ai-content-maker/.venv/Lib/site-packages/transformers/pipelines/image_to_image.py

135 lines
4.8 KiB
Python

# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union
import numpy as np
from ..utils import (
add_end_docstrings,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import Pipeline, build_pipeline_init_args
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES
logger = logging.get_logger(__name__)
@add_end_docstrings(build_pipeline_init_args(has_image_processor=True))
class ImageToImagePipeline(Pipeline):
"""
Image to Image pipeline using any `AutoModelForImageToImage`. This pipeline generates an image based on a previous
image input.
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import pipeline
>>> upscaler = pipeline("image-to-image", model="caidas/swin2SR-classical-sr-x2-64")
>>> img = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
>>> img = img.resize((64, 64))
>>> upscaled_img = upscaler(img)
>>> img.size
(64, 64)
>>> upscaled_img.size
(144, 144)
```
This image to image pipeline can currently be loaded from [`pipeline`] using the following task identifier:
`"image-to-image"`.
See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=image-to-image).
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
requires_backends(self, "vision")
self.check_model_type(MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES)
def _sanitize_parameters(self, **kwargs):
preprocess_params = {}
postprocess_params = {}
forward_params = {}
if "timeout" in kwargs:
preprocess_params["timeout"] = kwargs["timeout"]
if "head_mask" in kwargs:
forward_params["head_mask"] = kwargs["head_mask"]
return preprocess_params, forward_params, postprocess_params
def __call__(
self, images: Union[str, List[str], "Image.Image", List["Image.Image"]], **kwargs
) -> Union["Image.Image", List["Image.Image"]]:
"""
Transform the image(s) passed as inputs.
Args:
images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`):
The pipeline handles three types of images:
- A string containing a http link pointing to an image
- A string containing a local path to an image
- An image loaded in PIL directly
The pipeline accepts either a single image or a batch of images, which must then be passed as a string.
Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL
images.
timeout (`float`, *optional*, defaults to None):
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is used and
the call may block forever.
Return:
An image (Image.Image) or a list of images (List["Image.Image"]) containing result(s). If the input is a
single image, the return will be also a single image, if the input is a list of several images, it will
return a list of transformed images.
"""
return super().__call__(images, **kwargs)
def _forward(self, model_inputs):
model_outputs = self.model(**model_inputs)
return model_outputs
def preprocess(self, image, timeout=None):
image = load_image(image, timeout=timeout)
inputs = self.image_processor(images=[image], return_tensors="pt")
return inputs
def postprocess(self, model_outputs):
images = []
if "reconstruction" in model_outputs.keys():
outputs = model_outputs.reconstruction
for output in outputs:
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
output = np.moveaxis(output, source=0, destination=-1)
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
images.append(Image.fromarray(output))
return images if len(images) > 1 else images[0]