1945 lines
86 KiB
Python
1945 lines
86 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""PyTorch OpenAI GPT-2 model."""
|
|
|
|
import math
|
|
import os
|
|
import warnings
|
|
from dataclasses import dataclass
|
|
from typing import Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
from torch.cuda.amp import autocast
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
|
|
from ...activations import ACT2FN
|
|
from ...modeling_outputs import (
|
|
BaseModelOutputWithPastAndCrossAttentions,
|
|
CausalLMOutputWithCrossAttentions,
|
|
QuestionAnsweringModelOutput,
|
|
SequenceClassifierOutputWithPast,
|
|
TokenClassifierOutput,
|
|
)
|
|
from ...modeling_utils import PreTrainedModel, SequenceSummary
|
|
from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
|
|
from ...utils import (
|
|
ModelOutput,
|
|
add_code_sample_docstrings,
|
|
add_start_docstrings,
|
|
add_start_docstrings_to_model_forward,
|
|
is_flash_attn_2_available,
|
|
is_flash_attn_greater_or_equal_2_10,
|
|
logging,
|
|
replace_return_docstrings,
|
|
)
|
|
from ...utils.model_parallel_utils import assert_device_map, get_device_map
|
|
from .configuration_gpt2 import GPT2Config
|
|
|
|
|
|
if is_flash_attn_2_available():
|
|
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
_CHECKPOINT_FOR_DOC = "openai-community/gpt2"
|
|
_CONFIG_FOR_DOC = "GPT2Config"
|
|
|
|
|
|
from ..deprecated._archive_maps import GPT2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
|
|
|
|
|
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
|
def _get_unpad_data(attention_mask):
|
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
|
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
|
return (
|
|
indices,
|
|
cu_seqlens,
|
|
max_seqlen_in_batch,
|
|
)
|
|
|
|
|
|
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
|
|
"""Load tf checkpoints in a pytorch model"""
|
|
try:
|
|
import re
|
|
|
|
import tensorflow as tf
|
|
except ImportError:
|
|
logger.error(
|
|
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
|
"https://www.tensorflow.org/install/ for installation instructions."
|
|
)
|
|
raise
|
|
tf_path = os.path.abspath(gpt2_checkpoint_path)
|
|
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
|
# Load weights from TF model
|
|
init_vars = tf.train.list_variables(tf_path)
|
|
names = []
|
|
arrays = []
|
|
for name, shape in init_vars:
|
|
logger.info(f"Loading TF weight {name} with shape {shape}")
|
|
array = tf.train.load_variable(tf_path, name)
|
|
names.append(name)
|
|
arrays.append(array.squeeze())
|
|
|
|
for name, array in zip(names, arrays):
|
|
name = name[6:] # skip "model/"
|
|
name = name.split("/")
|
|
pointer = model
|
|
for m_name in name:
|
|
if re.fullmatch(r"[A-Za-z]+\d+", m_name):
|
|
scope_names = re.split(r"(\d+)", m_name)
|
|
else:
|
|
scope_names = [m_name]
|
|
if scope_names[0] == "w" or scope_names[0] == "g":
|
|
pointer = getattr(pointer, "weight")
|
|
elif scope_names[0] == "b":
|
|
pointer = getattr(pointer, "bias")
|
|
elif scope_names[0] == "wpe" or scope_names[0] == "wte":
|
|
pointer = getattr(pointer, scope_names[0])
|
|
pointer = getattr(pointer, "weight")
|
|
else:
|
|
pointer = getattr(pointer, scope_names[0])
|
|
if len(scope_names) >= 2:
|
|
num = int(scope_names[1])
|
|
pointer = pointer[num]
|
|
try:
|
|
if pointer.shape != array.shape:
|
|
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
|
except ValueError as e:
|
|
e.args += (pointer.shape, array.shape)
|
|
raise
|
|
logger.info(f"Initialize PyTorch weight {name}")
|
|
pointer.data = torch.from_numpy(array)
|
|
return model
|
|
|
|
|
|
class GPT2Attention(nn.Module):
|
|
def __init__(self, config, is_cross_attention=False, layer_idx=None):
|
|
super().__init__()
|
|
self.config = config
|
|
max_positions = config.max_position_embeddings
|
|
self.register_buffer(
|
|
"bias",
|
|
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
|
1, 1, max_positions, max_positions
|
|
),
|
|
persistent=False,
|
|
)
|
|
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
|
|
|
|
self.embed_dim = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.head_dim = self.embed_dim // self.num_heads
|
|
self.split_size = self.embed_dim
|
|
if self.head_dim * self.num_heads != self.embed_dim:
|
|
raise ValueError(
|
|
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
|
f" {self.num_heads})."
