ai-content-maker/.venv/Lib/site-packages/transformers/models/levit/configuration_levit.py

145 lines
5.7 KiB
Python

# coding=utf-8
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" LeViT model configuration"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
from ..deprecated._archive_maps import LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
class LevitConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`LevitModel`]. It is used to instantiate a LeViT
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the LeViT
[facebook/levit-128S](https://huggingface.co/facebook/levit-128S) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
image_size (`int`, *optional*, defaults to 224):
The size of the input image.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input image.
kernel_size (`int`, *optional*, defaults to 3):
The kernel size for the initial convolution layers of patch embedding.
stride (`int`, *optional*, defaults to 2):
The stride size for the initial convolution layers of patch embedding.
padding (`int`, *optional*, defaults to 1):
The padding size for the initial convolution layers of patch embedding.
patch_size (`int`, *optional*, defaults to 16):
The patch size for embeddings.
hidden_sizes (`List[int]`, *optional*, defaults to `[128, 256, 384]`):
Dimension of each of the encoder blocks.
num_attention_heads (`List[int]`, *optional*, defaults to `[4, 8, 12]`):
Number of attention heads for each attention layer in each block of the Transformer encoder.
depths (`List[int]`, *optional*, defaults to `[4, 4, 4]`):
The number of layers in each encoder block.
key_dim (`List[int]`, *optional*, defaults to `[16, 16, 16]`):
The size of key in each of the encoder blocks.
drop_path_rate (`int`, *optional*, defaults to 0):
The dropout probability for stochastic depths, used in the blocks of the Transformer encoder.
mlp_ratios (`List[int]`, *optional*, defaults to `[2, 2, 2]`):
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
encoder blocks.
attention_ratios (`List[int]`, *optional*, defaults to `[2, 2, 2]`):
Ratio of the size of the output dimension compared to input dimension of attention layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
Example:
```python
>>> from transformers import LevitConfig, LevitModel
>>> # Initializing a LeViT levit-128S style configuration
>>> configuration = LevitConfig()
>>> # Initializing a model (with random weights) from the levit-128S style configuration
>>> model = LevitModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "levit"
def __init__(
self,
image_size=224,
num_channels=3,
kernel_size=3,
stride=2,
padding=1,
patch_size=16,
hidden_sizes=[128, 256, 384],
num_attention_heads=[4, 8, 12],
depths=[4, 4, 4],
key_dim=[16, 16, 16],
drop_path_rate=0,
mlp_ratio=[2, 2, 2],
attention_ratio=[2, 2, 2],
initializer_range=0.02,
**kwargs,
):
super().__init__(**kwargs)
self.image_size = image_size
self.num_channels = num_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.hidden_sizes = hidden_sizes
self.num_attention_heads = num_attention_heads
self.depths = depths
self.key_dim = key_dim
self.drop_path_rate = drop_path_rate
self.patch_size = patch_size
self.attention_ratio = attention_ratio
self.mlp_ratio = mlp_ratio
self.initializer_range = initializer_range
self.down_ops = [
["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
# Copied from transformers.models.vit.configuration_vit.ViTOnnxConfig
class LevitOnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-4