ai-content-maker/.venv/Lib/site-packages/transformers/quantizers/quantizer_gptq.py

95 lines
3.8 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
from typing import TYPE_CHECKING, Optional
from packaging import version
from .base import HfQuantizer
if TYPE_CHECKING:
from ..modeling_utils import PreTrainedModel
from ..utils import is_auto_gptq_available, is_optimum_available, is_torch_available, logging
from ..utils.quantization_config import GPTQConfig, QuantizationConfigMixin
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class GptqHfQuantizer(HfQuantizer):
"""
Quantizer of the GPTQ method - for GPTQ the quantizer support calibration of the model through
`auto_gptq` package. Quantization is done under the hood for users if they load a non-prequantized model.
"""
requires_calibration = False
required_packages = ["optimum", "auto_gptq"]
optimum_quantizer = None
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs):
super().__init__(quantization_config, **kwargs)
from optimum.gptq import GPTQQuantizer
self.optimum_quantizer = GPTQQuantizer.from_dict(self.quantization_config.to_dict_optimum())
def validate_environment(self, *args, **kwargs):
gptq_supports_cpu = version.parse(importlib.metadata.version("auto-gptq")) > version.parse("0.4.2")
if not gptq_supports_cpu and not torch.cuda.is_available():
raise RuntimeError("GPU is required to quantize or run quantize model.")
elif not (is_optimum_available() and is_auto_gptq_available()):
raise ImportError(
"Loading a GPTQ quantized model requires optimum (`pip install optimum`) and auto-gptq library (`pip install auto-gptq`)"
)
elif version.parse(importlib.metadata.version("auto_gptq")) < version.parse("0.4.2"):
raise ImportError(
"You need a version of auto_gptq >= 0.4.2 to use GPTQ: `pip install --upgrade auto-gptq`"
)
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
torch_dtype = torch.float16
elif torch_dtype != torch.float16:
logger.info("We suggest you to set `torch_dtype=torch.float16` for better efficiency with GPTQ.")
return torch_dtype
def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs):
if model.__class__.main_input_name != "input_ids":
raise RuntimeError("We can only quantize pure text model.")
if self.pre_quantized:
model = self.optimum_quantizer.convert_model(model)
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
if self.pre_quantized:
model = self.optimum_quantizer.post_init_model(model)
else:
if self.quantization_config.tokenizer is None:
self.quantization_config.tokenizer = model.name_or_path
self.optimum_quantizer.quantize_model(model, self.quantization_config.tokenizer)
model.config.quantization_config = GPTQConfig.from_dict(self.optimum_quantizer.to_dict())
@property
def is_trainable(self, model: Optional["PreTrainedModel"] = None):
return True
@property
def is_serializable(self):
return True