|
|
)
|
|
|
|
self.scale_attn_weights = config.scale_attn_weights
|
|
self.is_cross_attention = is_cross_attention
|
|
|
|
# Layer-wise attention scaling, reordering, and upcasting
|
|
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
|
|
self.layer_idx = layer_idx
|
|
self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
|
|
|
|
if self.is_cross_attention:
|
|
self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
|
|
self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
|
|
else:
|
|
self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
|
|
self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
|
|
|
|
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
|
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
|
self.is_causal = True
|
|
|
|
self.pruned_heads = set()
|
|
|
|
def prune_heads(self, heads):
|
|
if len(heads) == 0:
|
|
return
|
|
heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
|
|
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
|
|
|
|
# Prune conv1d layers
|
|
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
|
|
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
|
|
|
|
# Update hyper params
|
|
self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
|
|
self.num_heads = self.num_heads - len(heads)
|
|
self.pruned_heads = self.pruned_heads.union(heads)
|
|
|
|
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
|
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
|
|
|
if self.scale_attn_weights:
|
|
attn_weights = attn_weights / torch.full(
|
|
[], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
|
|
)
|
|
|
|
# Layer-wise attention scaling
|
|
if self.scale_attn_by_inverse_layer_idx:
|
|
attn_weights = attn_weights / float(self.layer_idx + 1)
|
|
|
|
if not self.is_cross_attention:
|
|
# if only "normal" attention layer implements causal mask
|
|
query_length, key_length = query.size(-2), key.size(-2)
|
|
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
|
mask_value = torch.finfo(attn_weights.dtype).min
|
|
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
|
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
|
mask_value = torch.full([], mask_value, dtype=attn_weights.dtype, device=attn_weights.device)
|
|
attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value)
|
|
|
|
if attention_mask is not None:
|
|
# Apply the attention mask
|
|
attn_weights = attn_weights + attention_mask
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
|
|
|
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
|
|
attn_weights = attn_weights.type(value.dtype)
|
|
attn_weights = self.attn_dropout(attn_weights)
|
|
|
|
# Mask heads if we want to
|
|
if head_mask is not None:
|
|
attn_weights = attn_weights * head_mask
|
|
|
|
attn_output = torch.matmul(attn_weights, value)
|
|
|
|
return attn_output, attn_weights
|
|
|
|
def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None):
|
|
# Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
|
|
bsz, num_heads, q_seq_len, dk = query.size()
|
|
_, _, k_seq_len, _ = key.size()
|
|
|
|
# Preallocate attn_weights for `baddbmm`
|
|
attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)
|
|
|
|
# Compute Scale Factor
|
|
scale_factor = 1.0
|
|
if self.scale_attn_weights:
|
|
scale_factor /= float(value.size(-1)) ** 0.5
|
|
|
|
if self.scale_attn_by_inverse_layer_idx:
|
|
scale_factor /= float(self.layer_idx + 1)
|
|
|
|
# Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
|
|
with autocast(enabled=False):
|
|
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
|
|
attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
|
|
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
|
|
|
|
if not self.is_cross_attention:
|
|
# if only "normal" attention layer implements causal mask
|
|
query_length, key_length = query.size(-2), key.size(-2)
|
|
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
|
mask_value = torch.finfo(attn_weights.dtype).min
|
|
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
|
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
|
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
|
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
|
|
|
if attention_mask is not None:
|
|
# Apply the attention mask
|
|
attn_weights = attn_weights + attention_mask
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
|
|
|
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
|
|
if attn_weights.dtype != torch.float32:
|
|
raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
|
|
attn_weights = attn_weights.type(value.dtype)
|
|
attn_weights = self.attn_dropout(attn_weights)
|
|
|
|
# Mask heads if we want to
|
|
if head_mask is not None:
|
|
attn_weights = attn_weights * head_mask
|
|
|
|
attn_output = torch.matmul(attn_weights, value)
|
|
|
|
return attn_output, attn_weights
|
|
|
|
def _split_heads(self, tensor, num_heads, attn_head_size):
|
|
"""
|
|
Splits hidden_size dim into attn_head_size and num_heads
|
|
"""
|
|
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
|
tensor = tensor.view(new_shape)
|
|
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
|
|
|
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
|
"""
|
|
Merges attn_head_size dim and num_attn_heads dim into hidden_size
|
|
"""
|
|
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
|
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
|
return tensor.view(new_shape)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
|
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = False,
|
|
output_attentions: Optional[bool] = False,
|
|
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
|
if encoder_hidden_states is not None:
|
|
if not hasattr(self, "q_attn"):
|
|
raise ValueError(
|
|
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
|
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
|
|
)
|
|
|
|
query = self.q_attn(hidden_states)
|
|
key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
|
|
attention_mask = encoder_attention_mask
|
|
else:
|
|
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
|
|
|
query = self._split_heads(query, self.num_heads, self.head_dim)
|
|
key = self._split_heads(key, self.num_heads, self.head_dim)
|
|
value = self._split_heads(value, self.num_heads, self.head_dim)
|
|
|
|
if layer_past is not None:
|
|
past_key, past_value = layer_past
|
|
key = torch.cat((past_key, key), dim=-2)
|
|
value = torch.cat((past_value, value), dim=-2)
|
|
|
|
if use_cache is True:
|
|
present = (key, value)
|
|
else:
|
|
present = None
|
|
|
|
if self.reorder_and_upcast_attn:
|
|
attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
|
|
else:
|
|
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
|
|
|
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
|
|
attn_output = self.c_proj(attn_output)
|
|
attn_output = self.resid_dropout(attn_output)
|
|
|
|
outputs = (attn_output, present)
|
|
if output_attentions:
|
|
outputs += (attn_weights,)
|
|
|
|
return outputs # a, present, (attentions)
|
|
|
|
|
|
class GPT2FlashAttention2(GPT2Attention):
|
|
"""
|
|
GPT2 flash attention module. This module inherits from `GPT2Attention` as the weights of the module stays
|
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
|
flash attention and deal with padding tokens in case the input contains any of them.
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
|
|
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
|
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
|
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
|
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = False,
|
|
output_attentions: Optional[bool] = False,
|
|
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
|
bsz, _, _ = hidden_states.size()
|
|
if encoder_hidden_states is not None:
|
|
if not hasattr(self, "q_attn"):
|
|
raise ValueError(
|
|
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
|
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
|
|
)
|
|
|
|
query = self.q_attn(hidden_states)
|
|
key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
|
|
attention_mask = encoder_attention_mask
|
|
else:
|
|
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
|
|
|
query = self._split_heads(query, self.num_heads, self.head_dim)
|
|
key = self._split_heads(key, self.num_heads, self.head_dim)
|
|
value = self._split_heads(value, self.num_heads, self.head_dim)
|
|
|
|
if layer_past is not None:
|
|
past_key = layer_past[0]
|
|
past_value = layer_past[1]
|
|
key = torch.cat((past_key, key), dim=-2)
|
|
value = torch.cat((past_value, value), dim=-2)
|
|
|
|
present = None
|
|
if use_cache is True:
|
|
present = (key, value)
|
|
|
|
query_length = query.shape[2]
|
|
tgt_len = key.shape[2]
|
|
|
|
# Flash attention requires the input to have the shape
|
|
# batch_size x seq_length x head_dim x hidden_dim
|
|
query = query.transpose(1, 2).view(bsz, query_length, self.num_heads, self.head_dim)
|
|
key = key.transpose(1, 2).view(bsz, tgt_len, self.num_heads, self.head_dim)
|
|
value = value.transpose(1, 2).view(bsz, tgt_len, self.num_heads, self.head_dim)
|
|
|
|
attn_dropout = self.attn_dropout.p if self.training else 0.0
|
|
|
|
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
|
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
|
# cast them back in the correct dtype just to be sure everything works as expected.
|
|
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
|
# in fp32. (LlamaRMSNorm handles it correctly)
|
|
|
|
if query.dtype == torch.float32:
|
|
if torch.is_autocast_enabled():
|
|
target_dtype = torch.get_autocast_gpu_dtype()
|
|
# Handle the case where the model is quantized
|
|
elif hasattr(self.config, "_pre_quantization_dtype"):
|
|
target_dtype = self.config._pre_quantization_dtype
|
|
else:
|
|
target_dtype = self.c_proj.weight.dtype
|
|
|
|
logger.warning_once(
|
|
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
|
f" {target_dtype}."
