286 lines
13 KiB
Python
286 lines
13 KiB
Python
from collections import defaultdict
|
|
from typing import Optional
|
|
|
|
from ..image_utils import load_image
|
|
from ..utils import (
|
|
add_end_docstrings,
|
|
is_torch_available,
|
|
logging,
|
|
requires_backends,
|
|
)
|
|
from .base import ChunkPipeline, build_pipeline_init_args
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING_NAMES
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
@add_end_docstrings(
|
|
build_pipeline_init_args(has_image_processor=True),
|
|
r"""
|
|
points_per_batch (*optional*, int, default to 64):
|
|
Sets the number of points run simultaneously by the model. Higher numbers may be faster but use more GPU
|
|
memory.
|
|
output_bboxes_mask (`bool`, *optional*, default to `False`):
|
|
Whether or not to output the bounding box predictions.
|
|
output_rle_masks (`bool`, *optional*, default to `False`):
|
|
Whether or not to output the masks in `RLE` format""",
|
|
)
|
|
class MaskGenerationPipeline(ChunkPipeline):
|
|
"""
|
|
Automatic mask generation for images using `SamForMaskGeneration`. This pipeline predicts binary masks for an
|
|
image, given an image. It is a `ChunkPipeline` because you can seperate the points in a mini-batch in order to
|
|
avoid OOM issues. Use the `points_per_batch` argument to control the number of points that will be processed at the
|
|
same time. Default is `64`.
|
|
|
|
The pipeline works in 3 steps:
|
|
1. `preprocess`: A grid of 1024 points evenly separated is generated along with bounding boxes and point
|
|
labels.
|
|
For more details on how the points and bounding boxes are created, check the `_generate_crop_boxes`
|
|
function. The image is also preprocessed using the `image_processor`. This function `yields` a minibatch of
|
|
`points_per_batch`.
|
|
|
|
2. `forward`: feeds the outputs of `preprocess` to the model. The image embedding is computed only once.
|
|
Calls both `self.model.get_image_embeddings` and makes sure that the gradients are not computed, and the
|
|
tensors and models are on the same device.
|
|
|
|
3. `postprocess`: The most important part of the automatic mask generation happens here. Three steps
|
|
are induced:
|
|
- image_processor.postprocess_masks (run on each minibatch loop): takes in the raw output masks,
|
|
resizes them according
|
|
to the image size, and transforms there to binary masks.
|
|
- image_processor.filter_masks (on each minibatch loop): uses both `pred_iou_thresh` and
|
|
`stability_scores`. Also
|
|
applies a variety of filters based on non maximum suppression to remove bad masks.
|
|
- image_processor.postprocess_masks_for_amg applies the NSM on the mask to only keep relevant ones.
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import pipeline
|
|
|
|
>>> generator = pipeline(model="facebook/sam-vit-base", task="mask-generation")
|
|
>>> outputs = generator(
|
|
... "http://images.cocodataset.org/val2017/000000039769.jpg",
|
|
... )
|
|
|
|
>>> outputs = generator(
|
|
... "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", points_per_batch=128
|
|
... )
|
|
```
|
|
|
|
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
|
|
|
|
This segmentation pipeline can currently be loaded from [`pipeline`] using the following task identifier:
|
|
`"mask-generation"`.
|
|
|
|
See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=mask-generation).
|
|
"""
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
requires_backends(self, "vision")
|
|
requires_backends(self, "torch")
|
|
|
|
if self.framework != "pt":
|
|
raise ValueError(f"The {self.__class__} is only available in PyTorch.")
