503 lines
23 KiB
Python
503 lines
23 KiB
Python
# Copyright 2022 The Impira Team and the HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import re
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
|
|
from ..utils import (
|
|
ExplicitEnum,
|
|
add_end_docstrings,
|
|
is_pytesseract_available,
|
|
is_torch_available,
|
|
is_vision_available,
|
|
logging,
|
|
)
|
|
from .base import ChunkPipeline, build_pipeline_init_args
|
|
from .question_answering import select_starts_ends
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from ..image_utils import load_image
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from ..models.auto.modeling_auto import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES
|
|
|
|
TESSERACT_LOADED = False
|
|
if is_pytesseract_available():
|
|
TESSERACT_LOADED = True
|
|
import pytesseract
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
# normalize_bbox() and apply_tesseract() are derived from apply_tesseract in models/layoutlmv3/feature_extraction_layoutlmv3.py.
|
|
# However, because the pipeline may evolve from what layoutlmv3 currently does, it's copied (vs. imported) to avoid creating an
|
|
# unnecessary dependency.
|
|
def normalize_box(box, width, height):
|
|
return [
|
|
int(1000 * (box[0] / width)),
|
|
int(1000 * (box[1] / height)),
|
|
int(1000 * (box[2] / width)),
|
|
int(1000 * (box[3] / height)),
|
|
]
|
|
|
|
|
|
def apply_tesseract(image: "Image.Image", lang: Optional[str], tesseract_config: Optional[str]):
|
|
"""Applies Tesseract OCR on a document image, and returns recognized words + normalized bounding boxes."""
|
|
# apply OCR
|
|
data = pytesseract.image_to_data(image, lang=lang, output_type="dict", config=tesseract_config)
|
|
words, left, top, width, height = data["text"], data["left"], data["top"], data["width"], data["height"]
|
|
|
|
# filter empty words and corresponding coordinates
|
|
irrelevant_indices = [idx for idx, word in enumerate(words) if not word.strip()]
|
|
words = [word for idx, word in enumerate(words) if idx not in irrelevant_indices]
|
|
left = [coord for idx, coord in enumerate(left) if idx not in irrelevant_indices]
|
|
top = [coord for idx, coord in enumerate(top) if idx not in irrelevant_indices]
|
|
width = [coord for idx, coord in enumerate(width) if idx not in irrelevant_indices]
|
|
height = [coord for idx, coord in enumerate(height) if idx not in irrelevant_indices]
|
|
|
|
# turn coordinates into (left, top, left+width, top+height) format
|
|
actual_boxes = []
|
|
for x, y, w, h in zip(left, top, width, height):
|
|
actual_box = [x, y, x + w, y + h]
|
|
actual_boxes.append(actual_box)
|
|
|
|
image_width, image_height = image.size
|
|
|
|
# finally, normalize the bounding boxes
|
|
normalized_boxes = []
|
|
for box in actual_boxes:
|
|
normalized_boxes.append(normalize_box(box, image_width, image_height))
|
|
|
|
if len(words) != len(normalized_boxes):
|
|
raise ValueError("Not as many words as there are bounding boxes")
|
|
|
|
return words, normalized_boxes
|
|
|
|
|
|
class ModelType(ExplicitEnum):
|
|
LayoutLM = "layoutlm"
|
|
LayoutLMv2andv3 = "layoutlmv2andv3"
|
|
VisionEncoderDecoder = "vision_encoder_decoder"
|
|
|
|
|
|
@add_end_docstrings(build_pipeline_init_args(has_image_processor=True, has_tokenizer=True))
|
|
class DocumentQuestionAnsweringPipeline(ChunkPipeline):
|
|
# TODO: Update task_summary docs to include an example with document QA and then update the first sentence
|
|
"""
|
|
Document Question Answering pipeline using any `AutoModelForDocumentQuestionAnswering`. The inputs/outputs are
|
|
similar to the (extractive) question answering pipeline; however, the pipeline takes an image (and optional OCR'd
|
|
words/boxes) as input instead of text context.
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import pipeline
|
|
|
|
>>> document_qa = pipeline(model="impira/layoutlm-document-qa")
|
|
>>> document_qa(
|
|
... image="https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png",
|
|
... question="What is the invoice number?",
|
|
... )
|
|
[{'score': 0.425, 'answer': 'us-001', 'start': 16, 'end': 16}]
|
|
```
|
|
|
|
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
|
|
|
|
This document question answering pipeline can currently be loaded from [`pipeline`] using the following task
|
|
identifier: `"document-question-answering"`.
|
|
|
|
The models that this pipeline can use are models that have been fine-tuned on a document question answering task.
|
|
See the up-to-date list of available models on
|
|
[huggingface.co/models](https://huggingface.co/models?filter=document-question-answering).
