4118 lines
195 KiB
Python
4118 lines
195 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Base classes common to both the slow and the fast tokenization classes: PreTrainedTokenizerBase (host all the user
|
|
fronting encoding methods) Special token mixing (host the special tokens logic) and BatchEncoding (wrap the dictionary
|
|
of output with special method for the Fast tokenizers)
|
|
"""
|
|
|
|
import copy
|
|
import json
|
|
import os
|
|
import re
|
|
import warnings
|
|
from collections import UserDict
|
|
from collections.abc import Mapping, Sized
|
|
from contextlib import contextmanager
|
|
from dataclasses import dataclass
|
|
from functools import lru_cache
|
|
from typing import TYPE_CHECKING, Any, Dict, List, NamedTuple, Optional, Sequence, Tuple, Union
|
|
|
|
import numpy as np
|
|
from packaging import version
|
|
|
|
from . import __version__
|
|
from .dynamic_module_utils import custom_object_save
|
|
from .utils import (
|
|
ExplicitEnum,
|
|
PaddingStrategy,
|
|
PushToHubMixin,
|
|
TensorType,
|
|
add_end_docstrings,
|
|
add_model_info_to_auto_map,
|
|
cached_file,
|
|
copy_func,
|
|
download_url,
|
|
extract_commit_hash,
|
|
is_flax_available,
|
|
is_jax_tensor,
|
|
is_mlx_available,
|
|
is_numpy_array,
|
|
is_offline_mode,
|
|
is_remote_url,
|
|
is_tf_available,
|
|
is_tf_tensor,
|
|
is_tokenizers_available,
|
|
is_torch_available,
|
|
is_torch_device,
|
|
is_torch_tensor,
|
|
logging,
|
|
requires_backends,
|
|
to_py_obj,
|
|
)
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
if is_torch_available():
|
|
import torch
|
|
if is_tf_available():
|
|
import tensorflow as tf
|
|
if is_flax_available():
|
|
import jax.numpy as jnp # noqa: F401
|
|
from .pipelines.conversational import Conversation
|
|
|
|
|
|
if is_tokenizers_available():
|
|
from tokenizers import AddedToken
|
|
from tokenizers import Encoding as EncodingFast
|
|
else:
|
|
|
|
@dataclass(frozen=False, eq=True)
|
|
class AddedToken:
|
|
"""
|
|
AddedToken represents a token to be added to a Tokenizer An AddedToken can have special options defining the
|
|
way it should behave.
|
|
|
|
The `normalized` will default to `not special` if it is not specified, similarly to the definition in
|
|
`tokenizers`.
|
|
"""
|
|
|
|
def __init__(
|
|
self, content: str, single_word=False, lstrip=False, rstrip=False, special=False, normalized=None
|
|
):
|
|
self.content = content
|
|
self.single_word = single_word
|
|
self.lstrip = lstrip
|
|
self.rstrip = rstrip
|
|
self.special = special
|
|
self.normalized = normalized if normalized is not None else not special
|
|
|
|
def __getstate__(self):
|
|
return self.__dict__
|
|
|
|
def __str__(self):
|
|
return self.content
|
|
|
|
@dataclass
|
|
class EncodingFast:
|
|
"""This is dummy class because without the `tokenizers` library we don't have these objects anyway"""
|
|
|
|
pass
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
VERY_LARGE_INTEGER = int(1e30) # This is used to set the max input length for a model with infinite size input
|
|
LARGE_INTEGER = int(1e20) # This is used when we need something big but slightly smaller than VERY_LARGE_INTEGER
|
|
|
|
# Define type aliases and NamedTuples
|
|
TextInput = str
|
|
PreTokenizedInput = List[str]
|
|
EncodedInput = List[int]
|
|
TextInputPair = Tuple[str, str]
|
|
PreTokenizedInputPair = Tuple[List[str], List[str]]
|
|
EncodedInputPair = Tuple[List[int], List[int]]
|
|
|
|
|
|
# Slow tokenizers used to be saved in three separated files
|
|
SPECIAL_TOKENS_MAP_FILE = "special_tokens_map.json"
|
|
ADDED_TOKENS_FILE = "added_tokens.json"
|
|
TOKENIZER_CONFIG_FILE = "tokenizer_config.json"
|
|
|
|
# Fast tokenizers (provided by HuggingFace tokenizer's library) can be saved in a single file
|
|
FULL_TOKENIZER_FILE = "tokenizer.json"
|
|
_re_tokenizer_file = re.compile(r"tokenizer\.(.*)\.json")
|
|
|
|
|
|
class TruncationStrategy(ExplicitEnum):
|
|
"""
|
|
Possible values for the `truncation` argument in [`PreTrainedTokenizerBase.__call__`]. Useful for tab-completion in
|
|
an IDE.
|
|
"""
|
|
|
|
ONLY_FIRST = "only_first"
|
|
ONLY_SECOND = "only_second"
|
|
LONGEST_FIRST = "longest_first"
|
|
DO_NOT_TRUNCATE = "do_not_truncate"
|
|
|
|
|
|
class CharSpan(NamedTuple):
|
|
"""
|
|
Character span in the original string.
|
|
|
|
Args:
|
|
start (`int`): Index of the first character in the original string.
|
|
end (`int`): Index of the character following the last character in the original string.
|
|
"""
|
|
|
|
start: int
|
|
end: int
|
|
|
|
|
|
class TokenSpan(NamedTuple):
|
|
"""
|
|
Token span in an encoded string (list of tokens).
|
|
|
|
Args:
|
|
start (`int`): Index of the first token in the span.
|
|
end (`int`): Index of the token following the last token in the span.
|
|
"""
|
|
|
|
start: int
|
|
end: int
|
|
|
|
|
|
class BatchEncoding(UserDict):
|
|
"""
|
|
Holds the output of the [`~tokenization_utils_base.PreTrainedTokenizerBase.__call__`],
|
|
[`~tokenization_utils_base.PreTrainedTokenizerBase.encode_plus`] and
|
|
[`~tokenization_utils_base.PreTrainedTokenizerBase.batch_encode_plus`] methods (tokens, attention_masks, etc).
|
|
|
|
This class is derived from a python dictionary and can be used as a dictionary. In addition, this class exposes
|
|
utility methods to map from word/character space to token space.
|
|
|
|
Args:
|
|
data (`dict`, *optional*):
|
|
Dictionary of lists/arrays/tensors returned by the `__call__`/`encode_plus`/`batch_encode_plus` methods
|
|
('input_ids', 'attention_mask', etc.).
|
|
encoding (`tokenizers.Encoding` or `Sequence[tokenizers.Encoding]`, *optional*):
|
|
If the tokenizer is a fast tokenizer which outputs additional information like mapping from word/character
|
|
space to token space the `tokenizers.Encoding` instance or list of instance (for batches) hold this
|
|
information.
|
|
tensor_type (`Union[None, str, TensorType]`, *optional*):
|
|
You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at
|
|
initialization.
|
|
prepend_batch_axis (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to add a batch axis when converting to tensors (see `tensor_type` above).
|
|
n_sequences (`Optional[int]`, *optional*):
|
|
You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at
|
|
initialization.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
data: Optional[Dict[str, Any]] = None,
|
|
encoding: Optional[Union[EncodingFast, Sequence[EncodingFast]]] = None,
|
|
tensor_type: Union[None, str, TensorType] = None,
|
|
prepend_batch_axis: bool = False,
|
|
n_sequences: Optional[int] = None,
|
|
):
|
|
super().__init__(data)
|
|
|
|
if isinstance(encoding, EncodingFast):
|
|
encoding = [encoding]
|
|
|
|
self._encodings = encoding
|
|
|
|
if n_sequences is None and encoding is not None and len(encoding):
|
|
n_sequences = encoding[0].n_sequences
|
|
|
|
self._n_sequences = n_sequences
|
|
|
|
self.convert_to_tensors(tensor_type=tensor_type, prepend_batch_axis=prepend_batch_axis)
|
|
|
|
@property
|
|
def n_sequences(self) -> Optional[int]:
|
|
"""
|
|
`Optional[int]`: The number of sequences used to generate each sample from the batch encoded in this
|
|
[`BatchEncoding`]. Currently can be one of `None` (unknown), `1` (a single sentence) or `2` (a pair of
|
|
sentences)
|
|
"""
|
|
return self._n_sequences
|
|
|
|
@property
|
|
def is_fast(self) -> bool:
|
|
"""
|
|
`bool`: Indicate whether this [`BatchEncoding`] was generated from the result of a [`PreTrainedTokenizerFast`]
|
|
or not.
|
|
"""
|
|
return self._encodings is not None
|
|
|
|
def __getitem__(self, item: Union[int, str]) -> Union[Any, EncodingFast]:
|
|
"""
|
|
If the key is a string, returns the value of the dict associated to `key` ('input_ids', 'attention_mask',
|
|
etc.).
|
|
|
|
If the key is an integer, get the `tokenizers.Encoding` for batch item with index `key`.
|
|
|
|
If the key is a slice, returns the value of the dict associated to `key` ('input_ids', 'attention_mask', etc.)
|
|
with the constraint of slice.
|
|
"""
|
|
if isinstance(item, str):
|
|
return self.data[item]
|
|
elif self._encodings is not None:
|
|
return self._encodings[item]
|
|
elif isinstance(item, slice):
|
|
return {key: self.data[key][item] for key in self.data.keys()}
|
|
else:
|
|
raise KeyError(
|
|
"Invalid key. Only three types of key are available: "
|
|
"(1) string, (2) integers for backend Encoding, and (3) slices for data subsetting."
|
|
)
|
|
|
|
def __getattr__(self, item: str):
|
|
try:
|
|
return self.data[item]
|
|
except KeyError:
|
|
raise AttributeError
|
|
|
|
def __getstate__(self):
|
|
return {"data": self.data, "encodings": self._encodings}
|
|
|
|
def __setstate__(self, state):
|
|
if "data" in state:
|
|
self.data = state["data"]
|
|
|
|
if "encodings" in state:
|
|
self._encodings = state["encodings"]
|
|
|
|
def keys(self):
|
|
return self.data.keys()
|
|
|
|
def values(self):
|
|
return self.data.values()
|
|
|
|
def items(self):
|
|
return self.data.items()
|
|
|
|
# After this point:
|
|
# Extended properties and methods only available for fast (Rust-based) tokenizers
|
|
# provided by HuggingFace tokenizers library.
|
|
|
|
@property
|
|
def encodings(self) -> Optional[List[EncodingFast]]:
|
|
"""
|
|
`Optional[List[tokenizers.Encoding]]`: The list all encodings from the tokenization process. Returns `None` if
|
|
the input was tokenized through Python (i.e., not a fast) tokenizer.
|
|
"""
|
|
return self._encodings
|
|
|
|
def tokens(self, batch_index: int = 0) -> List[str]:
|
|
"""
|
|
Return the list of tokens (sub-parts of the input strings after word/subword splitting and before conversion to
|
|
integer indices) at a given batch index (only works for the output of a fast tokenizer).
|
|
|
|
Args:
|
|
batch_index (`int`, *optional*, defaults to 0): The index to access in the batch.
|
|
|
|
Returns:
|
|
`List[str]`: The list of tokens at that index.
|
|
"""
|
|
if not self._encodings:
|
|
raise ValueError(
|
|
"tokens() is not available when using non-fast tokenizers (e.g. instance of a `XxxTokenizerFast`"
|
|
" class)."
|
|
)
|
|
return self._encodings[batch_index].tokens
|
|
|
|
def sequence_ids(self, batch_index: int = 0) -> List[Optional[int]]:
|
|
"""
|
|
Return a list mapping the tokens to the id of their original sentences:
|
|
|
|
- `None` for special tokens added around or between sequences,
|
|
- `0` for tokens corresponding to words in the first sequence,
|
|
- `1` for tokens corresponding to words in the second sequence when a pair of sequences was jointly
|
|
encoded.
|
|
|
|
Args:
|
|
batch_index (`int`, *optional*, defaults to 0): The index to access in the batch.
|
|
|
|
Returns:
|
|
`List[Optional[int]]`: A list indicating the sequence id corresponding to each token. Special tokens added
|
|
by the tokenizer are mapped to `None` and other tokens are mapped to the index of their corresponding
|
|
sequence.
|
|
"""
|
|
if not self._encodings:
|
|
raise ValueError(
|
|
"sequence_ids() is not available when using non-fast tokenizers (e.g. instance of a `XxxTokenizerFast`"
|
|
" class)."
|
|
)
|
|
return self._encodings[batch_index].sequence_ids
|
|
|
|
def words(self, batch_index: int = 0) -> List[Optional[int]]:
|
|
"""
|
|
Return a list mapping the tokens to their actual word in the initial sentence for a fast tokenizer.
|
|
|
|
Args:
|
|
batch_index (`int`, *optional*, defaults to 0): The index to access in the batch.
|
|
|
|
Returns:
|
|
`List[Optional[int]]`: A list indicating the word corresponding to each token. Special tokens added by the
|
|
tokenizer are mapped to `None` and other tokens are mapped to the index of their corresponding word
|
|
(several tokens will be mapped to the same word index if they are parts of that word).
|
|
"""
|
|
if not self._encodings:
|
|
raise ValueError(
|
|
"words() is not available when using non-fast tokenizers (e.g. instance of a `XxxTokenizerFast`"
|
|
" class)."