|
|
)
|
|
|
|
query = query.to(target_dtype)
|
|
key = key.to(target_dtype)
|
|
value = value.to(target_dtype)
|
|
|
|
attn_output = self._flash_attention_forward(
|
|
query, key, value, attention_mask, query_length, dropout=attn_dropout
|
|
)
|
|
|
|
attn_weights_reshaped = attn_output.reshape(bsz, query_length, self.num_heads * self.head_dim)
|
|
attn_output = self.c_proj(attn_weights_reshaped)
|
|
attn_output = self.resid_dropout(attn_output)
|
|
|
|
outputs = (attn_output, present)
|
|
if output_attentions:
|
|
outputs += (attn_weights_reshaped,)
|
|
|
|
return outputs
|
|
|
|
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
|
def _flash_attention_forward(
|
|
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
|
):
|
|
"""
|
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
|
first unpad the input, then computes the attention scores and pad the final attention scores.
|
|
|
|
Args:
|
|
query_states (`torch.Tensor`):
|
|
Input query states to be passed to Flash Attention API
|
|
key_states (`torch.Tensor`):
|
|
Input key states to be passed to Flash Attention API
|
|
value_states (`torch.Tensor`):
|
|
Input value states to be passed to Flash Attention API
|
|
attention_mask (`torch.Tensor`):
|
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
|
position of padding tokens and 1 for the position of non-padding tokens.
|
|
dropout (`float`):
|
|
Attention dropout
|
|
softmax_scale (`float`, *optional*):
|
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
|
"""
|
|
if not self._flash_attn_uses_top_left_mask:
|
|
causal = self.is_causal
|
|
else:
|
|
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
|
causal = self.is_causal and query_length != 1
|
|
|
|
# Contains at least one padding token in the sequence
|
|
if attention_mask is not None:
|
|
batch_size = query_states.shape[0]
|
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
|
query_states, key_states, value_states, attention_mask, query_length
|
|
)
|
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
|
|
|
attn_output_unpad = flash_attn_varlen_func(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
cu_seqlens_q=cu_seqlens_q,
|
|
cu_seqlens_k=cu_seqlens_k,
|
|
max_seqlen_q=max_seqlen_in_batch_q,
|
|
max_seqlen_k=max_seqlen_in_batch_k,
|
|
dropout_p=dropout,
|
|
softmax_scale=softmax_scale,
|
|
causal=causal,
|
|
)
|
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
|
else:
|
|
attn_output = flash_attn_func(
|
|
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
|
)
|
|
|
|
return attn_output
|
|
|
|
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
|
|
|
key_layer = index_first_axis(
|
|
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
|
)
|
|
value_layer = index_first_axis(
|
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
|
)
|
|
if query_length == kv_seq_len:
|
|
query_layer = index_first_axis(
|
|
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
|
)
|
|
cu_seqlens_q = cu_seqlens_k
|
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
|
indices_q = indices_k
|
|
elif query_length == 1:
|
|
max_seqlen_in_batch_q = 1
|
|
cu_seqlens_q = torch.arange(
|
|
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
|
) # There is a memcpy here, that is very bad.
|
|
indices_q = cu_seqlens_q[:-1]
|
|
query_layer = query_layer.squeeze(1)
|
|
else:
|
|
# The -q_len: slice assumes left padding.
|
|
attention_mask = attention_mask[:, -query_length:]
|
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
|
|
|
return (
|
|
query_layer,
|
|
key_layer,
|
|
value_layer,
|
|
indices_q,
|
|
(cu_seqlens_q, cu_seqlens_k),
|
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
|
)
|
|
|
|
|
|
class GPT2MLP(nn.Module):
|
|
def __init__(self, intermediate_size, config):
|
|
super().__init__()
|
|
embed_dim = config.hidden_size
|
|
self.c_fc = Conv1D(intermediate_size, embed_dim)
|
|
self.c_proj = Conv1D(embed_dim, intermediate_size)
|
|
self.act = ACT2FN[config.activation_function]
|
|
self.dropout = nn.Dropout(config.resid_pdrop)
|
|
|
|
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|
|
hidden_states = self.c_fc(hidden_states)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states = self.c_proj(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
GPT2_ATTENTION_CLASSES = {
|
|
"eager": GPT2Attention,
|
|
"flash_attention_2": GPT2FlashAttention2,
|
|
}
|
|
|
|
|
|
class GPT2Block(nn.Module):
|
|
def __init__(self, config, layer_idx=None):
|
|
super().__init__()
|
|
hidden_size = config.hidden_size
|
|
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
|
attention_class = GPT2_ATTENTION_CLASSES[config._attn_implementation]
|
|
|
|
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
|
self.attn = attention_class(config=config, layer_idx=layer_idx)
|
|
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
if config.add_cross_attention:
|
|
self.crossattention = attention_class(config=config, is_cross_attention=True, layer_idx=layer_idx)
|
|
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
self.mlp = GPT2MLP(inner_dim, config)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
|
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = False,
|
|
output_attentions: Optional[bool] = False,
|
|
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
|
residual = hidden_states
|
|
hidden_states = self.ln_1(hidden_states)
|
|
attn_outputs = self.attn(
|
|
hidden_states,
|
|
layer_past=layer_past,
|
|
attention_mask=attention_mask,
|
|
head_mask=head_mask,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
)
|
|
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
|
outputs = attn_outputs[1:]
|
|
# residual connection
|
|
hidden_states = attn_output + residual
|
|
|
|
if encoder_hidden_states is not None:
|
|
# add one self-attention block for cross-attention
|
|
if not hasattr(self, "crossattention"):
|
|
raise ValueError(
|
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
|
|
"cross-attention layers by setting `config.add_cross_attention=True`"
|
|
)
|
|
residual = hidden_states
|
|
hidden_states = self.ln_cross_attn(hidden_states)
|
|
cross_attn_outputs = self.crossattention(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
head_mask=head_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
output_attentions=output_attentions,
|
|
)
|
|
attn_output = cross_attn_outputs[0]
|
|
# residual connection
|
|
hidden_states = residual + attn_output
|
|
outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.ln_2(hidden_states)
|
|
feed_forward_hidden_states = self.mlp(hidden_states)
|
|
# residual connection
|
|
hidden_states = residual + feed_forward_hidden_states
|
|
|
|
if use_cache:
|
|
outputs = (hidden_states,) + outputs
|
|
else:
|
|
outputs = (hidden_states,) + outputs[1:]
|
|
|
|
return outputs # hidden_states, present, (attentions, cross_attentions)
|
|
|
|
|
|
class GPT2PreTrainedModel(PreTrainedModel):
|
|
"""
|
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
|
models.
