137 lines
6.0 KiB
Python
137 lines
6.0 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 Microsoft Research, Inc. and The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" ResNet model configuration"""
|
|
|
|
from collections import OrderedDict
|
|
from typing import Mapping
|
|
|
|
from packaging import version
|
|
|
|
from ...configuration_utils import PretrainedConfig
|
|
from ...onnx import OnnxConfig
|
|
from ...utils import logging
|
|
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
from ..deprecated._archive_maps import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
|
|
|
|
|
class ResNetConfig(BackboneConfigMixin, PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`ResNetModel`]. It is used to instantiate an
|
|
ResNet model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
|
with the defaults will yield a similar configuration to that of the ResNet
|
|
[microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
Args:
|
|
num_channels (`int`, *optional*, defaults to 3):
|
|
The number of input channels.
|
|
embedding_size (`int`, *optional*, defaults to 64):
|
|
Dimensionality (hidden size) for the embedding layer.
|
|
hidden_sizes (`List[int]`, *optional*, defaults to `[256, 512, 1024, 2048]`):
|
|
Dimensionality (hidden size) at each stage.
|
|
depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 3]`):
|
|
Depth (number of layers) for each stage.
|
|
layer_type (`str`, *optional*, defaults to `"bottleneck"`):
|
|
The layer to use, it can be either `"basic"` (used for smaller models, like resnet-18 or resnet-34) or
|
|
`"bottleneck"` (used for larger models like resnet-50 and above).
|
|
hidden_act (`str`, *optional*, defaults to `"relu"`):
|
|
The non-linear activation function in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"`
|
|
are supported.
|
|
downsample_in_first_stage (`bool`, *optional*, defaults to `False`):
|
|
If `True`, the first stage will downsample the inputs using a `stride` of 2.
|
|
downsample_in_bottleneck (`bool`, *optional*, defaults to `False`):
|
|
If `True`, the first conv 1x1 in ResNetBottleNeckLayer will downsample the inputs using a `stride` of 2.
|
|
out_features (`List[str]`, *optional*):
|
|
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
|
|
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
|
|
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
|
|
same order as defined in the `stage_names` attribute.
|
|
out_indices (`List[int]`, *optional*):
|
|
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
|
|
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
|
|
If unset and `out_features` is unset, will default to the last stage. Must be in the
|
|
same order as defined in the `stage_names` attribute.
|
|
|
|
Example:
|
|
```python
|
|
>>> from transformers import ResNetConfig, ResNetModel
|
|
|
|
>>> # Initializing a ResNet resnet-50 style configuration
|
|
>>> configuration = ResNetConfig()
|
|
|
|
>>> # Initializing a model (with random weights) from the resnet-50 style configuration
|
|
>>> model = ResNetModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```
|
|
"""
|
|
|
|
model_type = "resnet"
|
|
layer_types = ["basic", "bottleneck"]
|
|
|
|
def __init__(
|
|
self,
|
|
num_channels=3,
|
|
embedding_size=64,
|
|
hidden_sizes=[256, 512, 1024, 2048],
|
|
depths=[3, 4, 6, 3],
|
|
layer_type="bottleneck",
|
|
hidden_act="relu",
|
|
downsample_in_first_stage=False,
|
|
downsample_in_bottleneck=False,
|
|
out_features=None,
|
|
out_indices=None,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
if layer_type not in self.layer_types:
|
|
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types)}")
|
|
self.num_channels = num_channels
|
|
self.embedding_size = embedding_size
|
|
self.hidden_sizes = hidden_sizes
|
|
self.depths = depths
|
|
self.layer_type = layer_type
|
|
self.hidden_act = hidden_act
|
|
self.downsample_in_first_stage = downsample_in_first_stage
|
|
self.downsample_in_bottleneck = downsample_in_bottleneck
|
|
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
|
|
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
|
|
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
|
|
)
|
|
|
|
|
|
class ResNetOnnxConfig(OnnxConfig):
|
|
torch_onnx_minimum_version = version.parse("1.11")
|
|
|
|
@property
|
|
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
|
return OrderedDict(
|
|
[
|
|
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
|
]
|
|
)
|
|
|
|
@property
|
|
def atol_for_validation(self) -> float:
|
|
return 1e-3
|