|
|
)
|
|
warnings.warn(
|
|
"`BatchEncoding.words()` property is deprecated and should be replaced with the identical, "
|
|
"but more self-explanatory `BatchEncoding.word_ids()` property.",
|
|
FutureWarning,
|
|
)
|
|
return self.word_ids(batch_index)
|
|
|
|
def word_ids(self, batch_index: int = 0) -> List[Optional[int]]:
|
|
"""
|
|
Return a list mapping the tokens to their actual word in the initial sentence for a fast tokenizer.
|
|
|
|
Args:
|
|
batch_index (`int`, *optional*, defaults to 0): The index to access in the batch.
|
|
|
|
Returns:
|
|
`List[Optional[int]]`: A list indicating the word corresponding to each token. Special tokens added by the
|
|
tokenizer are mapped to `None` and other tokens are mapped to the index of their corresponding word
|
|
(several tokens will be mapped to the same word index if they are parts of that word).
|
|
"""
|
|
if not self._encodings:
|
|
raise ValueError(
|
|
"word_ids() is not available when using non-fast tokenizers (e.g. instance of a `XxxTokenizerFast`"
|
|
" class)."
|
|
)
|
|
return self._encodings[batch_index].word_ids
|
|
|
|
def token_to_sequence(self, batch_or_token_index: int, token_index: Optional[int] = None) -> int:
|
|
"""
|
|
Get the index of the sequence represented by the given token. In the general use case, this method returns `0`
|
|
for a single sequence or the first sequence of a pair, and `1` for the second sequence of a pair
|
|
|
|
Can be called as:
|
|
|
|
- `self.token_to_sequence(token_index)` if batch size is 1
|
|
- `self.token_to_sequence(batch_index, token_index)` if batch size is greater than 1
|
|
|
|
This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e.,
|
|
words are defined by the user). In this case it allows to easily associate encoded tokens with provided
|
|
tokenized words.
|
|
|
|
Args:
|
|
batch_or_token_index (`int`):
|
|
Index of the sequence in the batch. If the batch only comprises one sequence, this can be the index of
|
|
the token in the sequence.
|
|
token_index (`int`, *optional*):
|
|
If a batch index is provided in *batch_or_token_index*, this can be the index of the token in the
|
|
sequence.
|
|
|
|
Returns:
|
|
`int`: Index of the word in the input sequence.
|
|
"""
|
|
|
|
if not self._encodings:
|
|
raise ValueError("token_to_sequence() is not available when using Python based tokenizers")
|
|
if token_index is not None:
|
|
batch_index = batch_or_token_index
|
|
else:
|
|
batch_index = 0
|
|
token_index = batch_or_token_index
|
|
if batch_index < 0:
|
|
batch_index = self._batch_size + batch_index
|
|
if token_index < 0:
|
|
token_index = self._seq_len + token_index
|
|
return self._encodings[batch_index].token_to_sequence(token_index)
|
|
|
|
def token_to_word(self, batch_or_token_index: int, token_index: Optional[int] = None) -> int:
|
|
"""
|
|
Get the index of the word corresponding (i.e. comprising) to an encoded token in a sequence of the batch.
|
|
|
|
Can be called as:
|
|
|
|
- `self.token_to_word(token_index)` if batch size is 1
|
|
- `self.token_to_word(batch_index, token_index)` if batch size is greater than 1
|
|
|
|
This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e.,
|
|
words are defined by the user). In this case it allows to easily associate encoded tokens with provided
|
|
tokenized words.
|
|
|
|
Args:
|
|
batch_or_token_index (`int`):
|
|
Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of
|
|
the token in the sequence.
|
|
token_index (`int`, *optional*):
|
|
If a batch index is provided in *batch_or_token_index*, this can be the index of the token in the
|
|
sequence.
|
|
|
|
Returns:
|
|
`int`: Index of the word in the input sequence.
|
|
"""
|
|
|
|
if not self._encodings:
|
|
raise ValueError("token_to_word() is not available when using Python based tokenizers")
|
|
if token_index is not None:
|
|
batch_index = batch_or_token_index
|
|
else:
|
|
batch_index = 0
|
|
token_index = batch_or_token_index
|
|
if batch_index < 0:
|
|
batch_index = self._batch_size + batch_index
|
|
if token_index < 0:
|
|
token_index = self._seq_len + token_index
|
|
return self._encodings[batch_index].token_to_word(token_index)
|
|
|
|
def word_to_tokens(
|
|
self, batch_or_word_index: int, word_index: Optional[int] = None, sequence_index: int = 0
|
|
) -> Optional[TokenSpan]:
|
|
"""
|
|
Get the encoded token span corresponding to a word in a sequence of the batch.
|
|
|
|
Token spans are returned as a [`~tokenization_utils_base.TokenSpan`] with:
|
|
|
|
- **start** -- Index of the first token.
|
|
- **end** -- Index of the token following the last token.
|
|
|
|
Can be called as:
|
|
|
|
- `self.word_to_tokens(word_index, sequence_index: int = 0)` if batch size is 1
|
|
- `self.word_to_tokens(batch_index, word_index, sequence_index: int = 0)` if batch size is greater or equal to
|
|
1
|
|
|
|
This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e. words
|
|
are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized
|
|
words.
|
|
|
|
Args:
|
|
batch_or_word_index (`int`):
|
|
Index of the sequence in the batch. If the batch only comprises one sequence, this can be the index of
|
|
the word in the sequence.
|
|
word_index (`int`, *optional*):
|
|
If a batch index is provided in *batch_or_token_index*, this can be the index of the word in the
|
|
sequence.
|
|
sequence_index (`int`, *optional*, defaults to 0):
|
|
If pair of sequences are encoded in the batch this can be used to specify which sequence in the pair (0
|
|
or 1) the provided word index belongs to.
|
|
|
|
Returns:
|
|
([`~tokenization_utils_base.TokenSpan`], *optional*): Span of tokens in the encoded sequence. Returns
|
|
`None` if no tokens correspond to the word. This can happen especially when the token is a special token
|
|
that has been used to format the tokenization. For example when we add a class token at the very beginning
|
|
of the tokenization.
|
|
"""
|
|
|
|
if not self._encodings:
|
|
raise ValueError("word_to_tokens() is not available when using Python based tokenizers")
|
|
if word_index is not None:
|
|
batch_index = batch_or_word_index
|
|
else:
|
|
batch_index = 0
|
|
word_index = batch_or_word_index
|
|
if batch_index < 0:
|
|
batch_index = self._batch_size + batch_index
|
|
if word_index < 0:
|
|
word_index = self._seq_len + word_index
|
|
span = self._encodings[batch_index].word_to_tokens(word_index, sequence_index)
|
|
return TokenSpan(*span) if span is not None else None
|
|
|
|
def token_to_chars(self, batch_or_token_index: int, token_index: Optional[int] = None) -> CharSpan:
|
|
"""
|
|
Get the character span corresponding to an encoded token in a sequence of the batch.
|
|
|
|
Character spans are returned as a [`~tokenization_utils_base.CharSpan`] with:
|
|
|
|
- **start** -- Index of the first character in the original string associated to the token.
|
|
- **end** -- Index of the character following the last character in the original string associated to the
|
|
token.
|
|
|
|
Can be called as:
|
|
|
|
- `self.token_to_chars(token_index)` if batch size is 1
|
|
- `self.token_to_chars(batch_index, token_index)` if batch size is greater or equal to 1
|
|
|
|
Args:
|
|
batch_or_token_index (`int`):
|
|
Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of
|
|
the token in the sequence.
|
|
token_index (`int`, *optional*):
|
|
If a batch index is provided in *batch_or_token_index*, this can be the index of the token or tokens in
|
|
the sequence.
|
|
|
|
Returns:
|
|
[`~tokenization_utils_base.CharSpan`]: Span of characters in the original string, or None, if the token
|
|
(e.g. <s>, </s>) doesn't correspond to any chars in the origin string.
|
|
"""
|
|
|
|
if not self._encodings:
|
|
raise ValueError("token_to_chars() is not available when using Python based tokenizers")
|
|
if token_index is not None:
|
|
batch_index = batch_or_token_index
|
|
else:
|
|
batch_index = 0
|
|
token_index = batch_or_token_index
|
|
span_indices = self._encodings[batch_index].token_to_chars(token_index)
|
|
|
|
return CharSpan(*span_indices) if span_indices is not None else None
|
|
|
|
def char_to_token(
|
|
self, batch_or_char_index: int, char_index: Optional[int] = None, sequence_index: int = 0
|
|
) -> int:
|
|
"""
|
|
Get the index of the token in the encoded output comprising a character in the original string for a sequence
|
|
of the batch.
|
|
|
|
Can be called as:
|
|
|
|
- `self.char_to_token(char_index)` if batch size is 1
|
|
- `self.char_to_token(batch_index, char_index)` if batch size is greater or equal to 1
|
|
|
|
This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e. words
|
|
are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized
|
|
words.
|
|
|
|
Args:
|
|
batch_or_char_index (`int`):
|
|
Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of
|
|
the word in the sequence
|
|
char_index (`int`, *optional*):
|
|
If a batch index is provided in *batch_or_token_index*, this can be the index of the word in the
|
|
sequence.
|
|
sequence_index (`int`, *optional*, defaults to 0):
|
|
If pair of sequences are encoded in the batch this can be used to specify which sequence in the pair (0
|
|
or 1) the provided character index belongs to.
|
|
|
|
|
|
Returns:
|
|
`int`: Index of the token.
|
|
"""
|
|
|
|
if not self._encodings:
|
|
raise ValueError("char_to_token() is not available when using Python based tokenizers")
|
|
if char_index is not None:
|
|
batch_index = batch_or_char_index
|
|
else:
|
|
batch_index = 0
|
|
char_index = batch_or_char_index
|
|
return self._encodings[batch_index].char_to_token(char_index, sequence_index)
|
|
|
|
def word_to_chars(
|
|
self, batch_or_word_index: int, word_index: Optional[int] = None, sequence_index: int = 0
|
|
) -> CharSpan:
|
|
"""
|
|
Get the character span in the original string corresponding to given word in a sequence of the batch.
|
|
|
|
Character spans are returned as a CharSpan NamedTuple with:
|
|
|
|
- start: index of the first character in the original string
|
|
- end: index of the character following the last character in the original string
|
|
|
|
Can be called as:
|
|
|
|
- `self.word_to_chars(word_index)` if batch size is 1
|
|
- `self.word_to_chars(batch_index, word_index)` if batch size is greater or equal to 1
|
|
|
|
Args:
|
|
batch_or_word_index (`int`):
|
|
Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of
|
|
the word in the sequence
|
|
word_index (`int`, *optional*):
|
|
If a batch index is provided in *batch_or_token_index*, this can be the index of the word in the
|
|
sequence.
|
|
sequence_index (`int`, *optional*, defaults to 0):
|
|
If pair of sequences are encoded in the batch this can be used to specify which sequence in the pair (0
|
|
or 1) the provided word index belongs to.
|
|
|
|
Returns:
|
|
`CharSpan` or `List[CharSpan]`: Span(s) of the associated character or characters in the string. CharSpan
|
|
are NamedTuple with:
|
|
|
|
- start: index of the first character associated to the token in the original string
|
|
- end: index of the character following the last character associated to the token in the original
|
|
string
|
|
"""
|
|
|
|
if not self._encodings:
|
|
raise ValueError("word_to_chars() is not available when using Python based tokenizers")
|
|
if word_index is not None:
|
|
batch_index = batch_or_word_index
|
|
else:
|
|
batch_index = 0
|
|
word_index = batch_or_word_index
|
|
return CharSpan(*(self._encodings[batch_index].word_to_chars(word_index, sequence_index)))
|
|
|
|
def char_to_word(self, batch_or_char_index: int, char_index: Optional[int] = None, sequence_index: int = 0) -> int:
|
|
"""
|
|
Get the word in the original string corresponding to a character in the original string of a sequence of the
|
|
batch.
|
|
|
|
Can be called as:
|
|
|
|
- `self.char_to_word(char_index)` if batch size is 1
|
|
- `self.char_to_word(batch_index, char_index)` if batch size is greater than 1
|
|
|
|
This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e. words
|
|
are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized
|
|
words.
|
|
|
|
Args:
|
|
batch_or_char_index (`int`):
|
|
Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of
|
|
the character in the original string.
|
|
char_index (`int`, *optional*):
|
|
If a batch index is provided in *batch_or_token_index*, this can be the index of the character in the
|
|
original string.
|
|
sequence_index (`int`, *optional*, defaults to 0):
|
|
If pair of sequences are encoded in the batch this can be used to specify which sequence in the pair (0
|
|
or 1) the provided character index belongs to.
|
|
|
|
|
|
Returns:
|
|
`int` or `List[int]`: Index or indices of the associated encoded token(s).
|
|
"""
|
|
|
|
if not self._encodings:
|
|
raise ValueError("char_to_word() is not available when using Python based tokenizers")
|
|
if char_index is not None:
|
|
batch_index = batch_or_char_index
|
|
else:
|
|
batch_index = 0
|
|
char_index = batch_or_char_index
|
|
return self._encodings[batch_index].char_to_word(char_index, sequence_index)
|
|
|
|
def convert_to_tensors(
|
|
self, tensor_type: Optional[Union[str, TensorType]] = None, prepend_batch_axis: bool = False
|
|
):
|
|
"""
|
|
Convert the inner content to tensors.