|
|
|
|
self.check_model_type(MODEL_FOR_MASK_GENERATION_MAPPING_NAMES)
|
|
|
|
def _sanitize_parameters(self, **kwargs):
|
|
preprocess_kwargs = {}
|
|
postprocess_kwargs = {}
|
|
forward_params = {}
|
|
# preprocess args
|
|
if "points_per_batch" in kwargs:
|
|
preprocess_kwargs["points_per_batch"] = kwargs["points_per_batch"]
|
|
if "points_per_crop" in kwargs:
|
|
preprocess_kwargs["points_per_crop"] = kwargs["points_per_crop"]
|
|
if "crops_n_layers" in kwargs:
|
|
preprocess_kwargs["crops_n_layers"] = kwargs["crops_n_layers"]
|
|
if "crop_overlap_ratio" in kwargs:
|
|
preprocess_kwargs["crop_overlap_ratio"] = kwargs["crop_overlap_ratio"]
|
|
if "crop_n_points_downscale_factor" in kwargs:
|
|
preprocess_kwargs["crop_n_points_downscale_factor"] = kwargs["crop_n_points_downscale_factor"]
|
|
if "timeout" in kwargs:
|
|
preprocess_kwargs["timeout"] = kwargs["timeout"]
|
|
# postprocess args
|
|
if "pred_iou_thresh" in kwargs:
|
|
forward_params["pred_iou_thresh"] = kwargs["pred_iou_thresh"]
|
|
if "stability_score_offset" in kwargs:
|
|
forward_params["stability_score_offset"] = kwargs["stability_score_offset"]
|
|
if "mask_threshold" in kwargs:
|
|
forward_params["mask_threshold"] = kwargs["mask_threshold"]
|
|
if "stability_score_thresh" in kwargs:
|
|
forward_params["stability_score_thresh"] = kwargs["stability_score_thresh"]
|
|
if "crops_nms_thresh" in kwargs:
|
|
postprocess_kwargs["crops_nms_thresh"] = kwargs["crops_nms_thresh"]
|
|
if "output_rle_mask" in kwargs:
|
|
postprocess_kwargs["output_rle_mask"] = kwargs["output_rle_mask"]
|
|
if "output_bboxes_mask" in kwargs:
|
|
postprocess_kwargs["output_bboxes_mask"] = kwargs["output_bboxes_mask"]
|
|
return preprocess_kwargs, forward_params, postprocess_kwargs
|
|
|
|
def __call__(self, image, *args, num_workers=None, batch_size=None, **kwargs):
|
|
"""
|
|
Generates binary segmentation masks
|
|
|
|
Args:
|
|
inputs (`np.ndarray` or `bytes` or `str` or `dict`):
|
|
Image or list of images.
|
|
mask_threshold (`float`, *optional*, defaults to 0.0):
|
|
Threshold to use when turning the predicted masks into binary values.
|
|
pred_iou_thresh (`float`, *optional*, defaults to 0.88):
|
|
A filtering threshold in `[0,1]` applied on the model's predicted mask quality.
|
|
stability_score_thresh (`float`, *optional*, defaults to 0.95):
|
|
A filtering threshold in `[0,1]`, using the stability of the mask under changes to the cutoff used to
|
|
binarize the model's mask predictions.
|
|
stability_score_offset (`int`, *optional*, defaults to 1):
|
|
The amount to shift the cutoff when calculated the stability score.
|
|
crops_nms_thresh (`float`, *optional*, defaults to 0.7):
|
|
The box IoU cutoff used by non-maximal suppression to filter duplicate masks.
|
|
crops_n_layers (`int`, *optional*, defaults to 0):
|
|
If `crops_n_layers>0`, mask prediction will be run again on crops of the image. Sets the number of
|
|
layers to run, where each layer has 2**i_layer number of image crops.
|
|
crop_overlap_ratio (`float`, *optional*, defaults to `512 / 1500`):
|
|
Sets the degree to which crops overlap. In the first crop layer, crops will overlap by this fraction of
|
|
the image length. Later layers with more crops scale down this overlap.
|
|
crop_n_points_downscale_factor (`int`, *optional*, defaults to `1`):
|
|
The number of points-per-side sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
|
|
timeout (`float`, *optional*, defaults to None):
|
|
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and
|
|
the call may block forever.
|
|
|
|
Return:
|
|
`Dict`: A dictionary with the following keys:
|
|
- **mask** (`PIL.Image`) -- A binary mask of the detected object as a PIL Image of shape `(width,
|
|
height)` of the original image. Returns a mask filled with zeros if no object is found.
|
|
- **score** (*optional* `float`) -- Optionally, when the model is capable of estimating a confidence of
|
|
the "object" described by the label and the mask.
