ai-content-maker/.venv/Lib/site-packages/transformers/pipelines/feature_extraction.py

87 lines
3.3 KiB
Python

from typing import Dict
from ..utils import add_end_docstrings
from .base import GenericTensor, Pipeline, build_pipeline_init_args
@add_end_docstrings(
build_pipeline_init_args(has_tokenizer=True, supports_binary_output=False),
r"""
tokenize_kwargs (`dict`, *optional*):
Additional dictionary of keyword arguments passed along to the tokenizer.
return_tensors (`bool`, *optional*):
If `True`, returns a tensor according to the specified framework, otherwise returns a list.""",
)
class FeatureExtractionPipeline(Pipeline):
"""
Feature extraction pipeline uses no model head. This pipeline extracts the hidden states from the base
transformer, which can be used as features in downstream tasks.
Example:
```python
>>> from transformers import pipeline
>>> extractor = pipeline(model="google-bert/bert-base-uncased", task="feature-extraction")
>>> result = extractor("This is a simple test.", return_tensors=True)
>>> result.shape # This is a tensor of shape [1, sequence_length, hidden_dimension] representing the input string.
torch.Size([1, 8, 768])
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
This feature extraction pipeline can currently be loaded from [`pipeline`] using the task identifier:
`"feature-extraction"`.
All models may be used for this pipeline. See a list of all models, including community-contributed models on
[huggingface.co/models](https://huggingface.co/models).
"""
def _sanitize_parameters(self, truncation=None, tokenize_kwargs=None, return_tensors=None, **kwargs):
if tokenize_kwargs is None:
tokenize_kwargs = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
"truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)"
)
tokenize_kwargs["truncation"] = truncation
preprocess_params = tokenize_kwargs
postprocess_params = {}
if return_tensors is not None:
postprocess_params["return_tensors"] = return_tensors
return preprocess_params, {}, postprocess_params
def preprocess(self, inputs, **tokenize_kwargs) -> Dict[str, GenericTensor]:
model_inputs = self.tokenizer(inputs, return_tensors=self.framework, **tokenize_kwargs)
return model_inputs
def _forward(self, model_inputs):
model_outputs = self.model(**model_inputs)
return model_outputs
def postprocess(self, model_outputs, return_tensors=False):
# [0] is the first available tensor, logits or last_hidden_state.
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__(self, *args, **kwargs):
"""
Extract the features of the input(s).
Args:
args (`str` or `List[str]`): One or several texts (or one list of texts) to get the features of.
Return:
A nested list of `float`: The features computed by the model.
"""
return super().__call__(*args, **kwargs)