|
|
|
|
Args:
|
|
tensor_type (`str` or [`~utils.TensorType`], *optional*):
|
|
The type of tensors to use. If `str`, should be one of the values of the enum [`~utils.TensorType`]. If
|
|
`None`, no modification is done.
|
|
prepend_batch_axis (`int`, *optional*, defaults to `False`):
|
|
Whether or not to add the batch dimension during the conversion.
|
|
"""
|
|
if tensor_type is None:
|
|
return self
|
|
|
|
# Convert to TensorType
|
|
if not isinstance(tensor_type, TensorType):
|
|
tensor_type = TensorType(tensor_type)
|
|
|
|
# Get a function reference for the correct framework
|
|
if tensor_type == TensorType.TENSORFLOW:
|
|
if not is_tf_available():
|
|
raise ImportError(
|
|
"Unable to convert output to TensorFlow tensors format, TensorFlow is not installed."
|
|
)
|
|
import tensorflow as tf
|
|
|
|
as_tensor = tf.constant
|
|
is_tensor = tf.is_tensor
|
|
elif tensor_type == TensorType.PYTORCH:
|
|
if not is_torch_available():
|
|
raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.")
|
|
import torch
|
|
|
|
is_tensor = torch.is_tensor
|
|
|
|
def as_tensor(value, dtype=None):
|
|
if isinstance(value, list) and isinstance(value[0], np.ndarray):
|
|
return torch.tensor(np.array(value))
|
|
return torch.tensor(value)
|
|
|
|
elif tensor_type == TensorType.JAX:
|
|
if not is_flax_available():
|
|
raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed.")
|
|
import jax.numpy as jnp # noqa: F811
|
|
|
|
as_tensor = jnp.array
|
|
is_tensor = is_jax_tensor
|
|
|
|
elif tensor_type == TensorType.MLX:
|
|
if not is_mlx_available():
|
|
raise ImportError("Unable to convert output to MLX tensors format, MLX is not installed.")
|
|
import mlx.core as mx
|
|
|
|
as_tensor = mx.array
|
|
|
|
def is_tensor(obj):
|
|
return isinstance(obj, mx.array)
|
|
else:
|
|
|
|
def as_tensor(value, dtype=None):
|
|
if isinstance(value, (list, tuple)) and isinstance(value[0], (list, tuple, np.ndarray)):
|
|
value_lens = [len(val) for val in value]
|
|
if len(set(value_lens)) > 1 and dtype is None:
|
|
# we have a ragged list so handle explicitly
|
|
value = as_tensor([np.asarray(val) for val in value], dtype=object)
|
|
return np.asarray(value, dtype=dtype)
|
|
|
|
is_tensor = is_numpy_array
|
|
|
|
# Do the tensor conversion in batch
|
|
for key, value in self.items():
|
|
try:
|
|
if prepend_batch_axis:
|
|
value = [value]
|
|
|
|
if not is_tensor(value):
|
|
tensor = as_tensor(value)
|
|
|
|
# Removing this for now in favor of controlling the shape with `prepend_batch_axis`
|
|
# # at-least2d
|
|
# if tensor.ndim > 2:
|
|
# tensor = tensor.squeeze(0)
|
|
# elif tensor.ndim < 2:
|
|
# tensor = tensor[None, :]
|
|
|
|
self[key] = tensor
|
|
except Exception as e:
|
|
if key == "overflowing_tokens":
|
|
raise ValueError(
|
|
"Unable to create tensor returning overflowing tokens of different lengths. "
|
|
"Please see if a fast version of this tokenizer is available to have this feature available."
|
|
) from e
|
|
raise ValueError(
|
|
"Unable to create tensor, you should probably activate truncation and/or padding with"
|
|
" 'padding=True' 'truncation=True' to have batched tensors with the same length. Perhaps your"
|
|
f" features (`{key}` in this case) have excessive nesting (inputs type `list` where type `int` is"
|
|
" expected)."
|
|
) from e
|
|
|
|
return self
|
|
|
|
def to(self, device: Union[str, "torch.device"]) -> "BatchEncoding":
|
|
"""
|
|
Send all values to device by calling `v.to(device)` (PyTorch only).
|
|
|
|
Args:
|
|
device (`str` or `torch.device`): The device to put the tensors on.
|
|
|
|
Returns:
|
|
[`BatchEncoding`]: The same instance after modification.
|
|
"""
|
|
requires_backends(self, ["torch"])
|
|
|
|
# This check catches things like APEX blindly calling "to" on all inputs to a module
|
|
# Otherwise it passes the casts down and casts the LongTensor containing the token idxs
|
|
# into a HalfTensor
|
|
if isinstance(device, str) or is_torch_device(device) or isinstance(device, int):
|
|
self.data = {k: v.to(device=device) for k, v in self.data.items()}
|
|
else:
|
|
logger.warning(f"Attempting to cast a BatchEncoding to type {str(device)}. This is not supported.")
|
|
return self
|
|
|
|
|
|
class SpecialTokensMixin:
|
|
"""
|
|
A mixin derived by [`PreTrainedTokenizer`] and [`PreTrainedTokenizerFast`] to handle specific behaviors related to
|
|
special tokens. In particular, this class hold the attributes which can be used to directly access these special
|
|
tokens in a model-independent manner and allow to set and update the special tokens.
|
|
|
|
Args:
|
|
bos_token (`str` or `tokenizers.AddedToken`, *optional*):
|
|
A special token representing the beginning of a sentence.
|
|
eos_token (`str` or `tokenizers.AddedToken`, *optional*):
|
|
A special token representing the end of a sentence.
|
|
unk_token (`str` or `tokenizers.AddedToken`, *optional*):
|
|
A special token representing an out-of-vocabulary token.
|
|
sep_token (`str` or `tokenizers.AddedToken`, *optional*):
|
|
A special token separating two different sentences in the same input (used by BERT for instance).
|
|
pad_token (`str` or `tokenizers.AddedToken`, *optional*):
|
|
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
|
|
attention mechanisms or loss computation.
|
|
cls_token (`str` or `tokenizers.AddedToken`, *optional*):
|
|
A special token representing the class of the input (used by BERT for instance).
|
|
mask_token (`str` or `tokenizers.AddedToken`, *optional*):
|
|
A special token representing a masked token (used by masked-language modeling pretraining objectives, like
|
|
BERT).
|
|
additional_special_tokens (tuple or list of `str` or `tokenizers.AddedToken`, *optional*):
|
|
A tuple or a list of additional tokens, which will be marked as `special`, meaning that they will be
|
|
skipped when decoding if `skip_special_tokens` is set to `True`.
|
|
"""
|
|
|
|
SPECIAL_TOKENS_ATTRIBUTES = [
|
|
"bos_token",
|
|
"eos_token",
|
|
"unk_token",
|
|
"sep_token",
|
|
"pad_token",
|
|
"cls_token",
|
|
"mask_token",
|
|
"additional_special_tokens",
|
|
]
|
|
|
|
def __init__(self, verbose=False, **kwargs):
|
|
self._bos_token = None
|
|
self._eos_token = None
|
|
self._unk_token = None
|
|
self._sep_token = None
|
|
self._pad_token = None
|
|
self._cls_token = None
|
|
self._mask_token = None
|
|
self._pad_token_type_id = 0
|
|
self._additional_special_tokens = []
|
|
self.verbose = verbose
|
|
|
|
# We directly set the hidden value to allow initialization with special tokens
|
|
# which are not yet in the vocabulary. Necessary for serialization/de-serialization
|
|
# TODO clean this up at some point (probably by switching to fast tokenizers)
|
|
|
|
for key, value in kwargs.items():
|
|
if value is None:
|
|
continue
|
|
if key in self.SPECIAL_TOKENS_ATTRIBUTES:
|
|
if key == "additional_special_tokens":
|
|
assert isinstance(value, (list, tuple)), f"Value {value} is not a list or tuple"
|
|
assert all(
|
|
isinstance(t, (str, AddedToken)) for t in value
|
|
), "One of the tokens is not a string or an AddedToken"
|
|
setattr(self, key, value)
|
|
elif isinstance(value, (str, AddedToken)):
|
|
setattr(self, key, value)
|
|
else:
|
|
raise TypeError(f"Special token {key} has to be either str or AddedToken but got: {type(value)}")
|
|
|
|
def sanitize_special_tokens(self) -> int:
|
|
"""
|
|
The `sanitize_special_tokens` is now deprecated kept for backward compatibility and will be removed in
|
|
transformers v5.
|
|
"""
|
|
logger.warning_once("The `sanitize_special_tokens` will be removed in transformers v5.")
|
|
return self.add_tokens(self.all_special_tokens_extended, special_tokens=True)
|
|
|
|
def add_special_tokens(
|
|
self, special_tokens_dict: Dict[str, Union[str, AddedToken]], replace_additional_special_tokens=True
|
|
) -> int:
|
|
"""
|
|
Add a dictionary of special tokens (eos, pad, cls, etc.) to the encoder and link them to class attributes. If
|
|
special tokens are NOT in the vocabulary, they are added to it (indexed starting from the last index of the
|
|
current vocabulary).
|
|
|
|
When adding new tokens to the vocabulary, you should make sure to also resize the token embedding matrix of the
|
|
model so that its embedding matrix matches the tokenizer.
|
|
|
|
In order to do that, please use the [`~PreTrainedModel.resize_token_embeddings`] method.
|
|
|
|
Using `add_special_tokens` will ensure your special tokens can be used in several ways:
|
|
|
|
- Special tokens can be skipped when decoding using `skip_special_tokens = True`.
|
|
- Special tokens are carefully handled by the tokenizer (they are never split), similar to `AddedTokens`.
|
|
- You can easily refer to special tokens using tokenizer class attributes like `tokenizer.cls_token`. This
|
|
makes it easy to develop model-agnostic training and fine-tuning scripts.
|
|
|
|
When possible, special tokens are already registered for provided pretrained models (for instance
|
|
[`BertTokenizer`] `cls_token` is already registered to be :obj*'[CLS]'* and XLM's one is also registered to be
|
|
`'</s>'`).
|
|
|
|
Args:
|
|
special_tokens_dict (dictionary *str* to *str* or `tokenizers.AddedToken`):
|
|
Keys should be in the list of predefined special attributes: [`bos_token`, `eos_token`, `unk_token`,
|
|
`sep_token`, `pad_token`, `cls_token`, `mask_token`, `additional_special_tokens`].
|
|
|
|
Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer
|
|
assign the index of the `unk_token` to them).
|
|
replace_additional_special_tokens (`bool`, *optional*,, defaults to `True`):
|
|
If `True`, the existing list of additional special tokens will be replaced by the list provided in
|
|
`special_tokens_dict`. Otherwise, `self._additional_special_tokens` is just extended. In the former
|
|
case, the tokens will NOT be removed from the tokenizer's full vocabulary - they are only being flagged
|
|
as non-special tokens. Remember, this only affects which tokens are skipped during decoding, not the
|
|
`added_tokens_encoder` and `added_tokens_decoder`. This means that the previous
|
|
`additional_special_tokens` are still added tokens, and will not be split by the model.
|
|
|
|
Returns:
|
|
`int`: Number of tokens added to the vocabulary.
|
|
|
|
Examples:
|
|
|
|
```python
|
|
# Let's see how to add a new classification token to GPT-2
|
|
tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
|
|
model = GPT2Model.from_pretrained("openai-community/gpt2")
|
|
|
|
special_tokens_dict = {"cls_token": "<CLS>"}
|
|
|
|
num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
|
|
print("We have added", num_added_toks, "tokens")
|
|
# Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer.
|
|
model.resize_token_embeddings(len(tokenizer))
|
|
|
|
assert tokenizer.cls_token == "<CLS>"
|
|
```"""
|
|
if not special_tokens_dict:
|
|
return 0
|
|
|
|
added_tokens = []
|
|
for key, value in special_tokens_dict.items():
|
|
assert key in self.SPECIAL_TOKENS_ATTRIBUTES, f"Key {key} is not a special token"
|
|
|
|
if self.verbose:
|
|
logger.info(f"Assigning {value} to the {key} key of the tokenizer")
|
|
|
|
if key == "additional_special_tokens":
|
|
assert isinstance(value, (list, tuple)) and all(
|
|
isinstance(t, (str, AddedToken)) for t in value
|
|
), f"Tokens {value} for key {key} should all be str or AddedToken instances"
|
|
|
|
to_add = []
|
|
for token in value:
|
|
if isinstance(token, str):
|
|
# for legacy purpose we default to stripping. `test_add_tokens_tokenizer` depends on this
|
|
token = AddedToken(token, rstrip=False, lstrip=False, normalized=False, special=True)
|
|
if not replace_additional_special_tokens and str(token) in self.additional_special_tokens:
|
|
continue
|
|
to_add.append(token)
|
|
if replace_additional_special_tokens and len(to_add) > 0:
|
|
setattr(self, key, list(to_add))
|
|
else:
|
|
self._additional_special_tokens.extend(to_add)
|
|
added_tokens += to_add
|
|
|
|
else:
|
|
if not isinstance(value, (str, AddedToken)):
|
|
raise ValueError(f"Token {value} for key {key} should be a str or an AddedToken instance")
|
|
if isinstance(value, (str)):
|
|
# for legacy purpose we default to stripping. `False` depends on this
|
|
value = AddedToken(value, rstrip=False, lstrip=False, normalized=False, special=True)
|
|
if isinstance(value, AddedToken):
|
|
setattr(self, key, value)
|
|
if value not in added_tokens:
|
|
added_tokens.append(value)
|
|
|
|
# if we are adding tokens that were not part of the vocab, we ought to add them
|
|
added_tokens = self.add_tokens(added_tokens, special_tokens=True)
|
|
return added_tokens
|
|
|
|
def add_tokens(
|
|
self, new_tokens: Union[str, AddedToken, List[Union[str, AddedToken]]], special_tokens: bool = False
|
|
) -> int:
|
|
"""
|
|
Add a list of new tokens to the tokenizer class. If the new tokens are not in the vocabulary, they are added to
|
|
it with indices starting from length of the current vocabulary and and will be isolated before the tokenization
|
|
algorithm is applied. Added tokens and tokens from the vocabulary of the tokenization algorithm are therefore
|
|
not treated in the same way.