|
|
"""
|
|
|
|
config_class = GPT2Config
|
|
load_tf_weights = load_tf_weights_in_gpt2
|
|
base_model_prefix = "transformer"
|
|
is_parallelizable = True
|
|
supports_gradient_checkpointing = True
|
|
_no_split_modules = ["GPT2Block"]
|
|
_skip_keys_device_placement = "past_key_values"
|
|
_supports_flash_attn_2 = True
|
|
|
|
def __init__(self, *inputs, **kwargs):
|
|
super().__init__(*inputs, **kwargs)
|
|
|
|
def _init_weights(self, module):
|
|
"""Initialize the weights."""
|
|
if isinstance(module, (nn.Linear, Conv1D)):
|
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
elif isinstance(module, nn.LayerNorm):
|
|
module.bias.data.zero_()
|
|
module.weight.data.fill_(1.0)
|
|
|
|
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
|
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
|
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
|
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
|
#
|
|
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
|
for name, p in module.named_parameters():
|
|
if name == "c_proj.weight":
|
|
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
|
p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)))
|
|
|
|
|
|
@dataclass
|
|
class GPT2DoubleHeadsModelOutput(ModelOutput):
|
|
"""
|
|
Base class for outputs of models predicting if two sentences are consecutive or not.
|
|
|
|
Args:
|
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
|
Language modeling loss.
|
|
mc_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mc_labels` is provided):
|
|
Multiple choice classification loss.
|
|
logits (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`):
|
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
|
mc_logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
|
|
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
|
|
past_key_values (`Tuple[Tuple[torch.Tensor]]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
|
Tuple of length `config.n_layers`, containing tuples of tensors of shape `(batch_size, num_heads,
|
|
sequence_length, embed_size_per_head)`).
|
|
|
|
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
|
|
`past_key_values` input) to speed up sequential decoding.
|
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
|
shape `(batch_size, sequence_length, hidden_size)`.
|
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
sequence_length)`.
|
|
|
|
GPT2Attentions weights after the attention softmax, used to compute the weighted average in the
|
|
self-attention heads.
|
|
"""
|
|
|
|
loss: Optional[torch.FloatTensor] = None
|
|
mc_loss: Optional[torch.FloatTensor] = None
|
|
logits: torch.FloatTensor = None
|
|
mc_logits: torch.FloatTensor = None
|
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
|
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
|
|
|
|
|
GPT2_START_DOCSTRING = r"""
|
|
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
etc.)
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
and behavior.
|
|
|
|
Parameters:
|
|
config ([`GPT2Config`]): Model configuration class with all the parameters of the model.
|
|
Initializing with a config file does not load the weights associated with the model, only the
|
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
|
|
GPT2_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
|
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
|
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
|
sequence tokens in the vocabulary.
|
|
|
|
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
|
`input_ids`.
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
|
|
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
|
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
|
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
|
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
|
|
`past_key_values`. In other words, the `attention_mask` always has to have the length:
|
|
`len(past_key_values) + len(input_ids)`
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
|
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
|
1]`:
|
|
|
|
- 0 corresponds to a *sentence A* token,
|
|
- 1 corresponds to a *sentence B* token.
|
|
|
|
[What are token type IDs?](../glossary#token-type-ids)
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
config.max_position_embeddings - 1]`.
|
|
|
|
[What are position IDs?](../glossary#position-ids)
|
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
|
model's internal embedding lookup matrix.
|
|
|
|
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
|
`past_key_values`).
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
`past_key_values`).
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
PARALLELIZE_DOCSTRING = r"""
|
|
This is an experimental feature and is a subject to change at a moment's notice.
|
|
|
|
Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
|
|
it will evenly distribute blocks across all devices.
|
|
|
|
Args:
|
|
device_map (`Dict[int, list]`, optional, defaults to None):
|
|
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
|
|
automatically mapped to the first device (for esoteric reasons). That means that the first device should
|
|
have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the
|
|
following number of attention modules:
|
|
|
|
- openai-community/gpt2: 12
|
|
- openai-community/gpt2-medium: 24
|
|
- openai-community/gpt2-large: 36
|
|
- openai-community/gpt2-xl: 48
|
|
|
|
Example:
|
|
|
|
```python
|
|
# Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules:
|
|
model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2-xl")
|
|
device_map = {
|
|
0: [0, 1, 2, 3, 4, 5, 6, 7, 8],
|
|
1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
|
|
2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
|
|
3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47],
|
|
}
|
|
model.parallelize(device_map)
|
|
```
|
|
"""
|
|
DEPARALLELIZE_DOCSTRING = r"""
|
|
Moves the model to cpu from a model parallel state.
