer_head_mask,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
output_attentions,
|
|
)
|
|
else:
|
|
layer_outputs = layer_module(
|
|
hidden_states,
|
|
attention_mask,
|
|
layer_head_mask,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
output_attentions,
|
|
)
|
|
hidden_states = layer_outputs[0]
|
|
if output_attentions:
|
|
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
|
if self.config.add_cross_attention:
|
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
if not return_dict:
|
|
return tuple(
|
|
v
|
|
for v in [hidden_states, all_hidden_states, all_self_attentions, all_cross_attentions]
|
|
if v is not None
|
|
)
|
|
return BaseModelOutputWithCrossAttentions(
|
|
last_hidden_state=hidden_states,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attentions,
|
|
cross_attentions=all_cross_attentions,
|
|
)
|
|
|
|
|
|
class ConvBertPredictionHeadTransform(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
if isinstance(config.hidden_act, str):
|
|
self.transform_act_fn = ACT2FN[config.hidden_act]
|
|
else:
|
|
self.transform_act_fn = config.hidden_act
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.transform_act_fn(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
CONVBERT_START_DOCSTRING = r"""
|
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
|
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
|
behavior.
|
|
|
|
Parameters:
|
|
config ([`ConvBertConfig`]): Model configuration class with all the parameters of the model.
|
|
Initializing with a config file does not load the weights associated with the model, only the
|
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
|
|
CONVBERT_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `({0})`):
|
|
Indices of input sequence tokens in the vocabulary.
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
|
1]`:
|
|
|
|
|
|
- 0 corresponds to a *sentence A* token,
|
|
- 1 corresponds to a *sentence B* token.
|
|
|
|
[What are token type IDs?](../glossary#token-type-ids)
|
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
config.max_position_embeddings - 1]`.
|
|
|
|
[What are position IDs?](../glossary#position-ids)
|
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
|
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
|
model's internal embedding lookup matrix.
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare ConvBERT Model transformer outputting raw hidden-states without any specific head on top.",
|
|
CONVBERT_START_DOCSTRING,
|
|
)
|
|
class ConvBertModel(ConvBertPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.embeddings = ConvBertEmbeddings(config)
|
|
|
|
if config.embedding_size != config.hidden_size:
|
|
self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size)
|
|
|
|
self.encoder = ConvBertEncoder(config)
|
|
self.config = config
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.embeddings.word_embeddings
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.embeddings.word_embeddings = value
|
|
|
|
def _prune_heads(self, heads_to_prune):
|
|
"""
|
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
|
class PreTrainedModel
|
|
"""
|
|
for layer, heads in heads_to_prune.items():
|
|
self.encoder.layer[layer].attention.prune_heads(heads)
|
|
|
|
@add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@add_code_sample_docstrings(
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=BaseModelOutputWithCrossAttentions,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithCrossAttentions]:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
|
input_shape = input_ids.size()
|
|
elif inputs_embeds is not None:
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
else:
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
batch_size, seq_length = input_shape
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
|
|
if attention_mask is None:
|
|
attention_mask = torch.ones(input_shape, device=device)
|
|
if token_type_ids is None:
|
|
if hasattr(self.embeddings, "token_type_ids"):
|
|
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
|
token_type_ids = buffered_token_type_ids_expanded
|
|
else:
|
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
|
|
|
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
|
|
|
hidden_states = self.embeddings(
|
|
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
|
|
)
|
|
|
|
if hasattr(self, "embeddings_project"):
|
|
hidden_states = self.embeddings_project(hidden_states)
|
|
|
|
hidden_states = self.encoder(
|
|
hidden_states,
|
|
attention_mask=extended_attention_mask,
|
|
head_mask=head_mask,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class ConvBertGeneratorPredictions(nn.Module):
|
|
"""Prediction module for the generator, made up of two dense layers."""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
|
|
self.activation = get_activation("gelu")
|
|
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