|
|
|
|
Note, when adding new tokens to the vocabulary, you should make sure to also resize the token embedding matrix
|
|
of the model so that its embedding matrix matches the tokenizer.
|
|
|
|
In order to do that, please use the [`~PreTrainedModel.resize_token_embeddings`] method.
|
|
|
|
Args:
|
|
new_tokens (`str`, `tokenizers.AddedToken` or a list of *str* or `tokenizers.AddedToken`):
|
|
Tokens are only added if they are not already in the vocabulary. `tokenizers.AddedToken` wraps a string
|
|
token to let you personalize its behavior: whether this token should only match against a single word,
|
|
whether this token should strip all potential whitespaces on the left side, whether this token should
|
|
strip all potential whitespaces on the right side, etc.
|
|
special_tokens (`bool`, *optional*, defaults to `False`):
|
|
Can be used to specify if the token is a special token. This mostly change the normalization behavior
|
|
(special tokens like CLS or [MASK] are usually not lower-cased for instance).
|
|
|
|
See details for `tokenizers.AddedToken` in HuggingFace tokenizers library.
|
|
|
|
Returns:
|
|
`int`: Number of tokens added to the vocabulary.
|
|
|
|
Examples:
|
|
|
|
```python
|
|
# Let's see how to increase the vocabulary of Bert model and tokenizer
|
|
tokenizer = BertTokenizerFast.from_pretrained("google-bert/bert-base-uncased")
|
|
model = BertModel.from_pretrained("google-bert/bert-base-uncased")
|
|
|
|
num_added_toks = tokenizer.add_tokens(["new_tok1", "my_new-tok2"])
|
|
print("We have added", num_added_toks, "tokens")
|
|
# Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer.
|
|
model.resize_token_embeddings(len(tokenizer))
|
|
```"""
|
|
if not new_tokens:
|
|
return 0
|
|
|
|
if not isinstance(new_tokens, (list, tuple)):
|
|
new_tokens = [new_tokens]
|
|
|
|
return self._add_tokens(new_tokens, special_tokens=special_tokens)
|
|
|
|
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
|
|
raise NotImplementedError
|
|
|
|
@property
|
|
def bos_token(self) -> str:
|
|
"""
|
|
`str`: Beginning of sentence token. Log an error if used while not having been set.
|
|
"""
|
|
if self._bos_token is None:
|
|
if self.verbose:
|
|
logger.error("Using bos_token, but it is not set yet.")
|
|
return None
|
|
return str(self._bos_token)
|
|
|
|
@property
|
|
def eos_token(self) -> str:
|
|
"""
|
|
`str`: End of sentence token. Log an error if used while not having been set.
|
|
"""
|
|
if self._eos_token is None:
|
|
if self.verbose:
|
|
logger.error("Using eos_token, but it is not set yet.")
|
|
return None
|
|
return str(self._eos_token)
|
|
|
|
@property
|
|
def unk_token(self) -> str:
|
|
"""
|
|
`str`: Unknown token. Log an error if used while not having been set.
|
|
"""
|
|
if self._unk_token is None:
|
|
if self.verbose:
|
|
logger.error("Using unk_token, but it is not set yet.")
|
|
return None
|
|
return str(self._unk_token)
|
|
|
|
@property
|
|
def sep_token(self) -> str:
|
|
"""
|
|
`str`: Separation token, to separate context and query in an input sequence. Log an error if used while not
|
|
having been set.
|
|
"""
|
|
if self._sep_token is None:
|
|
if self.verbose:
|
|
logger.error("Using sep_token, but it is not set yet.")
|
|
return None
|
|
return str(self._sep_token)
|
|
|
|
@property
|
|
def pad_token(self) -> str:
|
|
"""
|
|
`str`: Padding token. Log an error if used while not having been set.
|
|
"""
|
|
if self._pad_token is None:
|
|
if self.verbose:
|
|
logger.error("Using pad_token, but it is not set yet.")
|
|
return None
|
|
return str(self._pad_token)
|
|
|
|
@property
|
|
def cls_token(self) -> str:
|
|
"""
|
|
`str`: Classification token, to extract a summary of an input sequence leveraging self-attention along the full
|
|
depth of the model. Log an error if used while not having been set.
|
|
"""
|
|
if self._cls_token is None:
|
|
if self.verbose:
|
|
logger.error("Using cls_token, but it is not set yet.")
|
|
return None
|
|
return str(self._cls_token)
|
|
|
|
@property
|
|
def mask_token(self) -> str:
|
|
"""
|
|
`str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not
|
|
having been set.
|
|
"""
|
|
if self._mask_token is None:
|
|
if self.verbose:
|
|
logger.error("Using mask_token, but it is not set yet.")
|
|
return None
|
|
return str(self._mask_token)
|
|
|
|
@property
|
|
def additional_special_tokens(self) -> List[str]:
|
|
"""
|
|
`List[str]`: All the additional special tokens you may want to use. Log an error if used while not having been
|
|
set.
|
|
"""
|
|
if self._additional_special_tokens is None:
|
|
if self.verbose:
|
|
logger.error("Using additional_special_tokens, but it is not set yet.")
|
|
return None
|
|
return [str(tok) for tok in self._additional_special_tokens]
|
|
|
|
@bos_token.setter
|
|
def bos_token(self, value):
|
|
if not isinstance(value, (str, AddedToken)) and value is not None:
|
|
raise ValueError("Cannot set a non-string value as the BOS token")
|
|
self._bos_token = value
|
|
|
|
@eos_token.setter
|
|
def eos_token(self, value):
|
|
if not isinstance(value, (str, AddedToken)) and value is not None:
|
|
raise ValueError("Cannot set a non-string value as the EOS token")
|
|
self._eos_token = value
|
|
|
|
@unk_token.setter
|
|
def unk_token(self, value):
|
|
if not isinstance(value, (str, AddedToken)) and value is not None:
|
|
raise ValueError("Cannot set a non-string value as the UNK token")
|
|
self._unk_token = value
|
|
|
|
@sep_token.setter
|
|
def sep_token(self, value):
|
|
if not isinstance(value, (str, AddedToken)) and value is not None:
|
|
raise ValueError("Cannot set a non-string value as the SEP token")
|
|
self._sep_token = value
|
|
|
|
@pad_token.setter
|
|
def pad_token(self, value):
|
|
if not isinstance(value, (str, AddedToken)) and value is not None:
|
|
raise ValueError("Cannot set a non-string value as the PAD token")
|
|
self._pad_token = value
|
|
|
|
@cls_token.setter
|
|
def cls_token(self, value):
|
|
if not isinstance(value, (str, AddedToken)) and value is not None:
|
|
raise ValueError("Cannot set a non-string value as the CLS token")
|
|
self._cls_token = value
|
|
|
|
@mask_token.setter
|
|
def mask_token(self, value):
|
|
if not isinstance(value, (str, AddedToken)) and value is not None:
|
|
raise ValueError("Cannot set a non-string value as the MASK token")
|
|
self._mask_token = value
|
|
|
|
@additional_special_tokens.setter
|
|
def additional_special_tokens(self, value):
|
|
self._additional_special_tokens = value if value is not None else None
|
|
|
|
@property
|
|
def bos_token_id(self) -> Optional[int]:
|
|
"""
|
|
`Optional[int]`: Id of the beginning of sentence token in the vocabulary. Returns `None` if the token has not
|
|
been set.
|
|
"""
|
|
if self._bos_token is None:
|
|
return None
|
|
return self.convert_tokens_to_ids(self.bos_token)
|
|
|
|
@property
|
|
def eos_token_id(self) -> Optional[int]:
|
|
"""
|
|
`Optional[int]`: Id of the end of sentence token in the vocabulary. Returns `None` if the token has not been
|
|
set.
|
|
"""
|
|
if self._eos_token is None:
|
|
return None
|
|
return self.convert_tokens_to_ids(self.eos_token)
|
|
|
|
@property
|
|
def unk_token_id(self) -> Optional[int]:
|
|
"""
|
|
`Optional[int]`: Id of the unknown token in the vocabulary. Returns `None` if the token has not been set.
|
|
"""
|
|
if self._unk_token is None:
|
|
return None
|
|
return self.convert_tokens_to_ids(self.unk_token)
|
|
|
|
@property
|
|
def sep_token_id(self) -> Optional[int]:
|
|
"""
|
|
`Optional[int]`: Id of the separation token in the vocabulary, to separate context and query in an input
|
|
sequence. Returns `None` if the token has not been set.
|
|
"""
|
|
if self._sep_token is None:
|
|
return None
|
|
return self.convert_tokens_to_ids(self.sep_token)
|
|
|
|
@property
|
|
def pad_token_id(self) -> Optional[int]:
|
|
"""
|
|
`Optional[int]`: Id of the padding token in the vocabulary. Returns `None` if the token has not been set.
|
|
"""
|
|
if self._pad_token is None:
|
|
return None
|
|
return self.convert_tokens_to_ids(self.pad_token)
|
|
|
|
@property
|
|
def pad_token_type_id(self) -> int:
|
|
"""
|
|
`int`: Id of the padding token type in the vocabulary.
|
|
"""
|
|
return self._pad_token_type_id
|
|
|
|
@property
|
|
def cls_token_id(self) -> Optional[int]:
|
|
"""
|
|
`Optional[int]`: Id of the classification token in the vocabulary, to extract a summary of an input sequence
|
|
leveraging self-attention along the full depth of the model.
|
|
|
|
Returns `None` if the token has not been set.
|
|
"""
|
|
if self._cls_token is None:
|
|
return None
|
|
return self.convert_tokens_to_ids(self.cls_token)
|
|
|
|
@property
|
|
def mask_token_id(self) -> Optional[int]:
|
|
"""
|
|
`Optional[int]`: Id of the mask token in the vocabulary, used when training a model with masked-language
|
|
modeling. Returns `None` if the token has not been set.
|
|
"""
|
|
if self._mask_token is None:
|
|
return None
|
|
return self.convert_tokens_to_ids(self.mask_token)
|
|
|
|
@property
|
|
def additional_special_tokens_ids(self) -> List[int]:
|
|
"""
|
|
`List[int]`: Ids of all the additional special tokens in the vocabulary. Log an error if used while not having
|
|
been set.
|
|
"""
|
|
return self.convert_tokens_to_ids(self.additional_special_tokens)
|
|
|
|
@bos_token_id.setter
|
|
def bos_token_id(self, value):
|
|
self._bos_token = self.convert_ids_to_tokens(value) if value is not None else None
|
|
|
|
@eos_token_id.setter
|
|
def eos_token_id(self, value):
|
|
self._eos_token = self.convert_ids_to_tokens(value) if value is not None else None
|
|
|
|
@unk_token_id.setter
|
|
def unk_token_id(self, value):
|
|
self._unk_token = self.convert_ids_to_tokens(value) if value is not None else None
|
|
|
|
@sep_token_id.setter
|
|
def sep_token_id(self, value):
|
|
self._sep_token = self.convert_ids_to_tokens(value) if value is not None else None
|
|
|
|
@pad_token_id.setter
|
|
def pad_token_id(self, value):
|
|
self._pad_token = self.convert_ids_to_tokens(value) if value is not None else None
|
|
|
|
@cls_token_id.setter
|
|
def cls_token_id(self, value):
|
|
self._cls_token = self.convert_ids_to_tokens(value) if value is not None else None
|
|
|
|
@mask_token_id.setter
|
|
def mask_token_id(self, value):
|
|
self._mask_token = self.convert_ids_to_tokens(value) if value is not None else None
|
|
|
|
@additional_special_tokens_ids.setter
|
|
def additional_special_tokens_ids(self, values):
|
|
self._additional_special_tokens = [self.convert_ids_to_tokens(value) for value in values]
|
|
|
|
@property
|
|
def special_tokens_map(self) -> Dict[str, Union[str, List[str]]]:
|
|
"""
|
|
`Dict[str, Union[str, List[str]]]`: A dictionary mapping special token class attributes (`cls_token`,
|
|
`unk_token`, etc.) to their values (`'<unk>'`, `'<cls>'`, etc.).