|
|
|
|
Example:
|
|
|
|
```python
|
|
# On a 4 GPU machine with openai-community/gpt2-large:
|
|
model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2-large")
|
|
device_map = {
|
|
0: [0, 1, 2, 3, 4, 5, 6, 7],
|
|
1: [8, 9, 10, 11, 12, 13, 14, 15],
|
|
2: [16, 17, 18, 19, 20, 21, 22, 23],
|
|
3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35],
|
|
}
|
|
model.parallelize(device_map) # Splits the model across several devices
|
|
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
|
|
```
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
|
|
GPT2_START_DOCSTRING,
|
|
)
|
|
class GPT2Model(GPT2PreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
|
|
self.embed_dim = config.hidden_size
|
|
|
|
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
|
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
|
|
|
self.drop = nn.Dropout(config.embd_pdrop)
|
|
self.h = nn.ModuleList([GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
|
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
|
|
|
# Model parallel
|
|
self.model_parallel = False
|
|
self.device_map = None
|
|
self.gradient_checkpointing = False
|
|
self._attn_implementation = config._attn_implementation
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
|
def parallelize(self, device_map=None):
|
|
# Check validity of device_map
|
|
warnings.warn(
|
|
"`GPT2Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
|
|
" model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
|
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
|
|
" ...}",
|
|
FutureWarning,
|
|
)
|
|
self.device_map = (
|
|
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
|
|
)
|
|
assert_device_map(self.device_map, len(self.h))
|
|
self.model_parallel = True
|
|
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
|
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
|
self.wte = self.wte.to(self.first_device)
|
|
self.wpe = self.wpe.to(self.first_device)
|
|
# Load onto devices
|
|
for k, v in self.device_map.items():
|
|
for block in v:
|
|
cuda_device = "cuda:" + str(k)
|
|
self.h[block] = self.h[block].to(cuda_device)
|
|
# ln_f to last
|
|
self.ln_f = self.ln_f.to(self.last_device)
|
|
|
|
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
|
def deparallelize(self):
|
|
warnings.warn(
|
|
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
|
FutureWarning,
|
|
)
|
|
self.model_parallel = False
|
|
self.device_map = None
|
|
self.first_device = "cpu"
|
|
self.last_device = "cpu"
|
|
self.wte = self.wte.to("cpu")
|
|
self.wpe = self.wpe.to("cpu")
|
|
for index in range(len(self.h)):
|
|
self.h[index] = self.h[index].to("cpu")
|
|
self.ln_f = self.ln_f.to("cpu")
|
|
torch.cuda.empty_cache()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.wte
|
|
|
|
def set_input_embeddings(self, new_embeddings):
|
|
self.wte = new_embeddings
|
|
|
|
def _prune_heads(self, heads_to_prune):
|
|
"""
|
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
|
"""
|
|
for layer, heads in heads_to_prune.items():
|
|
self.h[layer].attn.prune_heads(heads)
|
|
|
|
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
|
@add_code_sample_docstrings(
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
|
input_shape = input_ids.size()
|
|
input_ids = input_ids.view(-1, input_shape[-1])
|
|
batch_size = input_ids.shape[0]
|
|
elif inputs_embeds is not None:
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
batch_size = inputs_embeds.shape[0]
|
|
else:
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
|
|
if token_type_ids is not None:
|
|
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
|
|
|
if past_key_values is None:
|
|
past_length = 0
|
|
past_key_values = tuple([None] * len(self.h))
|
|
else:
|
|
past_length = past_key_values[0][0].size(-2)
|
|
if position_ids is None:
|
|
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
|
position_ids = position_ids.unsqueeze(0)
|
|
|
|
# Attention mask.
|
|
if attention_mask is not None:
|
|
attention_mask = attention_mask.view(batch_size, -1)
|
|
if self._attn_implementation == "flash_attention_2":
|
|
attention_mask = attention_mask if 0 in attention_mask else None
|
|
else:
|
|
# We create a 3D attention mask from a 2D tensor mask.
|
|
# Sizes are [batch_size, 1, 1, to_seq_length]
|
|
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
|
# this attention mask is more simple than the triangular masking of causal attention
|
|
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
|
attention_mask = attention_mask[:, None, None, :]
|
|
|
|
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
|
# masked positions, this operation will create a tensor which is 0.0 for
|
|
# positions we want to attend and the dtype's smallest value for masked positions.
|
|
# Since we are adding it to the raw scores before the softmax, this is
|
|
# effectively the same as removing these entirely.
|
|
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
|
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
|
|
|
# If a 2D or 3D attention mask is provided for the cross-attention
|
|
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
|
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
|
if encoder_attention_mask is None:
|
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
|
if self._attn_implementation != "flash_attention_2":
|
|
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
|
else:
|
|
encoder_attention_mask = None
|
|
|
|
# Prepare head mask if needed
|
|
# 1.0 in head_mask indicate we keep the head
|
|
# attention_probs has shape bsz x n_heads x N x N
|
|
# head_mask has shape n_layer x batch x n_heads x N x N
|
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.wte(input_ids)
|
|
position_embeds = self.wpe(position_ids)
|
|
hidden_states = inputs_embeds + position_embeds
|
|
|
|
if token_type_ids is not None:
|
|
token_type_embeds = self.wte(token_type_ids)
|
|
hidden_states = hidden_states + token_type_embeds
|
|
|
|
hidden_states = self.drop(hidden_states)
|
|
|
|
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
)
|
|
use_cache = False
|
|
|
|
presents = () if use_cache else None
|
|
all_self_attentions = () if output_attentions else None
|
|
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
|
all_hidden_states = () if output_hidden_states else None
|
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
|
# Model parallel
|
|
if self.model_parallel:
|
|
torch.cuda.set_device(hidden_states.device)
|
|
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
|
if layer_past is not None:
|
|
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
|
# Ensure that attention_mask is always on the same device as hidden_states
|
|
if attention_mask is not None:
|
|
attention_mask = attention_mask.to(hidden_states.device)
|
|
if isinstance(head_mask, torch.Tensor):
|
|
head_mask = head_mask.to(hidden_states.device)
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
outputs = self._gradient_checkpointing_func(
|
|
block.__call__,
|
|
hidden_states,
|
|
None,
|
|
attention_mask,
|
|
head_mask[i],
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
use_cache,
|
|
output_attentions,
|
|
)
|
|
else:
|
|
outputs = block(
|
|
hidden_states,
|
|
layer_past=layer_past,
|
|
attention_mask=attention_mask,
|
|
head_mask=head_mask[i],
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
)
|
|
|
|
hidden_states = outputs[0]
|
|
if use_cache is True:
|
|
presents = presents + (outputs[1],)
|
|
|
|
if output_attentions:
|
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
|
if self.config.add_cross_attention:
|
|
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
|
|
|
|
# Model Parallel: If it's the last layer for that device, put things on the next device
|
|
if self.model_parallel:
|
|
for k, v in self.device_map.items():
|
|
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
|
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
|
|
hidden_states = hidden_states.view(output_shape)
|
|
# Add last hidden state
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
if not return_dict:
|
|
return tuple(
|
|
v
|
|
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
|
|
if v is not None
|
|
)
|
|
|
|
return BaseModelOutputWithPastAndCrossAttentions(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=presents,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attentions,
|
|
cross_attentions=all_cross_attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
|
embeddings).