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
if self.tokenizer is not None and not self.tokenizer.__class__.__name__.endswith("Fast"):
|
|
raise ValueError(
|
|
"`DocumentQuestionAnsweringPipeline` requires a fast tokenizer, but a slow tokenizer "
|
|
f"(`{self.tokenizer.__class__.__name__}`) is provided."
|
|
)
|
|
|
|
if self.model.config.__class__.__name__ == "VisionEncoderDecoderConfig":
|
|
self.model_type = ModelType.VisionEncoderDecoder
|
|
if self.model.config.encoder.model_type != "donut-swin":
|
|
raise ValueError("Currently, the only supported VisionEncoderDecoder model is Donut")
|
|
else:
|
|
self.check_model_type(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES)
|
|
if self.model.config.__class__.__name__ == "LayoutLMConfig":
|
|
self.model_type = ModelType.LayoutLM
|
|
else:
|
|
self.model_type = ModelType.LayoutLMv2andv3
|
|
|
|
def _sanitize_parameters(
|
|
self,
|
|
padding=None,
|
|
doc_stride=None,
|
|
max_question_len=None,
|
|
lang: Optional[str] = None,
|
|
tesseract_config: Optional[str] = None,
|
|
max_answer_len=None,
|
|
max_seq_len=None,
|
|
top_k=None,
|
|
handle_impossible_answer=None,
|
|
timeout=None,
|
|
**kwargs,
|
|
):
|
|
preprocess_params, postprocess_params = {}, {}
|
|
if padding is not None:
|
|
preprocess_params["padding"] = padding
|
|
if doc_stride is not None:
|
|
preprocess_params["doc_stride"] = doc_stride
|
|
if max_question_len is not None:
|
|
preprocess_params["max_question_len"] = max_question_len
|
|
if max_seq_len is not None:
|
|
preprocess_params["max_seq_len"] = max_seq_len
|
|
if lang is not None:
|
|
preprocess_params["lang"] = lang
|
|
if tesseract_config is not None:
|
|
preprocess_params["tesseract_config"] = tesseract_config
|
|
if timeout is not None:
|
|
preprocess_params["timeout"] = timeout
|
|
|
|
if top_k is not None:
|
|
if top_k < 1:
|
|
raise ValueError(f"top_k parameter should be >= 1 (got {top_k})")
|
|
postprocess_params["top_k"] = top_k
|
|
if max_answer_len is not None:
|
|
if max_answer_len < 1:
|
|
raise ValueError(f"max_answer_len parameter should be >= 1 (got {max_answer_len}")
|
|
postprocess_params["max_answer_len"] = max_answer_len
|
|
if handle_impossible_answer is not None:
|
|
postprocess_params["handle_impossible_answer"] = handle_impossible_answer
|
|
|
|
return preprocess_params, {}, postprocess_params
|
|
|
|
def __call__(
|
|
self,
|
|
image: Union["Image.Image", str],
|
|
question: Optional[str] = None,
|
|
word_boxes: Tuple[str, List[float]] = None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Answer the question(s) given as inputs by using the document(s). A document is defined as an image and an
|
|
optional list of (word, box) tuples which represent the text in the document. If the `word_boxes` are not
|
|
provided, it will use the Tesseract OCR engine (if available) to extract the words and boxes automatically for
|
|
LayoutLM-like models which require them as input. For Donut, no OCR is run.
|
|
|
|
You can invoke the pipeline several ways:
|
|
|
|
- `pipeline(image=image, question=question)`
|
|
- `pipeline(image=image, question=question, word_boxes=word_boxes)`
|
|
- `pipeline([{"image": image, "question": question}])`
|
|
- `pipeline([{"image": image, "question": question, "word_boxes": word_boxes}])`
|
|
|
|
Args:
|
|
image (`str` or `PIL.Image`):
|
|
The pipeline handles three types of images:
|
|
|
|
- A string containing a http link pointing to an image
|
|
- A string containing a local path to an image
|
|
- An image loaded in PIL directly
|
|
|
|
The pipeline accepts either a single image or a batch of images. If given a single image, it can be
|
|
broadcasted to multiple questions.
|
|
question (`str`):
|
|
A question to ask of the document.