|
|
|
|
Convert potential tokens of `tokenizers.AddedToken` type to string.
|
|
"""
|
|
set_attr = {}
|
|
for attr in self.SPECIAL_TOKENS_ATTRIBUTES:
|
|
attr_value = getattr(self, attr)
|
|
if attr_value:
|
|
set_attr[attr] = attr_value
|
|
return set_attr
|
|
|
|
@property
|
|
def special_tokens_map_extended(self) -> Dict[str, Union[str, AddedToken, List[Union[str, AddedToken]]]]:
|
|
"""
|
|
`Dict[str, Union[str, tokenizers.AddedToken, List[Union[str, tokenizers.AddedToken]]]]`: A dictionary mapping
|
|
special token class attributes (`cls_token`, `unk_token`, etc.) to their values (`'<unk>'`, `'<cls>'`, etc.).
|
|
|
|
Don't convert tokens of `tokenizers.AddedToken` type to string so they can be used to control more finely how
|
|
special tokens are tokenized.
|
|
"""
|
|
set_attr = {}
|
|
for attr in self.SPECIAL_TOKENS_ATTRIBUTES:
|
|
attr_value = getattr(self, "_" + attr)
|
|
if attr_value:
|
|
set_attr[attr] = attr_value
|
|
return set_attr
|
|
|
|
@property
|
|
def all_special_tokens_extended(self) -> List[Union[str, AddedToken]]:
|
|
"""
|
|
`List[Union[str, tokenizers.AddedToken]]`: All the special tokens (`'<unk>'`, `'<cls>'`, etc.), the order has
|
|
nothing to do with the index of each tokens. If you want to know the correct indices, check
|
|
`self.added_tokens_encoder`. We can't create an order anymore as the keys are `AddedTokens` and not `Strings`.
|
|
|
|
Don't convert tokens of `tokenizers.AddedToken` type to string so they can be used to control more finely how
|
|
special tokens are tokenized.
|
|
"""
|
|
all_tokens = []
|
|
seen = set()
|
|
for value in self.special_tokens_map_extended.values():
|
|
if isinstance(value, (list, tuple)):
|
|
tokens_to_add = [token for token in value if str(token) not in seen]
|
|
else:
|
|
tokens_to_add = [value] if str(value) not in seen else []
|
|
seen.update(map(str, tokens_to_add))
|
|
all_tokens.extend(tokens_to_add)
|
|
return all_tokens
|
|
|
|
@property
|
|
def all_special_tokens(self) -> List[str]:
|
|
"""
|
|
`List[str]`: A list of the unique special tokens (`'<unk>'`, `'<cls>'`, ..., etc.).
|
|
|
|
Convert tokens of `tokenizers.AddedToken` type to string.
|
|
"""
|
|
all_toks = [str(s) for s in self.all_special_tokens_extended]
|
|
return all_toks
|
|
|
|
@property
|
|
def all_special_ids(self) -> List[int]:
|
|
"""
|
|
`List[int]`: List the ids of the special tokens(`'<unk>'`, `'<cls>'`, etc.) mapped to class attributes.
|
|
"""
|
|
all_toks = self.all_special_tokens
|
|
all_ids = self.convert_tokens_to_ids(all_toks)
|
|
return all_ids
|
|
|
|
|
|
ENCODE_KWARGS_DOCSTRING = r"""
|
|
add_special_tokens (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to add special tokens when encoding the sequences. This will use the underlying
|
|
`PretrainedTokenizerBase.build_inputs_with_special_tokens` function, which defines which tokens are
|
|
automatically added to the input ids. This is usefull if you want to add `bos` or `eos` tokens
|
|
automatically.
|
|
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
|
Activates and controls padding. Accepts the following values:
|
|
|
|
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
|
sequence if provided).
|
|
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
|
acceptable input length for the model if that argument is not provided.
|
|
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
|
lengths).
|
|
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
|
|
Activates and controls truncation. Accepts the following values:
|
|
|
|
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
|
|
to the maximum acceptable input length for the model if that argument is not provided. This will
|
|
truncate token by token, removing a token from the longest sequence in the pair if a pair of
|
|
sequences (or a batch of pairs) is provided.
|
|
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
|
maximum acceptable input length for the model if that argument is not provided. This will only
|
|
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
|
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
|
maximum acceptable input length for the model if that argument is not provided. This will only
|
|
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
|
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
|
|
greater than the model maximum admissible input size).
|
|
max_length (`int`, *optional*):
|
|
Controls the maximum length to use by one of the truncation/padding parameters.
|
|
|
|
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
|
|
is required by one of the truncation/padding parameters. If the model has no specific maximum input
|
|
length (like XLNet) truncation/padding to a maximum length will be deactivated.
|
|
stride (`int`, *optional*, defaults to 0):
|
|
If set to a number along with `max_length`, the overflowing tokens returned when
|
|
`return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence
|
|
returned to provide some overlap between truncated and overflowing sequences. The value of this
|
|
argument defines the number of overlapping tokens.
|
|
is_split_into_words (`bool`, *optional*, defaults to `False`):
|
|
Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the
|
|
tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
|
|
which it will tokenize. This is useful for NER or token classification.
|
|
pad_to_multiple_of (`int`, *optional*):
|
|
If set will pad the sequence to a multiple of the provided value. Requires `padding` to be activated.
|
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
|
`>= 7.5` (Volta).
|
|
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
|
If set, will return tensors instead of list of python integers. Acceptable values are:
|
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
|
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
|
- `'np'`: Return Numpy `np.ndarray` objects.
|
|
"""
|
|
|
|
ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r"""
|
|
return_token_type_ids (`bool`, *optional*):
|
|
Whether to return token type IDs. If left to the default, will return the token type IDs according to
|
|
the specific tokenizer's default, defined by the `return_outputs` attribute.
|
|
|
|
[What are token type IDs?](../glossary#token-type-ids)
|
|
return_attention_mask (`bool`, *optional*):
|
|
Whether to return the attention mask. If left to the default, will return the attention mask according
|
|
to the specific tokenizer's default, defined by the `return_outputs` attribute.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
return_overflowing_tokens (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
|
|
of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead
|
|
of returning overflowing tokens.
|
|
return_special_tokens_mask (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to return special tokens mask information.
|
|
return_offsets_mapping (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to return `(char_start, char_end)` for each token.
|
|
|
|
This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using
|
|
Python's tokenizer, this method will raise `NotImplementedError`.
|
|
return_length (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to return the lengths of the encoded inputs.
|
|
verbose (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to print more information and warnings.
|
|
**kwargs: passed to the `self.tokenize()` method
|
|
|
|
Return:
|
|
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
|
|
|
- **input_ids** -- List of token ids to be fed to a model.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
|
|
- **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or
|
|
if *"token_type_ids"* is in `self.model_input_names`).
|
|
|
|
[What are token type IDs?](../glossary#token-type-ids)
|
|
|
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`).
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
|
|
- **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and
|
|
`return_overflowing_tokens=True`).
|
|
- **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and
|
|
`return_overflowing_tokens=True`).
|
|
- **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
|
|
regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`).
|
|
- **length** -- The length of the inputs (when `return_length=True`)
|
|
"""
|
|
|
|
|
|
INIT_TOKENIZER_DOCSTRING = r"""
|
|
Class attributes (overridden by derived classes)
|
|
|
|
- **vocab_files_names** (`Dict[str, str]`) -- A dictionary with, as keys, the `__init__` keyword name of each
|
|
vocabulary file required by the model, and as associated values, the filename for saving the associated file
|
|
(string).
|
|
- **pretrained_vocab_files_map** (`Dict[str, Dict[str, str]]`) -- A dictionary of dictionaries, with the
|
|
high-level keys being the `__init__` keyword name of each vocabulary file required by the model, the
|
|
low-level being the `short-cut-names` of the pretrained models with, as associated values, the `url` to the
|
|
associated pretrained vocabulary file.
|
|
- **model_input_names** (`List[str]`) -- A list of inputs expected in the forward pass of the model.
|
|
- **padding_side** (`str`) -- The default value for the side on which the model should have padding applied.
|
|
Should be `'right'` or `'left'`.
|
|
- **truncation_side** (`str`) -- The default value for the side on which the model should have truncation
|
|
applied. Should be `'right'` or `'left'`.
|
|
|
|
Args:
|
|
model_max_length (`int`, *optional*):
|
|
The maximum length (in number of tokens) for the inputs to the transformer model. When the tokenizer is
|
|
loaded with [`~tokenization_utils_base.PreTrainedTokenizerBase.from_pretrained`], this will be set to the
|
|
value stored for the associated model in `max_model_input_sizes` (see above). If no value is provided, will
|
|
default to VERY_LARGE_INTEGER (`int(1e30)`).
|
|
padding_side (`str`, *optional*):
|
|
The side on which the model should have padding applied. Should be selected between ['right', 'left'].
|
|
Default value is picked from the class attribute of the same name.
|
|
truncation_side (`str`, *optional*):
|
|
The side on which the model should have truncation applied. Should be selected between ['right', 'left'].
|
|
Default value is picked from the class attribute of the same name.
|
|
chat_template (`str`, *optional*):
|
|
A Jinja template string that will be used to format lists of chat messages. See
|
|
https://huggingface.co/docs/transformers/chat_templating for a full description.
|
|
model_input_names (`List[string]`, *optional*):
|
|
The list of inputs accepted by the forward pass of the model (like `"token_type_ids"` or
|
|
`"attention_mask"`). Default value is picked from the class attribute of the same name.
|
|
bos_token (`str` or `tokenizers.AddedToken`, *optional*):
|
|
A special token representing the beginning of a sentence. Will be associated to `self.bos_token` and
|
|
`self.bos_token_id`.
|
|
eos_token (`str` or `tokenizers.AddedToken`, *optional*):
|
|
A special token representing the end of a sentence. Will be associated to `self.eos_token` and
|
|
`self.eos_token_id`.
|
|
unk_token (`str` or `tokenizers.AddedToken`, *optional*):
|
|
A special token representing an out-of-vocabulary token. Will be associated to `self.unk_token` and
|
|
`self.unk_token_id`.
|
|
sep_token (`str` or `tokenizers.AddedToken`, *optional*):
|
|
A special token separating two different sentences in the same input (used by BERT for instance). Will be
|
|
associated to `self.sep_token` and `self.sep_token_id`.
|
|
pad_token (`str` or `tokenizers.AddedToken`, *optional*):
|
|
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
|
|
attention mechanisms or loss computation. Will be associated to `self.pad_token` and `self.pad_token_id`.
|
|
cls_token (`str` or `tokenizers.AddedToken`, *optional*):
|
|
A special token representing the class of the input (used by BERT for instance). Will be associated to
|
|
`self.cls_token` and `self.cls_token_id`.
|
|
mask_token (`str` or `tokenizers.AddedToken`, *optional*):
|
|
A special token representing a masked token (used by masked-language modeling pretraining objectives, like
|
|
BERT). Will be associated to `self.mask_token` and `self.mask_token_id`.
|
|
additional_special_tokens (tuple or list of `str` or `tokenizers.AddedToken`, *optional*):
|
|
A tuple or a list of additional special tokens. Add them here to ensure they are skipped when decoding with
|
|
`skip_special_tokens` is set to True. If they are not part of the vocabulary, they will be added at the end
|
|
of the vocabulary.
|
|
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should cleanup the spaces that were added when splitting the input text during the
|
|
tokenization process.
|
|
split_special_tokens (`bool`, *optional*, defaults to `False`):
|
|
Whether or not the special tokens should be split during the tokenization process. The default behavior is
|
|
to not split special tokens. This means that if `<s>` is the `bos_token`, then `tokenizer.tokenize("<s>") =
|
|
['<s>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<s>")` will be give `['<',
|
|
's', '>']`. This argument is only supported for `slow` tokenizers for the moment.
|
|
"""
|
|
|
|
|
|
@add_end_docstrings(INIT_TOKENIZER_DOCSTRING)
|
|
class PreTrainedTokenizerBase(SpecialTokensMixin, PushToHubMixin):
|
|
"""
|
|
Base class for [`PreTrainedTokenizer`] and [`PreTrainedTokenizerFast`].
|
|
|
|
Handles shared (mostly boiler plate) methods for those two classes.