|
|
""",
|
|
GPT2_START_DOCSTRING,
|
|
)
|
|
class GPT2LMHeadModel(GPT2PreTrainedModel):
|
|
_tied_weights_keys = ["lm_head.weight"]
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.transformer = GPT2Model(config)
|
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
|
|
|
# Model parallel
|
|
self.model_parallel = False
|
|
self.device_map = None
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
|
def parallelize(self, device_map=None):
|
|
warnings.warn(
|
|
"`GPT2LMHeadModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
|
|
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
|
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
|
|
" 0, 'transformer.h.1': 1, ...}",
|
|
FutureWarning,
|
|
)
|
|
self.device_map = (
|
|
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
|
if device_map is None
|
|
else device_map
|
|
)
|
|
assert_device_map(self.device_map, len(self.transformer.h))
|
|
self.transformer.parallelize(self.device_map)
|
|
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
|
self.model_parallel = True
|
|
|
|
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
|
def deparallelize(self):
|
|
warnings.warn(
|
|
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
|
FutureWarning,
|
|
)
|
|
self.transformer.deparallelize()
|
|
self.transformer = self.transformer.to("cpu")
|
|
self.lm_head = self.lm_head.to("cpu")
|
|
self.model_parallel = False
|
|
torch.cuda.empty_cache()
|
|
|
|
def get_output_embeddings(self):
|
|
return self.lm_head
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.lm_head = new_embeddings
|
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
|
token_type_ids = kwargs.get("token_type_ids", None)
|
|
# Omit tokens covered by past_key_values
|
|
if past_key_values:
|
|
past_length = past_key_values[0][0].shape[2]
|
|
|
|
# Some generation methods already pass only the last input ID
|
|
if input_ids.shape[1] > past_length:
|
|
remove_prefix_length = past_length
|
|
else:
|
|
# Default to old behavior: keep only final ID
|
|
remove_prefix_length = input_ids.shape[1] - 1
|
|
|
|
input_ids = input_ids[:, remove_prefix_length:]
|
|
if token_type_ids is not None:
|
|
token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
|
|
|
|
attention_mask = kwargs.get("attention_mask", None)
|
|
position_ids = kwargs.get("position_ids", None)
|
|
|
|
if attention_mask is not None and position_ids is None:
|
|
# create position_ids on the fly for batch generation
|
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
|
if past_key_values:
|
|
position_ids = position_ids[:, -input_ids.shape[1] :]
|
|
else:
|
|
position_ids = None
|
|
|
|
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
|
if inputs_embeds is not None and past_key_values is None:
|
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
|
else:
|
|
model_inputs = {"input_ids": input_ids}
|
|
|
|
model_inputs.update(
|
|
{
|
|
"past_key_values": past_key_values,
|
|
"use_cache": kwargs.get("use_cache"),
|
|
"position_ids": position_ids,
|
|
"attention_mask": attention_mask,
|
|
"token_type_ids": token_type_ids,
|
|
}
|
|
)
|
|
|
|
return model_inputs
|
|
|
|
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
|
@add_code_sample_docstrings(
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=CausalLMOutputWithCrossAttentions,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
transformer_outputs = self.transformer(
|
|
input_ids,
|
|
past_key_values=past_key_values,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
hidden_states = transformer_outputs[0]
|
|
|
|
# Set device for model parallelism
|
|
if self.model_parallel:
|
|
torch.cuda.set_device(self.transformer.first_device)
|
|
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
|
|
|
lm_logits = self.lm_head(hidden_states)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
# move labels to correct device to enable model parallelism
|
|
labels = labels.to(lm_logits.device)
|
|
# Shift so that tokens < n predict n
|
|
shift_logits = lm_logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
# Flatten the tokens
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
|
|
|
if not return_dict:
|
|
output = (lm_logits,) + transformer_outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return CausalLMOutputWithCrossAttentions(
|
|
loss=loss,
|
|
logits=lm_logits,
|
|
past_key_values=transformer_outputs.past_key_values,
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
attentions=transformer_outputs.attentions,
|
|
cross_attentions=transformer_outputs.cross_attentions,
|
|
)
|
|
|
|
@staticmethod
|
|
def _reorder_cache(
|
|
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
|
) -> Tuple[Tuple[torch.Tensor]]:
|
|
"""
|
|
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
|
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
|
beam_idx at every generation step.
|
|
"""
|
|
return tuple(
|
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
|
for layer_past in past_key_values
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for
|
|
RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the
|
|
input embeddings, the classification head takes as input the input of a specified classification token index in the
|
|
input sequence).