|
|
word_boxes (`List[str, Tuple[float, float, float, float]]`, *optional*):
|
|
A list of words and bounding boxes (normalized 0->1000). If you provide this optional input, then the
|
|
pipeline will use these words and boxes instead of running OCR on the image to derive them for models
|
|
that need them (e.g. LayoutLM). This allows you to reuse OCR'd results across many invocations of the
|
|
pipeline without having to re-run it each time.
|
|
top_k (`int`, *optional*, defaults to 1):
|
|
The number of answers to return (will be chosen by order of likelihood). Note that we return less than
|
|
top_k answers if there are not enough options available within the context.
|
|
doc_stride (`int`, *optional*, defaults to 128):
|
|
If the words in the document are too long to fit with the question for the model, it will be split in
|
|
several chunks with some overlap. This argument controls the size of that overlap.
|
|
max_answer_len (`int`, *optional*, defaults to 15):
|
|
The maximum length of predicted answers (e.g., only answers with a shorter length are considered).
|
|
max_seq_len (`int`, *optional*, defaults to 384):
|
|
The maximum length of the total sentence (context + question) in tokens of each chunk passed to the
|
|
model. The context will be split in several chunks (using `doc_stride` as overlap) if needed.
|
|
max_question_len (`int`, *optional*, defaults to 64):
|
|
The maximum length of the question after tokenization. It will be truncated if needed.
|
|
handle_impossible_answer (`bool`, *optional*, defaults to `False`):
|
|
Whether or not we accept impossible as an answer.
|
|
lang (`str`, *optional*):
|
|
Language to use while running OCR. Defaults to english.
|
|
tesseract_config (`str`, *optional*):
|
|
Additional flags to pass to tesseract while running OCR.
|
|
timeout (`float`, *optional*, defaults to None):
|
|
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and
|
|
the call may block forever.
|
|
|
|
Return:
|
|
A `dict` or a list of `dict`: Each result comes as a dictionary with the following keys:
|
|
|
|
- **score** (`float`) -- The probability associated to the answer.
|
|
- **start** (`int`) -- The start word index of the answer (in the OCR'd version of the input or provided
|
|
`word_boxes`).
|
|
- **end** (`int`) -- The end word index of the answer (in the OCR'd version of the input or provided
|
|
`word_boxes`).
|
|
- **answer** (`str`) -- The answer to the question.
|
|
- **words** (`list[int]`) -- The index of each word/box pair that is in the answer
|
|
"""
|
|
if isinstance(question, str):
|
|
inputs = {"question": question, "image": image}
|
|
if word_boxes is not None:
|
|
inputs["word_boxes"] = word_boxes
|
|
else:
|
|
inputs = image
|
|
return super().__call__(inputs, **kwargs)
|
|
|
|
def preprocess(
|
|
self,
|
|
input,
|
|
padding="do_not_pad",
|
|
doc_stride=None,
|
|
max_seq_len=None,
|
|
word_boxes: Tuple[str, List[float]] = None,
|
|
lang=None,
|
|
tesseract_config="",
|
|
timeout=None,
|
|
):
|
|
# NOTE: This code mirrors the code in question answering and will be implemented in a follow up PR
|
|
# to support documents with enough tokens that overflow the model's window
|
|
if max_seq_len is None:
|
|
max_seq_len = self.tokenizer.model_max_length
|
|
|
|
if doc_stride is None:
|
|
doc_stride = min(max_seq_len // 2, 256)
|
|
|
|
image = None
|
|
image_features = {}
|
|
if input.get("image", None) is not None:
|
|
image = load_image(input["image"], timeout=timeout)
|
|
if self.image_processor is not None:
|
|
image_features.update(self.image_processor(images=image, return_tensors=self.framework))
|
|
elif self.feature_extractor is not None:
|
|
image_features.update(self.feature_extractor(images=image, return_tensors=self.framework))
|
|