|
|
"""
|
|
|
|
vocab_files_names: Dict[str, str] = {}
|
|
pretrained_vocab_files_map: Dict[str, Dict[str, str]] = {}
|
|
_auto_class: Optional[str] = None
|
|
|
|
# first name has to correspond to main model input name
|
|
# to make sure `tokenizer.pad(...)` works correctly
|
|
model_input_names: List[str] = ["input_ids", "token_type_ids", "attention_mask"]
|
|
padding_side: str = "right"
|
|
truncation_side: str = "right"
|
|
slow_tokenizer_class = None
|
|
|
|
def __init__(self, **kwargs):
|
|
# inputs and kwargs for saving and re-loading (see ``from_pretrained`` and ``save_pretrained``)
|
|
self.init_inputs = ()
|
|
self.init_kwargs = copy.deepcopy(kwargs)
|
|
self.name_or_path = kwargs.pop("name_or_path", "")
|
|
self._processor_class = kwargs.pop("processor_class", None)
|
|
|
|
# For backward compatibility we fallback to set model_max_length from max_len if provided
|
|
model_max_length = kwargs.pop("model_max_length", kwargs.pop("max_len", None))
|
|
self.model_max_length = model_max_length if model_max_length is not None else VERY_LARGE_INTEGER
|
|
|
|
# Padding and truncation side are right by default and overridden in subclasses. If specified in the kwargs, it
|
|
# is changed.
|
|
self.padding_side = kwargs.pop("padding_side", self.padding_side)
|
|
if self.padding_side not in ["right", "left"]:
|
|
raise ValueError(
|
|
f"Padding side should be selected between 'right' and 'left', current value: {self.padding_side}"
|
|
)
|
|
|
|
self.truncation_side = kwargs.pop("truncation_side", self.truncation_side)
|
|
if self.truncation_side not in ["right", "left"]:
|
|
raise ValueError(
|
|
f"Truncation side should be selected between 'right' and 'left', current value: {self.truncation_side}"
|
|
)
|
|
|
|
self.model_input_names = kwargs.pop("model_input_names", self.model_input_names)
|
|
|
|
# By default, cleaning tokenization spaces for both fast and slow tokenizers
|
|
self.clean_up_tokenization_spaces = kwargs.pop("clean_up_tokenization_spaces", True)
|
|
|
|
# By default, do not split special tokens for both fast and slow tokenizers
|
|
self.split_special_tokens = kwargs.pop("split_special_tokens", False)
|
|
|
|
self.deprecation_warnings = {} # Use to store when we have already noticed a deprecation warning (avoid overlogging).
|
|
self._in_target_context_manager = False
|
|
|
|
# Stores a Jinja template that formats chat histories into tokenizable strings
|
|
self.chat_template = kwargs.pop("chat_template", None)
|
|
if isinstance(self.chat_template, (list, tuple)):
|
|
# Chat templates are stored as lists of dicts with fixed key names,
|
|
# we reconstruct that into a single dict while loading them.
|
|
self.chat_template = {template["name"]: template["template"] for template in self.chat_template}
|
|
|
|
super().__init__(**kwargs)
|
|
|
|
@property
|
|
def max_len_single_sentence(self) -> int:
|
|
"""
|
|
`int`: The maximum length of a sentence that can be fed to the model.
|
|
"""
|
|
return self.model_max_length - self.num_special_tokens_to_add(pair=False)
|
|
|
|
@property
|
|
def max_len_sentences_pair(self) -> int:
|
|
"""
|
|
`int`: The maximum combined length of a pair of sentences that can be fed to the model.
|
|
"""
|
|
return self.model_max_length - self.num_special_tokens_to_add(pair=True)
|
|
|
|
@max_len_single_sentence.setter
|
|
def max_len_single_sentence(self, value) -> int:
|
|
# For backward compatibility, allow to try to setup 'max_len_single_sentence'.
|
|
if value == self.model_max_length - self.num_special_tokens_to_add(pair=False) and self.verbose:
|
|
if not self.deprecation_warnings.get("max_len_single_sentence", False):
|
|
logger.warning(
|
|
"Setting 'max_len_single_sentence' is now deprecated. This value is automatically set up."
|
|
)
|
|
self.deprecation_warnings["max_len_single_sentence"] = True
|
|
else:
|
|
raise ValueError(
|
|
"Setting 'max_len_single_sentence' is now deprecated. This value is automatically set up."
|
|
)
|
|
|
|
@max_len_sentences_pair.setter
|
|
def max_len_sentences_pair(self, value) -> int:
|
|
# For backward compatibility, allow to try to setup 'max_len_sentences_pair'.
|
|
if value == self.model_max_length - self.num_special_tokens_to_add(pair=True) and self.verbose:
|
|
if not self.deprecation_warnings.get("max_len_sentences_pair", False):
|
|
logger.warning(
|
|
"Setting 'max_len_sentences_pair' is now deprecated. This value is automatically set up."
|
|
)
|
|
self.deprecation_warnings["max_len_sentences_pair"] = True
|
|
else:
|
|
raise ValueError("Setting 'max_len_sentences_pair' is now deprecated. This value is automatically set up.")
|
|
|
|
def _set_processor_class(self, processor_class: str):
|
|
"""Sets processor class as an attribute."""
|
|
self._processor_class = processor_class
|
|
|
|
@property
|
|
def added_tokens_decoder(self) -> Dict[int, AddedToken]:
|
|
raise NotImplementedError()
|
|
|
|
def __repr__(self) -> str:
|
|
added_tokens_decoder_rep = "\n\t".join([f"{k}: {v.__repr__()}," for k, v in self.added_tokens_decoder.items()])
|
|
return (
|
|
f"{self.__class__.__name__}(name_or_path='{self.name_or_path}',"
|
|
f" vocab_size={self.vocab_size}, model_max_length={self.model_max_length}, is_fast={self.is_fast},"
|
|
f" padding_side='{self.padding_side}', truncation_side='{self.truncation_side}',"
|
|
f" special_tokens={self.special_tokens_map}, clean_up_tokenization_spaces={self.clean_up_tokenization_spaces}), "
|
|
" added_tokens_decoder={\n\t" + added_tokens_decoder_rep + "\n}"
|
|
)
|
|
|
|
def __len__(self) -> int:
|
|
raise NotImplementedError()
|
|
|
|
def get_vocab(self) -> Dict[str, int]:
|
|
"""
|
|
Returns the vocabulary as a dictionary of token to index.
|
|
|
|
`tokenizer.get_vocab()[token]` is equivalent to `tokenizer.convert_tokens_to_ids(token)` when `token` is in the
|
|
vocab.
|
|
|
|
Returns:
|
|
`Dict[str, int]`: The vocabulary.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
def apply_chat_template(
|
|
self,
|
|
conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]], "Conversation"],
|
|
chat_template: Optional[str] = None,
|
|
add_generation_prompt: bool = False,
|
|
tokenize: bool = True,
|
|
padding: bool = False,
|
|
truncation: bool = False,
|
|
max_length: Optional[int] = None,
|
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
|
return_dict: bool = False,
|
|
tokenizer_kwargs: Optional[Dict[str, Any]] = None,
|
|
**kwargs,
|
|
) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]:
|
|
"""
|
|
Converts a list of dictionaries with `"role"` and `"content"` keys to a list of token
|
|
ids. This method is intended for use with chat models, and will read the tokenizer's chat_template attribute to
|
|
determine the format and control tokens to use when converting. When chat_template is None, it will fall back
|
|
to the default_chat_template specified at the class level.
|
|
|
|
Args:
|
|
conversation (Union[List[Dict[str, str]], List[List[Dict[str, str]]], "Conversation"]): A list of dicts
|
|
with "role" and "content" keys, representing the chat history so far.
|
|
chat_template (str, *optional*): A Jinja template to use for this conversion. If
|
|
this is not passed, the model's default chat template will be used instead.
|
|
add_generation_prompt (bool, *optional*): Whether to end the prompt with the token(s) that indicate
|
|
the start of an assistant message. This is useful when you want to generate a response from the model.
|
|
Note that this argument will be passed to the chat template, and so it must be supported in the
|
|
template for this argument to have any effect.
|
|
tokenize (`bool`, defaults to `True`):
|
|
Whether to tokenize the output. If `False`, the output will be a string.
|
|
padding (`bool`, defaults to `False`):
|
|
Whether to pad sequences to the maximum length. Has no effect if tokenize is `False`.
|
|
truncation (`bool`, defaults to `False`):
|
|
Whether to truncate sequences at the maximum length. Has no effect if tokenize is `False`.
|
|
max_length (`int`, *optional*):
|
|
Maximum length (in tokens) to use for padding or truncation. Has no effect if tokenize is `False`. If
|
|
not specified, the tokenizer's `max_length` attribute will be used as a default.
|
|
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
|
If set, will return tensors of a particular framework. Has no effect if tokenize is `False`. Acceptable
|
|
values are:
|
|
- `'tf'`: Return TensorFlow `tf.Tensor` objects.
|
|
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
|
- `'np'`: Return NumPy `np.ndarray` objects.
|
|
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
|
return_dict (`bool`, defaults to `False`):
|
|
Whether to return a dictionary with named outputs. Has no effect if tokenize is `False`.
|
|
tokenizer_kwargs (`Dict[str: Any]`, *optional*): Additional kwargs to pass to the tokenizer.
|
|
**kwargs: Additional kwargs to pass to the template renderer. Will be accessible by the chat template.
|
|
|
|
Returns:
|
|
`Union[List[int], Dict]`: A list of token ids representing the tokenized chat so far, including control tokens. This
|
|
output is ready to pass to the model, either directly or via methods like `generate()`. If `return_dict` is
|
|
set, will return a dict of tokenizer outputs instead.
|
|
"""
|
|
|
|
if return_dict and not tokenize:
|
|
raise ValueError(
|
|
"`return_dict=True` is incompatible with `tokenize=False`, because there is no dict "
|
|
"of tokenizer outputs to return."
|
|
)
|
|
|
|
if tokenizer_kwargs is None:
|
|
tokenizer_kwargs = {}
|
|
|
|
# First, handle the cases when the model has a dict of multiple templates
|
|
if isinstance(self.chat_template, dict) or (
|
|
self.chat_template is None and isinstance(self.default_chat_template, dict)
|
|
):
|
|
template_dict = self.chat_template or self.default_chat_template
|
|
if chat_template is not None and chat_template in template_dict:
|
|
# The user can pass the name of a template to the chat template argument instead of an entire template
|
|
chat_template = template_dict[chat_template]
|
|
elif chat_template is None and "default" in template_dict:
|
|
chat_template = template_dict["default"]
|
|
elif chat_template is None:
|
|
raise ValueError(
|
|
"This model has multiple chat templates with no default specified! Please either pass a chat "
|
|
"template or the name of the template you wish to use to the `chat_template` argument. Available "
|
|
f"template names are {sorted(template_dict.keys())}."
|
|
)
|
|
elif chat_template is None:
|
|
# These are the cases when the model has a single template
|
|
# priority: `chat_template` argument > `tokenizer.chat_template` > `tokenizer.default_chat_template
|
|
if self.chat_template is not None:
|
|
chat_template = self.chat_template
|
|
else:
|
|
chat_template = self.default_chat_template
|
|
|
|
# Compilation function uses a cache to avoid recompiling the same template
|
|
compiled_template = self._compile_jinja_template(chat_template)
|
|
|
|
if isinstance(conversation, (list, tuple)) and (
|
|
isinstance(conversation[0], (list, tuple)) or hasattr(conversation[0], "messages")
|
|
):
|
|
conversations = conversation
|
|
is_batched = True
|
|
else:
|
|
conversations = [conversation]
|
|
is_batched = False
|
|
|
|
rendered = []
|
|
template_kwargs = {**self.special_tokens_map, **kwargs} # kwargs overwrite special tokens if both are present
|
|
for chat in conversations:
|
|
if hasattr(chat, "messages"):
|
|
# Indicates it's a Conversation object
|
|
chat = chat.messages
|
|
rendered_chat = compiled_template.render(
|
|
messages=chat, add_generation_prompt=add_generation_prompt, **template_kwargs
|
|
)
|
|
rendered.append(rendered_chat)
|
|
|
|
if not is_batched:
|
|
rendered = rendered[0]
|
|
|
|
if tokenize:
|
|
out = self(
|
|
rendered,
|
|
padding=padding,
|
|
truncation=truncation,
|
|
max_length=max_length,
|
|
add_special_tokens=False,
|
|
return_tensors=return_tensors,
|
|
**tokenizer_kwargs,
|
|
)
|
|
if return_dict:
|
|
return out
|
|
else:
|
|
return out["input_ids"]
|
|
else:
|
|
return rendered
|
|
|
|
@lru_cache
|
|
def _compile_jinja_template(self, chat_template):
|
|
try:
|
|
import jinja2
|
|
from jinja2.exceptions import TemplateError
|
|
from jinja2.sandbox import ImmutableSandboxedEnvironment
|
|
except ImportError:
|
|
raise ImportError("apply_chat_template requires jinja2 to be installed.")
|
|
|
|
if version.parse(jinja2.__version__) < version.parse("3.0.0"):
|
|
raise ImportError(
|
|
"apply_chat_template requires jinja2>=3.0.0 to be installed. Your version is " f"{jinja2.__version__}."
|
|
)
|
|
|
|
def raise_exception(message):
|
|
raise TemplateError(message)
|
|
|
|
jinja_env = ImmutableSandboxedEnvironment(trim_blocks=True, lstrip_blocks=True)
|
|
jinja_env.globals["raise_exception"] = raise_exception
|
|
return jinja_env.from_string(chat_template)
|
|
|
|
@property
|
|
def default_chat_template(self):
|
|
"""
|
|
This template formats inputs in the standard ChatML format. See
|
|
https://github.com/openai/openai-python/blob/main/chatml.md
|
|
"""
|
|
logger.warning_once(
|
|
"\nNo chat template is defined for this tokenizer - using a default chat template "
|
|
"that implements the ChatML format (without BOS/EOS tokens!). If the default is not appropriate for "
|
|
"your model, please set `tokenizer.chat_template` to an appropriate template. "
|
|
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
|
|
)
|
|
return (
|
|
"{% for message in messages %}"
|
|
"{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}"
|
|
"{% endfor %}"
|
|
"{% if add_generation_prompt %}"
|
|
"{{ '<|im_start|>assistant\n' }}"
|
|
"{% endif %}"
|
|
)
|
|
|
|
@classmethod
|
|
def from_pretrained(
|
|
cls,
|
|
pretrained_model_name_or_path: Union[str, os.PathLike],
|
|
*init_inputs,
|
|
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
|
force_download: bool = False,
|
|
local_files_only: bool = False,
|
|
token: Optional[Union[str, bool]] = None,
|
|
revision: str = "main",
|
|
trust_remote_code=False,
|
|
**kwargs,
|
|
):
|
|
r"""
|
|
Instantiate a [`~tokenization_utils_base.PreTrainedTokenizerBase`] (or a derived class) from a predefined
|
|
tokenizer.