|
|
""",
|
|
GPT2_START_DOCSTRING,
|
|
)
|
|
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
|
_tied_weights_keys = ["lm_head.weight"]
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
config.num_labels = 1
|
|
self.transformer = GPT2Model(config)
|
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
|
self.multiple_choice_head = SequenceSummary(config)
|
|
|
|
# Model parallel
|
|
self.model_parallel = False
|
|
self.device_map = None
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
|
def parallelize(self, device_map=None):
|
|
warnings.warn(
|
|
"`GPT2DoubleHeadsModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should"
|
|
" load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your"
|
|
" own `device_map` but it needs to be a dictionary module_name to device, so for instance"
|
|
" {'transformer.h.0': 0, 'transformer.h.1': 1, ...}",
|
|
FutureWarning,
|
|
)
|
|
self.device_map = (
|
|
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
|
if device_map is None
|
|
else device_map
|
|
)
|
|
assert_device_map(self.device_map, len(self.transformer.h))
|
|
self.transformer.parallelize(self.device_map)
|
|
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
|
self.multiple_choice_head = self.multiple_choice_head.to(self.transformer.first_device)
|
|
self.model_parallel = True
|
|
|
|
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
|
def deparallelize(self):
|
|
warnings.warn(
|
|
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
|
FutureWarning,
|
|
)
|
|
self.transformer.deparallelize()
|
|
self.transformer = self.transformer.to("cpu")
|
|
self.lm_head = self.lm_head.to("cpu")
|
|
self.multiple_choice_head = self.multiple_choice_head.to("cpu")
|
|
self.model_parallel = False
|
|
torch.cuda.empty_cache()
|
|
|
|
def get_output_embeddings(self):
|
|
return self.lm_head
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.lm_head = new_embeddings
|
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
|
|
token_type_ids = kwargs.get("token_type_ids", None)
|
|
# Omit tokens covered by past_key_values
|
|
if past_key_values:
|
|
past_length = past_key_values[0][0].shape[2]
|
|
|
|
# Some generation methods already pass only the last input ID
|
|
if input_ids.shape[1] > past_length:
|
|
remove_prefix_length = past_length
|
|
else:
|
|
# Default to old behavior: keep only final ID
|
|
remove_prefix_length = input_ids.shape[1] - 1
|
|
|
|
input_ids = input_ids[:, remove_prefix_length:]
|
|
if token_type_ids is not None:
|
|
token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
|
|
|
|
attention_mask = kwargs.get("attention_mask", None)
|
|
position_ids = kwargs.get("position_ids", None)
|
|
|
|
if attention_mask is not None and position_ids is None:
|
|
# create position_ids on the fly for batch generation
|
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
|
if past_key_values:
|
|
position_ids = position_ids[:, -input_ids.shape[1] :]
|
|
else:
|
|
position_ids = None
|
|
|
|
return {
|
|
"input_ids": input_ids,
|
|
"past_key_values": past_key_values,
|
|
"use_cache": kwargs.get("use_cache"),
|
|
"position_ids": position_ids,
|
|
"attention_mask": attention_mask,
|
|
"token_type_ids": token_type_ids,
|
|
}
|
|
|
|
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=GPT2DoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
mc_token_ids: Optional[torch.LongTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
mc_labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
**kwargs,
|
|
) -> Union[Tuple, GPT2DoubleHeadsModelOutput]:
|
|
r"""
|
|
mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
|
|
Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) -
|
|
1]`.
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
|
`labels = input_ids`. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to
|
|
`-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`
|
|
mc_labels (`torch.LongTensor` of shape `(batch_size)`, *optional*):
|
|
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
|
|
where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above)
|
|
|
|
Return:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> import torch
|
|
>>> from transformers import AutoTokenizer, GPT2DoubleHeadsModel
|
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
|
>>> model = GPT2DoubleHeadsModel.from_pretrained("openai-community/gpt2")
|
|
|
|
>>> # Add a [CLS] to the vocabulary (we should train it also!)
|
|
>>> num_added_tokens = tokenizer.add_special_tokens({"cls_token": "[CLS]"})
|
|
>>> # Update the model embeddings with the new vocabulary size
|
|
>>> embedding_layer = model.resize_token_embeddings(len(tokenizer))
|
|
|
|
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
|
|
>>> encoded_choices = [tokenizer.encode(s) for s in choices]
|
|
>>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]
|
|
|
|
>>> input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2
|
|
>>> mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1
|
|
|
|
>>> outputs = model(input_ids, mc_token_ids=mc_token_ids)
|
|
>>> lm_logits = outputs.logits
|
|
>>> mc_logits = outputs.mc_logits
|
|
```"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
transformer_outputs = self.transformer(
|
|
input_ids,
|
|
past_key_values=past_key_values,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
hidden_states = transformer_outputs[0]
|
|
|
|
# Set device for model parallelism
|
|
if self.model_parallel:
|
|
torch.cuda.set_device(self.transformer.first_device)
|
|
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
|
|
|
lm_logits = self.lm_head(hidden_states)
|
|
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
|
|
|
|
mc_loss = None
|
|
if mc_labels is not None:
|
|
loss_fct = CrossEntropyLoss()
|
|
mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1))
|
|
lm_loss = None
|
|
if labels is not None:
|
|
labels = labels.to(lm_logits.device)
|
|
shift_logits = lm_logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
loss_fct = CrossEntropyLoss()
|
|
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
|
|
|
if not return_dict:
|
|
output = (lm_logits, mc_logits) + transformer_outputs[1:]
|
|
if mc_loss is not None:
|
|
output = (mc_loss,) + output
|
|
return ((lm_loss,) + output) if lm_loss is not None else output
|
|
|
|
return GPT2DoubleHeadsModelOutput(
|
|
loss=lm_loss,
|
|
mc_loss=mc_loss,
|
|
logits=lm_logits,
|
|
mc_logits=mc_logits,
|
|
past_key_values=transformer_outputs.past_key_values,
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
attentions=transformer_outputs.attentions,
|
|
)
|
|
|
|
@staticmethod
|
|
def _reorder_cache(
|
|
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
|
) -> Tuple[Tuple[torch.Tensor]]:
|
|
"""
|
|
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
|
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
|
beam_idx at every generation step.
|
|
"""
|
|
return tuple(
|
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
|
for layer_past in past_key_values
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
The GPT2 Model transformer with a sequence classification head on top (linear layer).
|
|
|
|
[`GPT2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
|
(e.g. GPT-1) do.
|
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a
|
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
|
each row of the batch).