elif self.model_type == ModelType.VisionEncoderDecoder:
|
|
raise ValueError("If you are using a VisionEncoderDecoderModel, you must provide a feature extractor")
|
|
|
|
words, boxes = None, None
|
|
if not self.model_type == ModelType.VisionEncoderDecoder:
|
|
if "word_boxes" in input:
|
|
words = [x[0] for x in input["word_boxes"]]
|
|
boxes = [x[1] for x in input["word_boxes"]]
|
|
elif "words" in image_features and "boxes" in image_features:
|
|
words = image_features.pop("words")[0]
|
|
boxes = image_features.pop("boxes")[0]
|
|
elif image is not None:
|
|
if not TESSERACT_LOADED:
|
|
raise ValueError(
|
|
"If you provide an image without word_boxes, then the pipeline will run OCR using Tesseract,"
|
|
" but pytesseract is not available"
|
|
)
|
|
if TESSERACT_LOADED:
|
|
words, boxes = apply_tesseract(image, lang=lang, tesseract_config=tesseract_config)
|
|
else:
|
|
raise ValueError(
|
|
"You must provide an image or word_boxes. If you provide an image, the pipeline will automatically"
|
|
" run OCR to derive words and boxes"
|
|
)
|
|
|
|
if self.tokenizer.padding_side != "right":
|
|
raise ValueError(
|
|
"Document question answering only supports tokenizers whose padding side is 'right', not"
|
|
f" {self.tokenizer.padding_side}"
|
|
)
|
|
|
|
if self.model_type == ModelType.VisionEncoderDecoder:
|
|
task_prompt = f'<s_docvqa><s_question>{input["question"]}</s_question><s_answer>'
|
|
# Adapted from https://huggingface.co/spaces/nielsr/donut-docvqa/blob/main/app.py
|
|
encoding = {
|
|
"inputs": image_features["pixel_values"],
|
|
"decoder_input_ids": self.tokenizer(
|
|
task_prompt, add_special_tokens=False, return_tensors=self.framework
|
|
).input_ids,
|
|
"return_dict_in_generate": True,
|
|
}
|
|
yield {
|
|
**encoding,
|
|
"p_mask": None,
|
|
"word_ids": None,
|
|
"words": None,
|
|
"output_attentions": True,
|
|
"is_last": True,
|
|
}
|
|
else:
|
|
tokenizer_kwargs = {}
|
|
if self.model_type == ModelType.LayoutLM:
|
|
tokenizer_kwargs["text"] = input["question"].split()
|
|
tokenizer_kwargs["text_pair"] = words
|
|
tokenizer_kwargs["is_split_into_words"] = True
|
|
else:
|
|
tokenizer_kwargs["text"] = [input["question"]]
|
|
tokenizer_kwargs["text_pair"] = [words]
|
|
tokenizer_kwargs["boxes"] = [boxes]
|
|
|
|
encoding = self.tokenizer(
|
|
padding=padding,
|
|
max_length=max_seq_len,
|
|
stride=doc_stride,
|
|
return_token_type_ids=True,
|
|
truncation="only_second",
|
|
return_overflowing_tokens=True,
|
|
**tokenizer_kwargs,
|
|
)
|
|
# TODO: check why slower `LayoutLMTokenizer` and `LayoutLMv2Tokenizer` don't have this key in outputs
|
|
# FIXME: ydshieh and/or Narsil
|
|
encoding.pop("overflow_to_sample_mapping", None) # We do not use this
|
|
|
|
num_spans = len(encoding["input_ids"])
|
|
|
|
# p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer)
|
|
# We put 0 on the tokens from the context and 1 everywhere else (question and special tokens)
|
|
# This logic mirrors the logic in the question_answering pipeline
|
|
p_mask = [[tok != 1 for tok in encoding.sequence_ids(span_id)] for span_id in range(num_spans)]
|
|
for span_idx in range(num_spans):
|
|
if self.framework == "pt":
|
|
span_encoding = {k: torch.tensor(v[span_idx : span_idx + 1]) for (k, v) in encoding.items()}
|
|
if "pixel_values" in image_features:
|
|
span_encoding["image"] = image_features["pixel_values"]
|
|
else:
|
|
raise ValueError("Unsupported: Tensorflow preprocessing for DocumentQuestionAnsweringPipeline")
|
|
|
|
input_ids_span_idx = encoding["input_ids"][span_idx]
|
|
# keep the cls_token unmasked (some models use it to indicate unanswerable questions)
|
|
if self.tokenizer.cls_token_id is not None:
|
|
cls_indices = np.nonzero(np.array(input_ids_span_idx) == self.tokenizer.cls_token_id)[0]
|
|
for cls_index in cls_indices:
|
|
p_mask[span_idx][cls_index] = 0
|
|
|
|
# For each span, place a bounding box [0,0,0,0] for question and CLS tokens, [1000,1000,1000,1000]
|
|
# for SEP tokens, and the word's bounding box for words in the original document.
|
|
if "boxes" not in tokenizer_kwargs:
|
|
bbox = []
|
|
for input_id, sequence_id, word_id in zip(
|
|
encoding.input_ids[span_idx],
|
|
encoding.sequence_ids(span_idx),
|
|
encoding.word_ids(span_idx),
|
|
):
|
|
if sequence_id == 1:
|
|
bbox.append(boxes[word_id])
|
|
elif input_id == self.tokenizer.sep_token_id:
|
|
bbox.append([1000] * 4)
|
|
else:
|
|
bbox.append([0] * 4)
|
|
|
|
if self.framework == "pt":
|
|
span_encoding["bbox"] = torch.tensor(bbox).unsqueeze(0)
|
|
elif self.framework == "tf":
|
|
raise ValueError("Unsupported: Tensorflow preprocessing for DocumentQuestionAnsweringPipeline")
|
|
yield {
|
|
**span_encoding,
|
|
"p_mask": p_mask[span_idx],
|
|
"word_ids": encoding.word_ids(span_idx),
|
|
"words": words,
|
|
"is_last": span_idx == num_spans - 1,
|
|
}
|
|
|
|
def _forward(self, model_inputs, **generate_kwargs):
|
|
p_mask = model_inputs.pop("p_mask", None)
|
|
word_ids = model_inputs.pop("word_ids", None)
|
|
words = model_inputs.pop("words", None)
|
|
is_last = model_inputs.pop("is_last", False)
|
|
|
|
if self.model_type == ModelType.VisionEncoderDecoder:
|
|
model_outputs = self.model.generate(**model_inputs, **generate_kwargs)
|
|
else:
|
|
model_outputs = self.model(**model_inputs)
|
|
|
|
model_outputs = dict(model_outputs.items())
|
|
model_outputs["p_mask"] = p_mask
|
|
model_outputs["word_ids"] = word_ids
|
|
model_outputs["words"] = words
|
|
model_outputs["attention_mask"] = model_inputs.get("attention_mask", None)
|
|
model_outputs["is_last"] = is_last
|
|
return model_outputs
|
|
|
|
def postprocess(self, model_outputs, top_k=1, **kwargs):
|
|
if self.model_type == ModelType.VisionEncoderDecoder:
|
|
answers = [self.postprocess_encoder_decoder_single(o) for o in model_outputs]
|
|
else:
|
|
answers = self.postprocess_extractive_qa(model_outputs, top_k=top_k, **kwargs)
|
|
|
|
answers = sorted(answers, key=lambda x: x.get("score", 0), reverse=True)[:top_k]
|
|
return answers
|
|
|
|
def postprocess_encoder_decoder_single(self, model_outputs, **kwargs):
|
|
sequence = self.tokenizer.batch_decode(model_outputs["sequences"])[0]
|
|
|
|
# TODO: A lot of this logic is specific to Donut and should probably be handled in the tokenizer
|
|
# (see https://github.com/huggingface/transformers/pull/18414/files#r961747408 for more context).
|
|
sequence = sequence.replace(self.tokenizer.eos_token, "").replace(self.tokenizer.pad_token, "")
|
|
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
|
ret = {
|
|
"answer": None,
|
|
}
|
|
|
|
answer = re.search(r"<s_answer>(.*)</s_answer>", sequence)
|
|
if answer is not None:
|
|
ret["answer"] = answer.group(1).strip()
|
|
return ret
|
|
|
|
def postprocess_extractive_qa(
|
|
self, model_outputs, top_k=1, handle_impossible_answer=False, max_answer_len=15, **kwargs
|
|
):
|
|
min_null_score = 1000000 # large and positive
|
|
answers = []
|
|
for output in model_outputs:
|
|
words = output["words"]
|
|
|
|
starts, ends, scores, min_null_score = select_starts_ends(
|
|
start=output["start_logits"],
|
|
end=output["end_logits"],
|
|
p_mask=output["p_mask"],
|
|
attention_mask=output["attention_mask"].numpy()
|
|
if output.get("attention_mask", None) is not None
|
|
else None,
|
|
min_null_score=min_null_score,
|
|
top_k=top_k,
|
|
handle_impossible_answer=handle_impossible_answer,
|
|
max_answer_len=max_answer_len,
|
|
)
|
|
word_ids = output["word_ids"]
|
|
for start, end, score in zip(starts, ends, scores):
|
|
word_start, word_end = word_ids[start], word_ids[end]
|
|
if word_start is not None and word_end is not None:
|
|
answers.append(
|
|
{
|
|
"score": float(score),
|
|
"answer": " ".join(words[word_start : word_end + 1]),
|
|
"start": word_start,
|
|
"end": word_end,
|
|
}
|
|
)
|
|
|
|
if handle_impossible_answer:
|
|
answers.append({"score": min_null_score, "answer": "", "start": 0, "end": 0})
|
|
|
|
return answers
|