|
|
self.dense = nn.Linear(config.hidden_size, config.embedding_size)
|
|
|
|
def forward(self, generator_hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
|
hidden_states = self.dense(generator_hidden_states)
|
|
hidden_states = self.activation(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
@add_start_docstrings("""ConvBERT Model with a `language modeling` head on top.""", CONVBERT_START_DOCSTRING)
|
|
class ConvBertForMaskedLM(ConvBertPreTrainedModel):
|
|
_tied_weights_keys = ["generator.lm_head.weight"]
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
|
|
self.convbert = ConvBertModel(config)
|
|
self.generator_predictions = ConvBertGeneratorPredictions(config)
|
|
|
|
self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size)
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_output_embeddings(self):
|
|
return self.generator_lm_head
|
|
|
|
def set_output_embeddings(self, word_embeddings):
|
|
self.generator_lm_head = word_embeddings
|
|
|
|
@add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@add_code_sample_docstrings(
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=MaskedLMOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, MaskedLMOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
generator_hidden_states = self.convbert(
|
|
input_ids,
|
|
attention_mask,
|
|
token_type_ids,
|
|
position_ids,
|
|
head_mask,
|
|
inputs_embeds,
|
|
output_attentions,
|
|
output_hidden_states,
|
|
return_dict,
|
|
)
|
|
generator_sequence_output = generator_hidden_states[0]
|
|
|
|
prediction_scores = self.generator_predictions(generator_sequence_output)
|
|
prediction_scores = self.generator_lm_head(prediction_scores)
|
|
|
|
loss = None
|
|
# Masked language modeling softmax layer
|
|
if labels is not None:
|
|
loss_fct = nn.CrossEntropyLoss() # -100 index = padding token
|
|
loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
|
|
|
if not return_dict:
|
|
output = (prediction_scores,) + generator_hidden_states[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return MaskedLMOutput(
|
|
loss=loss,
|
|
logits=prediction_scores,
|
|
hidden_states=generator_hidden_states.hidden_states,
|
|
attentions=generator_hidden_states.attentions,
|
|
)
|
|
|
|
|
|
class ConvBertClassificationHead(nn.Module):
|
|
"""Head for sentence-level classification tasks."""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
classifier_dropout = (
|
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
|
)
|
|
self.dropout = nn.Dropout(classifier_dropout)
|
|
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
|
|
|
self.config = config
|
|
|
|
def forward(self, hidden_states: torch.Tensor, **kwargs) -> torch.Tensor:
|
|
x = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS])
|
|
x = self.dropout(x)
|
|
x = self.dense(x)
|
|
x = ACT2FN[self.config.hidden_act](x)
|
|
x = self.dropout(x)
|
|
x = self.out_proj(x)
|
|
return x
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
ConvBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
|
pooled output) e.g. for GLUE tasks.
|
|
""",
|
|
CONVBERT_START_DOCSTRING,
|
|
)
|
|
class ConvBertForSequenceClassification(ConvBertPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
self.config = config
|
|
self.convbert = ConvBertModel(config)
|
|
self.classifier = ConvBertClassificationHead(config)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
@add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@add_code_sample_docstrings(
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=SequenceClassifierOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, SequenceClassifierOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
outputs = self.convbert(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
sequence_output = outputs[0]
|
|
logits = self.classifier(sequence_output)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
if self.config.problem_type is None:
|
|
if self.num_labels == 1:
|
|
self.config.problem_type = "regression"
|
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
self.config.problem_type = "single_label_classification"
|
|
else:
|
|
self.config.problem_type = "multi_label_classification"
|
|
|
|
if self.config.problem_type == "regression":
|
|
loss_fct = MSELoss()
|
|
if self.num_labels == 1:
|
|
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
|
else:
|
|
loss = loss_fct(logits, labels)
|
|
elif self.config.problem_type == "single_label_classification":
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
elif self.config.problem_type == "multi_label_classification":
|
|
loss_fct = BCEWithLogitsLoss()
|
|
loss = loss_fct(logits, labels)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return SequenceClassifierOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
ConvBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
|
softmax) e.g. for RocStories/SWAG tasks.