|
|
""",
|
|
GPT2_START_DOCSTRING,
|
|
)
|
|
class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
self.transformer = GPT2Model(config)
|
|
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
|
|
|
# Model parallel
|
|
self.model_parallel = False
|
|
self.device_map = None
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
|
@add_code_sample_docstrings(
|
|
checkpoint="microsoft/DialogRPT-updown",
|
|
output_type=SequenceClassifierOutputWithPast,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
transformer_outputs = self.transformer(
|
|
input_ids,
|
|
past_key_values=past_key_values,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
hidden_states = transformer_outputs[0]
|
|
logits = self.score(hidden_states)
|
|
|
|
if input_ids is not None:
|
|
batch_size, sequence_length = input_ids.shape[:2]
|
|
else:
|
|
batch_size, sequence_length = inputs_embeds.shape[:2]
|
|
|
|
assert (
|
|
self.config.pad_token_id is not None or batch_size == 1
|
|
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
|
if self.config.pad_token_id is None:
|
|
sequence_lengths = -1
|
|
else:
|
|
if input_ids is not None:
|
|
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
|
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
|
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
|
sequence_lengths = sequence_lengths.to(logits.device)
|
|
else:
|
|
sequence_lengths = -1
|
|
logger.warning(
|
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
|
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
|
)
|
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
if self.config.problem_type is None:
|
|
if self.num_labels == 1:
|
|
self.config.problem_type = "regression"
|
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
self.config.problem_type = "single_label_classification"
|
|
else:
|
|
self.config.problem_type = "multi_label_classification"
|
|
|
|
if self.config.problem_type == "regression":
|
|
loss_fct = MSELoss()
|
|
if self.num_labels == 1:
|
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
|
else:
|
|
loss = loss_fct(pooled_logits, labels)
|
|
elif self.config.problem_type == "single_label_classification":
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
|
elif self.config.problem_type == "multi_label_classification":
|
|
loss_fct = BCEWithLogitsLoss()
|
|
loss = loss_fct(pooled_logits, labels)
|
|
if not return_dict:
|
|
output = (pooled_logits,) + transformer_outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return SequenceClassifierOutputWithPast(
|
|
loss=loss,
|
|
logits=pooled_logits,
|
|
past_key_values=transformer_outputs.past_key_values,
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
attentions=transformer_outputs.attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
GPT2 Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
|
Named-Entity-Recognition (NER) tasks.
|
|
""",
|
|
GPT2_START_DOCSTRING,
|
|
)
|
|
class GPT2ForTokenClassification(GPT2PreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
|
|
self.transformer = GPT2Model(config)
|
|
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
|
classifier_dropout = config.classifier_dropout
|
|
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
|
classifier_dropout = config.hidden_dropout
|
|
else:
|
|
classifier_dropout = 0.1
|
|
self.dropout = nn.Dropout(classifier_dropout)
|
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
|
|
|
# Model parallel
|
|
self.model_parallel = False
|
|
self.device_map = None
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
|
# fmt: off
|
|
@add_code_sample_docstrings(
|
|
checkpoint="brad1141/gpt2-finetuned-comp2",
|
|
output_type=TokenClassifierOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
expected_loss=0.25,
|
|
expected_output=[
|
|
"Lead",
|
|
"Lead",
|
|
"Lead",
|
|
"Position",
|
|
"Lead",
|
|
"Lead",
|
|
"Lead",
|
|
"Lead",
|
|
"Lead",
|
|
"Lead",
|
|
"Lead",
|
|
"Lead",
|
|
],
|
|
)
|
|
# fmt: on
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, TokenClassifierOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
transformer_outputs = self.transformer(
|
|
input_ids,
|
|
past_key_values=past_key_values,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
hidden_states = transformer_outputs[0]
|
|
hidden_states = self.dropout(hidden_states)
|
|
logits = self.classifier(hidden_states)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
labels = labels.to(logits.device)
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
|
|
if not return_dict:
|
|
output = (logits,) + transformer_outputs[2:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return TokenClassifierOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
attentions=transformer_outputs.attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
The GPT-2 Model transformer with a span classification head on top for extractive question-answering tasks like
|
|
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
|
""",
|
|
GPT2_START_DOCSTRING,
|
|
)
|
|
class GPT2ForQuestionAnswering(GPT2PreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
self.transformer = GPT2Model(config)
|
|
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
|
|
|
# Model parallel
|
|
self.model_parallel = False
|
|
self.device_map = None
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@add_code_sample_docstrings(
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=QuestionAnsweringModelOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
real_checkpoint=_CHECKPOINT_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
start_positions: Optional[torch.LongTensor] = None,
|
|
end_positions: Optional[torch.LongTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
|
r"""
|
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
|
are not taken into account for computing the loss.
|
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
|
are not taken into account for computing the loss.
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
outputs = self.transformer(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
sequence_output = outputs[0]
|
|
|
|
logits = self.qa_outputs(sequence_output)
|
|
start_logits, end_logits = logits.split(1, dim=-1)
|
|
start_logits = start_logits.squeeze(-1).contiguous()
|
|
end_logits = end_logits.squeeze(-1).contiguous()
|
|
|
|
total_loss = None
|
|
if start_positions is not None and end_positions is not None:
|
|
# If we are on multi-GPU, split add a dimension
|
|
if len(start_positions.size()) > 1:
|
|
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
|
if len(end_positions.size()) > 1:
|
|
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
|
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
|
ignored_index = start_logits.size(1)
|
|
start_positions = start_positions.clamp(0, ignored_index)
|
|
end_positions = end_positions.clamp(0, ignored_index)
|
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
|
start_loss = loss_fct(start_logits, start_positions)
|
|
end_loss = loss_fct(end_logits, end_positions)
|
|
total_loss = (start_loss + end_loss) / 2
|
|
|
|
if not return_dict:
|
|
output = (start_logits, end_logits) + outputs[2:]
|
|
return ((total_loss,) + output) if total_loss is not None else output
|
|
|
|
return QuestionAnsweringModelOutput(
|
|
loss=total_loss,
|
|
start_logits=start_logits,
|
|
end_logits=end_logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|