|
|
|
|
"""
|
|
return super().__call__(image, *args, num_workers=num_workers, batch_size=batch_size, **kwargs)
|
|
|
|
def preprocess(
|
|
self,
|
|
image,
|
|
points_per_batch=64,
|
|
crops_n_layers: int = 0,
|
|
crop_overlap_ratio: float = 512 / 1500,
|
|
points_per_crop: Optional[int] = 32,
|
|
crop_n_points_downscale_factor: Optional[int] = 1,
|
|
timeout: Optional[float] = None,
|
|
):
|
|
image = load_image(image, timeout=timeout)
|
|
target_size = self.image_processor.size["longest_edge"]
|
|
crop_boxes, grid_points, cropped_images, input_labels = self.image_processor.generate_crop_boxes(
|
|
image, target_size, crops_n_layers, crop_overlap_ratio, points_per_crop, crop_n_points_downscale_factor
|
|
)
|
|
model_inputs = self.image_processor(images=cropped_images, return_tensors="pt")
|
|
|
|
with self.device_placement():
|
|
if self.framework == "pt":
|
|
inference_context = self.get_inference_context()
|
|
with inference_context():
|
|
model_inputs = self._ensure_tensor_on_device(model_inputs, device=self.device)
|
|
image_embeddings = self.model.get_image_embeddings(model_inputs.pop("pixel_values"))
|
|
model_inputs["image_embeddings"] = image_embeddings
|
|
|
|
n_points = grid_points.shape[1]
|
|
points_per_batch = points_per_batch if points_per_batch is not None else n_points
|
|
|
|
if points_per_batch <= 0:
|
|
raise ValueError(
|
|
"Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. "
|
|
"To return all points at once, set points_per_batch to None"
|
|
)
|
|
|
|
for i in range(0, n_points, points_per_batch):
|
|
batched_points = grid_points[:, i : i + points_per_batch, :, :]
|
|
labels = input_labels[:, i : i + points_per_batch]
|
|
is_last = i == n_points - points_per_batch
|
|
yield {
|
|
"input_points": batched_points,
|
|
"input_labels": labels,
|
|
"input_boxes": crop_boxes,
|
|
"is_last": is_last,
|
|
**model_inputs,
|
|
}
|
|
|
|
def _forward(
|
|
self,
|
|
model_inputs,
|
|
pred_iou_thresh=0.88,
|
|
stability_score_thresh=0.95,
|
|
mask_threshold=0,
|
|
stability_score_offset=1,
|
|
):
|
|
input_boxes = model_inputs.pop("input_boxes")
|
|
is_last = model_inputs.pop("is_last")
|
|
original_sizes = model_inputs.pop("original_sizes").tolist()
|
|
reshaped_input_sizes = model_inputs.pop("reshaped_input_sizes").tolist()
|
|
|
|
model_outputs = self.model(**model_inputs)
|
|
|
|
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
|
|
low_resolution_masks = model_outputs["pred_masks"]
|
|
masks = self.image_processor.post_process_masks(
|
|
low_resolution_masks, original_sizes, reshaped_input_sizes, mask_threshold, binarize=False
|
|
)
|
|
iou_scores = model_outputs["iou_scores"]
|
|
masks, iou_scores, boxes = self.image_processor.filter_masks(
|
|
masks[0],
|
|
iou_scores[0],
|
|
original_sizes[0],
|
|
input_boxes[0],
|
|
pred_iou_thresh,
|
|
stability_score_thresh,
|
|
mask_threshold,
|
|
stability_score_offset,
|
|
)
|
|
return {
|
|
"masks": masks,
|
|
"is_last": is_last,
|
|
"boxes": boxes,
|
|
"iou_scores": iou_scores,
|
|
}
|
|
|
|
def postprocess(
|
|
self,
|
|
model_outputs,
|
|
output_rle_mask=False,
|
|
output_bboxes_mask=False,
|
|
crops_nms_thresh=0.7,
|
|
):
|
|
all_scores = []
|
|
all_masks = []
|
|
all_boxes = []
|
|
for model_output in model_outputs:
|
|
all_scores.append(model_output.pop("iou_scores"))
|
|
all_masks.extend(model_output.pop("masks"))
|
|
all_boxes.append(model_output.pop("boxes"))
|
|
|
|
all_scores = torch.cat(all_scores)
|
|
all_boxes = torch.cat(all_boxes)
|
|
output_masks, iou_scores, rle_mask, bounding_boxes = self.image_processor.post_process_for_mask_generation(
|
|
all_masks, all_scores, all_boxes, crops_nms_thresh
|
|
)
|
|
|
|
extra = defaultdict(list)
|
|
for output in model_outputs:
|
|
for k, v in output.items():
|
|
extra[k].append(v)
|
|
|
|
optional = {}
|
|
if output_rle_mask:
|
|
optional["rle_mask"] = rle_mask
|
|
|
|
if output_bboxes_mask:
|
|
optional["bounding_boxes"] = bounding_boxes
|
|
|
|
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
|