|
|
""",
|
|
CONVBERT_START_DOCSTRING,
|
|
)
|
|
class ConvBertForMultipleChoice(ConvBertPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
|
|
self.convbert = ConvBertModel(config)
|
|
self.sequence_summary = SequenceSummary(config)
|
|
self.classifier = nn.Linear(config.hidden_size, 1)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
@add_start_docstrings_to_model_forward(
|
|
CONVBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
|
|
)
|
|
@add_code_sample_docstrings(
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=MultipleChoiceModelOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, MultipleChoiceModelOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
|
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
|
`input_ids` above)
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
|
|
|
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
|
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
|
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
|
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
|
inputs_embeds = (
|
|
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
|
if inputs_embeds is not None
|
|
else None
|
|
)
|
|
|
|
outputs = self.convbert(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
sequence_output = outputs[0]
|
|
|
|
pooled_output = self.sequence_summary(sequence_output)
|
|
logits = self.classifier(pooled_output)
|
|
reshaped_logits = logits.view(-1, num_choices)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(reshaped_logits, labels)
|
|
|
|
if not return_dict:
|
|
output = (reshaped_logits,) + outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return MultipleChoiceModelOutput(
|
|
loss=loss,
|
|
logits=reshaped_logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
ConvBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
|
Named-Entity-Recognition (NER) tasks.
|
|
""",
|
|
CONVBERT_START_DOCSTRING,
|
|
)
|
|
class ConvBertForTokenClassification(ConvBertPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
|
|
self.convbert = ConvBertModel(config)
|
|
classifier_dropout = (
|
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
|
)
|
|
self.dropout = nn.Dropout(classifier_dropout)
|
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
@add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@add_code_sample_docstrings(
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=TokenClassifierOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, TokenClassifierOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
outputs = self.convbert(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
sequence_output = outputs[0]
|
|
|
|
sequence_output = self.dropout(sequence_output)
|
|
logits = self.classifier(sequence_output)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return TokenClassifierOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
ConvBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
|
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
|
""",
|
|
CONVBERT_START_DOCSTRING,
|
|
)
|
|
class ConvBertForQuestionAnswering(ConvBertPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
|
|
self.num_labels = config.num_labels
|
|
self.convbert = ConvBertModel(config)
|
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
@add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@add_code_sample_docstrings(
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=QuestionAnsweringModelOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
start_positions: Optional[torch.LongTensor] = None,
|
|
end_positions: Optional[torch.LongTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
|
r"""
|
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
|
are not taken into account for computing the loss.
|
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
|
are not taken into account for computing the loss.
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
outputs = self.convbert(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
sequence_output = outputs[0]
|
|
|
|
logits = self.qa_outputs(sequence_output)
|
|
start_logits, end_logits = logits.split(1, dim=-1)
|
|
start_logits = start_logits.squeeze(-1).contiguous()
|
|
end_logits = end_logits.squeeze(-1).contiguous()
|
|
|
|
total_loss = None
|
|
if start_positions is not None and end_positions is not None:
|
|
# If we are on multi-GPU, split add a dimension
|
|
if len(start_positions.size()) > 1:
|
|
start_positions = start_positions.squeeze(-1)
|
|
if len(end_positions.size()) > 1:
|
|
end_positions = end_positions.squeeze(-1)
|
|
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
|
ignored_index = start_logits.size(1)
|
|
start_positions = start_positions.clamp(0, ignored_index)
|
|
end_positions = end_positions.clamp(0, ignored_index)
|
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
|
start_loss = loss_fct(start_logits, start_positions)
|
|
end_loss = loss_fct(end_logits, end_positions)
|
|
total_loss = (start_loss + end_loss) / 2
|
|
|
|
if not return_dict:
|
|
output = (start_logits, end_logits) + outputs[1:]
|
|
return ((total_loss,) + output) if total_loss is not None else output
|
|
|
|
return QuestionAnsweringModelOutput(
|
|
loss=total_loss,
|
|
start_logits=start_logits,
|
|
end_logits=end_logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|