|
|
|
|
Args:
|
|
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
|
Can be either:
|
|
|
|
- A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co.
|
|
- A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved
|
|
using the [`~tokenization_utils_base.PreTrainedTokenizerBase.save_pretrained`] method, e.g.,
|
|
`./my_model_directory/`.
|
|
- (**Deprecated**, not applicable to all derived classes) A path or url to a single saved vocabulary
|
|
file (if and only if the tokenizer only requires a single vocabulary file like Bert or XLNet), e.g.,
|
|
`./my_model_directory/vocab.txt`.
|
|
cache_dir (`str` or `os.PathLike`, *optional*):
|
|
Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the
|
|
standard cache should not be used.
|
|
force_download (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to force the (re-)download the vocabulary files and override the cached versions if they
|
|
exist.
|
|
resume_download (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to delete incompletely received files. Attempt to resume the download if such a file
|
|
exists.
|
|
proxies (`Dict[str, str]`, *optional*):
|
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
|
token (`str` or *bool*, *optional*):
|
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
|
when running `huggingface-cli login` (stored in `~/.huggingface`).
|
|
local_files_only (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to only rely on local files and not to attempt to download any files.
|
|
revision (`str`, *optional*, defaults to `"main"`):
|
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
|
identifier allowed by git.
|
|
subfolder (`str`, *optional*):
|
|
In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for
|
|
facebook/rag-token-base), specify it here.
|
|
inputs (additional positional arguments, *optional*):
|
|
Will be passed along to the Tokenizer `__init__` method.
|
|
trust_remote_code (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
|
|
should only be set to `True` for repositories you trust and in which you have read the code, as it will
|
|
execute code present on the Hub on your local machine.
|
|
kwargs (additional keyword arguments, *optional*):
|
|
Will be passed to the Tokenizer `__init__` method. Can be used to set special tokens like `bos_token`,
|
|
`eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`,
|
|
`additional_special_tokens`. See parameters in the `__init__` for more details.
|
|
|
|
<Tip>
|
|
|
|
Passing `token=True` is required when you want to use a private model.
|
|
|
|
</Tip>
|
|
|
|
Examples:
|
|
|
|
```python
|
|
# We can't instantiate directly the base class *PreTrainedTokenizerBase* so let's show our examples on a derived class: BertTokenizer
|
|
# Download vocabulary from huggingface.co and cache.
|
|
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
|
|
|
# Download vocabulary from huggingface.co (user-uploaded) and cache.
|
|
tokenizer = BertTokenizer.from_pretrained("dbmdz/bert-base-german-cased")
|
|
|
|
# If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*)
|
|
tokenizer = BertTokenizer.from_pretrained("./test/saved_model/")
|
|
|
|
# If the tokenizer uses a single vocabulary file, you can point directly to this file
|
|
tokenizer = BertTokenizer.from_pretrained("./test/saved_model/my_vocab.txt")
|
|
|
|
# You can link tokens to special vocabulary when instantiating
|
|
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased", unk_token="<unk>")
|
|
# You should be sure '<unk>' is in the vocabulary when doing that.
|
|
# Otherwise use tokenizer.add_special_tokens({'unk_token': '<unk>'}) instead)
|
|
assert tokenizer.unk_token == "<unk>"
|
|
```"""
|
|
resume_download = kwargs.pop("resume_download", False)
|
|
proxies = kwargs.pop("proxies", None)
|
|
use_auth_token = kwargs.pop("use_auth_token", None)
|
|
subfolder = kwargs.pop("subfolder", None)
|
|
from_pipeline = kwargs.pop("_from_pipeline", None)
|
|
from_auto_class = kwargs.pop("_from_auto", False)
|
|
commit_hash = kwargs.pop("_commit_hash", None)
|
|
|
|
if use_auth_token is not None:
|
|
warnings.warn(
|
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
|
FutureWarning,
|
|
)
|
|
if token is not None:
|
|
raise ValueError(
|
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
|
)
|
|
token = use_auth_token
|
|
|
|
user_agent = {"file_type": "tokenizer", "from_auto_class": from_auto_class, "is_fast": "Fast" in cls.__name__}
|
|
if from_pipeline is not None:
|
|
user_agent["using_pipeline"] = from_pipeline
|
|
|
|
if is_offline_mode() and not local_files_only:
|
|
logger.info("Offline mode: forcing local_files_only=True")
|
|
local_files_only = True
|
|
|
|
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
|
vocab_files = {}
|
|
init_configuration = {}
|
|
|
|
is_local = os.path.isdir(pretrained_model_name_or_path)
|
|
single_file_id = None
|
|
if os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
|
|
if len(cls.vocab_files_names) > 1:
|
|
raise ValueError(
|
|
f"Calling {cls.__name__}.from_pretrained() with the path to a single file or url is not "
|
|
"supported for this tokenizer. Use a model identifier or the path to a directory instead."
|
|
)
|
|
warnings.warn(
|
|
f"Calling {cls.__name__}.from_pretrained() with the path to a single file or url is deprecated and "
|
|
"won't be possible anymore in v5. Use a model identifier or the path to a directory instead.",
|
|
FutureWarning,
|
|
)
|
|
file_id = list(cls.vocab_files_names.keys())[0]
|
|
|
|
vocab_files[file_id] = pretrained_model_name_or_path
|
|
single_file_id = file_id
|
|
else:
|
|
# At this point pretrained_model_name_or_path is either a directory or a model identifier name
|
|
additional_files_names = {
|
|
"added_tokens_file": ADDED_TOKENS_FILE, # kept only for legacy
|
|
"special_tokens_map_file": SPECIAL_TOKENS_MAP_FILE, # kept only for legacy
|
|
"tokenizer_config_file": TOKENIZER_CONFIG_FILE,
|
|
# tokenizer_file used to initialize a slow from a fast. Properly copy the `addedTokens` instead of adding in random orders
|
|
"tokenizer_file": FULL_TOKENIZER_FILE,
|
|
}
|
|
vocab_files = {**cls.vocab_files_names, **additional_files_names}
|
|
if "tokenizer_file" in vocab_files:
|
|
# Try to get the tokenizer config to see if there are versioned tokenizer files.
|
|
fast_tokenizer_file = FULL_TOKENIZER_FILE
|
|
resolved_config_file = cached_file(
|
|
pretrained_model_name_or_path,
|
|
TOKENIZER_CONFIG_FILE,
|
|
cache_dir=cache_dir,
|
|
force_download=force_download,
|
|
resume_download=resume_download,
|
|
proxies=proxies,
|
|
token=token,
|
|
revision=revision,
|
|
local_files_only=local_files_only,
|
|
subfolder=subfolder,
|
|
user_agent=user_agent,
|
|
_raise_exceptions_for_gated_repo=False,
|
|
_raise_exceptions_for_missing_entries=False,
|
|
_raise_exceptions_for_connection_errors=False,
|
|
_commit_hash=commit_hash,
|
|
)
|
|
commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
|
|
if resolved_config_file is not None:
|
|
with open(resolved_config_file, encoding="utf-8") as reader:
|
|
tokenizer_config = json.load(reader)
|
|
if "fast_tokenizer_files" in tokenizer_config:
|
|
fast_tokenizer_file = get_fast_tokenizer_file(tokenizer_config["fast_tokenizer_files"])
|
|
vocab_files["tokenizer_file"] = fast_tokenizer_file
|
|
|
|
# Get files from url, cache, or disk depending on the case
|
|
resolved_vocab_files = {}
|
|
unresolved_files = []
|
|
for file_id, file_path in vocab_files.items():
|
|
if file_path is None:
|
|
resolved_vocab_files[file_id] = None
|
|
elif single_file_id == file_id:
|
|
if os.path.isfile(file_path):
|
|
resolved_vocab_files[file_id] = file_path
|
|
elif is_remote_url(file_path):
|
|
resolved_vocab_files[file_id] = download_url(file_path, proxies=proxies)
|
|
else:
|
|
resolved_vocab_files[file_id] = cached_file(
|
|
pretrained_model_name_or_path,
|
|
file_path,
|
|
cache_dir=cache_dir,
|
|
force_download=force_download,
|
|
proxies=proxies,
|
|
resume_download=resume_download,
|
|
local_files_only=local_files_only,
|
|
token=token,
|
|
user_agent=user_agent,
|
|
revision=revision,
|
|
subfolder=subfolder,
|
|
_raise_exceptions_for_gated_repo=False,
|
|
_raise_exceptions_for_missing_entries=False,
|
|
_raise_exceptions_for_connection_errors=False,
|
|
_commit_hash=commit_hash,
|
|
)
|
|
commit_hash = extract_commit_hash(resolved_vocab_files[file_id], commit_hash)
|
|
|
|
if len(unresolved_files) > 0:
|
|
logger.info(
|
|
f"Can't load following files from cache: {unresolved_files} and cannot check if these "
|
|
"files are necessary for the tokenizer to operate."
|
|
)
|
|
|
|
if all(full_file_name is None for full_file_name in resolved_vocab_files.values()):
|
|
raise EnvironmentError(
|
|
f"Can't load tokenizer for '{pretrained_model_name_or_path}'. If you were trying to load it from "
|
|
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
|
|
f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
|
|
f"containing all relevant files for a {cls.__name__} tokenizer."
|
|
)
|
|
|
|
for file_id, file_path in vocab_files.items():
|
|
if file_id not in resolved_vocab_files:
|
|
continue
|
|
|
|
if is_local:
|
|
logger.info(f"loading file {file_path}")
|
|
else:
|
|
logger.info(f"loading file {file_path} from cache at {resolved_vocab_files[file_id]}")
|
|
|
|
return cls._from_pretrained(
|
|
resolved_vocab_files,
|
|
pretrained_model_name_or_path,
|
|
init_configuration,
|
|
*init_inputs,
|
|
token=token,
|
|
cache_dir=cache_dir,
|
|
local_files_only=local_files_only,
|
|
_commit_hash=commit_hash,
|
|
_is_local=is_local,
|
|
trust_remote_code=trust_remote_code,
|
|
**kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def _from_pretrained(
|
|
cls,
|
|
resolved_vocab_files,
|
|
pretrained_model_name_or_path,
|
|
init_configuration,
|
|
*init_inputs,
|
|
token=None,
|
|
cache_dir=None,
|
|
local_files_only=False,
|
|
_commit_hash=None,
|
|
_is_local=False,
|
|
trust_remote_code=False,
|
|
**kwargs,
|
|
):
|
|
# We instantiate fast tokenizers based on a slow tokenizer if we don't have access to the tokenizer.json
|
|
# file or if `from_slow` is set to True.
|
|
from_slow = kwargs.get("from_slow", False)
|
|
has_tokenizer_file = resolved_vocab_files.get("tokenizer_file", None) is not None
|
|
if (from_slow or not has_tokenizer_file) and cls.slow_tokenizer_class is not None:
|
|
slow_tokenizer = (cls.slow_tokenizer_class)._from_pretrained(
|
|
copy.deepcopy(resolved_vocab_files),
|
|
pretrained_model_name_or_path,
|
|
copy.deepcopy(init_configuration),
|
|
*init_inputs,
|
|
token=token,
|
|
cache_dir=cache_dir,
|
|
local_files_only=local_files_only,
|
|
_commit_hash=_commit_hash,
|
|
**(copy.deepcopy(kwargs)),
|
|
)
|
|
else:
|
|
slow_tokenizer = None
|
|
|
|
# Prepare tokenizer initialization kwargs
|
|
# Did we saved some inputs and kwargs to reload ?
|
|
tokenizer_config_file = resolved_vocab_files.pop("tokenizer_config_file", None)
|
|
if tokenizer_config_file is not None:
|
|
with open(tokenizer_config_file, encoding="utf-8") as tokenizer_config_handle:
|
|
init_kwargs = json.load(tokenizer_config_handle)
|
|
# First attempt. We get tokenizer_class from tokenizer_config to check mismatch between tokenizers.
|
|
config_tokenizer_class = init_kwargs.get("tokenizer_class")
|
|
init_kwargs.pop("tokenizer_class", None)
|
|
if not has_tokenizer_file:
|
|
init_kwargs.pop("tokenizer_file", None)
|
|
saved_init_inputs = init_kwargs.pop("init_inputs", ())
|
|
if not init_inputs:
|
|
init_inputs = saved_init_inputs
|
|
else:
|
|
config_tokenizer_class = None
|
|
init_kwargs = init_configuration
|
|
|
|
if "auto_map" in init_kwargs and not _is_local:
|
|
# For backward compatibility with odl format.
|
|
if isinstance(init_kwargs["auto_map"], (tuple, list)):
|
|
init_kwargs["auto_map"] = {"AutoTokenizer": init_kwargs["auto_map"]}
|
|
init_kwargs["auto_map"] = add_model_info_to_auto_map(
|
|
init_kwargs["auto_map"], pretrained_model_name_or_path
|
|
)
|
|
|
|
if config_tokenizer_class is None:
|
|
# Matt: This entire block is only used to decide if the tokenizer class matches the class in the repo.
|
|
# If not, it raises a warning, but otherwise continues. Since we mostly load tokenizers with
|
|
# AutoTokenizer these days, it seems like a lot of work (and a source of bugs) for little gain.
|
|
# Maybe we can just remove this entirely?
|
|
from .models.auto.configuration_auto import AutoConfig # tests_ignore
|
|
|
|
# Second attempt. If we have not yet found tokenizer_class, let's try to use the config.
|
|
try:
|
|
config = AutoConfig.from_pretrained(
|
|
pretrained_model_name_or_path,
|
|
token=token,
|
|
cache_dir=cache_dir,
|
|
local_files_only=local_files_only,
|
|
trust_remote_code=trust_remote_code,
|
|
_commit_hash=_commit_hash,
|
|
)
|
|
config_tokenizer_class = config.tokenizer_class
|
|
except (OSError, ValueError, KeyError):
|
|
# skip if an error occurred.
|
|
config = None
|
|
if config_tokenizer_class is None:
|
|
# Third attempt. If we have not yet found the original type of the tokenizer,
|
|
# we are loading we see if we can infer it from the type of the configuration file
|
|
from .models.auto.tokenization_auto import TOKENIZER_MAPPING_NAMES # tests_ignore
|
|
|
|
if hasattr(config, "model_type"):
|
|
model_type = config.model_type
|
|
else:
|
|
# Fallback: use pattern matching on the string.
|
|
model_type = None
|
|
for pattern in TOKENIZER_MAPPING_NAMES.keys():
|
|
if pattern in str(pretrained_model_name_or_path):
|
|
model_type = pattern
|
|
break
|
|
|
|
if model_type is not None:
|
|
config_tokenizer_class, config_tokenizer_class_fast = TOKENIZER_MAPPING_NAMES.get(
|
|
model_type, (None, None)
|
|
)
|
|
if config_tokenizer_class is None:
|
|
config_tokenizer_class = config_tokenizer_class_fast
|
|
|
|
if config_tokenizer_class is not None:
|
|
if cls.__name__.replace("Fast", "") != config_tokenizer_class.replace("Fast", ""):
|
|
logger.warning(
|
|
"The tokenizer class you load from this checkpoint is not the same type as the class this"
|
|
" function is called from. It may result in unexpected tokenization. \nThe tokenizer class you"
|
|
f" load from this checkpoint is '{config_tokenizer_class}'. \nThe class this function is called"
|
|
f" from is '{cls.__name__}'."
|
|
)
|
|
|
|
# Update with newly provided kwargs
|
|
init_kwargs.update(kwargs)
|
|
|
|
# Merge resolved_vocab_files arguments in init_kwargs.
|
|
added_tokens_file = resolved_vocab_files.pop("added_tokens_file", None)
|
|
special_tokens_map_file = resolved_vocab_files.pop("special_tokens_map_file", None)
|
|
for args_name, file_path in resolved_vocab_files.items():
|
|
if args_name not in init_kwargs:
|
|
init_kwargs[args_name] = file_path
|
|
tokenizer_file = resolved_vocab_files.pop("tokenizer_file", None)
|
|
|
|
if slow_tokenizer is not None:
|
|
init_kwargs["__slow_tokenizer"] = slow_tokenizer
|
|
init_kwargs["name_or_path"] = pretrained_model_name_or_path
|
|
|
|
#### Handle tokenizer serialization of added and special tokens
|
|
added_tokens_decoder: Dict[int, AddedToken] = {}
|
|
added_tokens_map: Dict[str, AddedToken] = {}
|
|
# if we have info on the slow added tokens
|
|
if "added_tokens_decoder" in init_kwargs:
|
|
for idx, token in init_kwargs["added_tokens_decoder"].items():
|
|
if isinstance(token, dict):
|
|
token = AddedToken(**token)
|
|
if isinstance(token, AddedToken):
|
|
added_tokens_decoder[int(idx)] = token
|
|
added_tokens_map[str(token)] = token
|
|
else:
|
|
raise ValueError(
|
|
f"Found a {token.__class__} in the saved `added_tokens_decoder`, should be a dictionary or an AddedToken instance"
|
|
)
|
|
else:
|
|
# begin legacy: read the added_tokens_file and update kwargs with special_tokens_map if modified
|
|
if special_tokens_map_file is not None:
|
|
with open(special_tokens_map_file, encoding="utf-8") as special_tokens_map_handle:
|
|
special_tokens_map = json.load(special_tokens_map_handle)
|
|
for key, value in special_tokens_map.items():
|
|
if key in kwargs and kwargs[key]:
|
|
# This value has already been redefined by the kwargs
|
|
# We keep this new value and ignore the one stored in the special_tokens_map_file
|
|
continue
|
|
if isinstance(value, dict):
|
|
value = AddedToken(**value, special=True)
|
|
elif key == "additional_special_tokens" and isinstance(value, list):
|
|
additional_special_tokens = init_kwargs.pop("additional_special_tokens", []) or []
|
|
for token in value:
|
|
token = AddedToken(**token, special=True) if isinstance(token, dict) else token
|
|
if token not in additional_special_tokens:
|
|
additional_special_tokens.append(token)
|
|
value = additional_special_tokens
|
|
init_kwargs[key] = value
|
|
|
|
# slow -> slow|fast, legacy: convert the `"added_tokens.json"` file to `added_tokens_decoder`.
|
|
# this is for legacy purpose. We don't add the tokens after init for efficiency.
|
|
if added_tokens_file is not None:
|
|
special_tokens = []
|
|
for key in cls.SPECIAL_TOKENS_ATTRIBUTES & init_kwargs.keys():
|
|
if init_kwargs[key] is not None:
|
|
if key == "additional_special_tokens":
|
|
special_tokens += [str(token) for token in init_kwargs[key]]
|
|
else:
|
|
special_tokens.append(str(init_kwargs[key]))
|
|
|
|
with open(added_tokens_file, encoding="utf-8") as added_tokens_handle:
|
|
added_tok_encoder = json.load(added_tokens_handle)
|
|
for str_token, index in added_tok_encoder.items():
|
|
# if index not in added_tokens_decoder and str_token not in added_tokens_map:
|
|
special = str_token in special_tokens
|
|
added_tokens_decoder[index] = AddedToken(
|
|
str_token, rstrip=False, lstrip=False, normalized=not special, special=special
|
|
)
|
|
added_tokens_map[str(token)] = added_tokens_decoder[index]
|
|
|
|
# allows converting a fast -> slow: add the `tokenizer.json`'s `"added_tokens"` to the slow tokenizer
|
|
# if `tokenizer_config.json` is `None`
|
|
if tokenizer_file is not None:
|
|
# This is for slow so can be done before
|
|
with open(tokenizer_file, encoding="utf-8") as tokenizer_file_handle:
|
|
tokenizer_file_handle = json.load(tokenizer_file_handle)
|
|
added_tokens = tokenizer_file_handle.pop("added_tokens")
|
|
for serialized_tokens in added_tokens:
|
|
idx = serialized_tokens.pop("id")
|
|
added_tokens_decoder[idx] = AddedToken(**serialized_tokens)
|
|
added_tokens_map[str(added_tokens_decoder[idx])] = added_tokens_decoder[idx]
|
|
# end legacy
|
|
|
|
# Passing AddedTokens and not strings to the class to prevent it from casting the string to a different AddedToken
|
|
# convert {'__type': 'AddedToken', 'content': '<ent>', 'lstrip': False, 'normalized': True, ...} to AddedTokens
|
|
init_kwargs["added_tokens_decoder"] = added_tokens_decoder
|
|
init_kwargs = cls.convert_added_tokens(init_kwargs, save=False)
|
|
for key in cls.SPECIAL_TOKENS_ATTRIBUTES & init_kwargs.keys():
|
|
if added_tokens_map != {} and init_kwargs[key] is not None:
|
|
if key != "additional_special_tokens":
|
|
init_kwargs[key] = added_tokens_map.get(str(init_kwargs[key]), init_kwargs[key])
|
|
|
|
# Instantiate the tokenizer.
|
|
try:
|
|
tokenizer = cls(*init_inputs, **init_kwargs)
|
|
except OSError:
|
|
raise OSError(
|
|
"Unable to load vocabulary from file. "
|
|
"Please check that the provided vocabulary is accessible and not corrupted."
|
|
)
|
|
|
|
if added_tokens_decoder != {} and max(list(added_tokens_decoder.keys())[-1], 0) > tokenizer.vocab_size:
|
|
logger.warning_advice(
|
|
"Special tokens have been added in the vocabulary, make sure the associated word embeddings are"
|
|
" fine-tuned or trained."
|
|
)
|
|
return tokenizer
|
|
|
|
@staticmethod
|
|
def _eventually_correct_t5_max_length(pretrained_model_name_or_path, max_model_length, init_max_model_length):
|
|
# This method should be deleted in Transformers v5
|
|
# Its only purpose is to potentially throw a warning
|
|
# that incorrectly defined max lengths of T5's tokenizer are used
|
|
# which we will correct in Transformers v5.
|
|
return max_model_length
|
|
|
|
@classmethod
|
|
def convert_added_tokens(cls, obj: Union[AddedToken, Any], save=False, add_type_field=True):
|
|
if isinstance(obj, dict) and "__type" in obj and obj["__type"] == "AddedToken":
|
|
obj.pop("__type")
|
|
return AddedToken(**obj)
|
|
if isinstance(obj, AddedToken) and save:
|
|
obj = obj.__getstate__()
|
|
if add_type_field:
|
|
obj["__type"] = "AddedToken"
|
|
else:
|
|
# Don't save "special" for previous tokenizers
|
|
obj.pop("special")
|
|
return obj
|
|
elif isinstance(obj, (list, tuple)):
|
|
return [cls.convert_added_tokens(o, save=save, add_type_field=add_type_field) for o in obj]
|
|
elif isinstance(obj, dict):
|
|
return {k: cls.convert_added_tokens(v, save=save, add_type_field=add_type_field) for k, v in obj.items()}
|
|
return obj
|
|
|
|
def save_pretrained(
|
|
self,
|
|
save_directory: Union[str, os.PathLike],
|
|
legacy_format: Optional[bool] = None,
|
|
filename_prefix: Optional[str] = None,
|
|
push_to_hub: bool = False,
|
|
**kwargs,
|
|
) -> Tuple[str]:
|
|
"""
|
|
Save the full tokenizer state.
|
|
|
|
|
|
This method make sure the full tokenizer can then be re-loaded using the
|
|
[`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`] class method..
|
|
|
|
Warning,None This won't save modifications you may have applied to the tokenizer after the instantiation (for
|
|
instance, modifying `tokenizer.do_lower_case` after creation).
|
|
|
|
Args:
|
|
save_directory (`str` or `os.PathLike`): The path to a directory where the tokenizer will be saved.
|
|
legacy_format (`bool`, *optional*):
|
|
Only applicable for a fast tokenizer. If unset (default), will save the tokenizer in the unified JSON
|
|
format as well as in legacy format if it exists, i.e. with tokenizer specific vocabulary and a separate
|
|
added_tokens files.
|
|
|
|
If `False`, will only save the tokenizer in the unified JSON format. This format is incompatible with
|
|
"slow" tokenizers (not powered by the *tokenizers* library), so the tokenizer will not be able to be
|
|
loaded in the corresponding "slow" tokenizer.
|
|
|
|
If `True`, will save the tokenizer in legacy format. If the "slow" tokenizer doesn't exits, a value
|
|
error is raised.
|
|
filename_prefix (`str`, *optional*):
|
|
A prefix to add to the names of the files saved by the tokenizer.
|
|
push_to_hub (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
|
|
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
|
namespace).
|
|
kwargs (`Dict[str, Any]`, *optional*):
|
|
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
|
|
|
Returns:
|
|
A tuple of `str`: The files saved.
|
|
"""
|
|
use_auth_token = kwargs.pop("use_auth_token", None)
|
|
|
|
if use_auth_token is not None:
|
|
warnings.warn(
|
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
|
FutureWarning,
|
|
)
|
|
if kwargs.get("token", None) is not None:
|
|
raise ValueError(
|
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
|
)
|
|
kwargs["token"] = use_auth_token
|
|
|
|
if os.path.isfile(save_directory):
|
|
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
|
|
return
|
|
|
|
os.makedirs(save_directory, exist_ok=True)
|
|
|
|
if push_to_hub:
|
|
commit_message = kwargs.pop("commit_message", None)
|
|
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
|
|
repo_id = self._create_repo(repo_id, **kwargs)
|
|
files_timestamps = self._get_files_timestamps(save_directory)
|
|
|
|
special_tokens_map_file = os.path.join(
|
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + SPECIAL_TOKENS_MAP_FILE
|
|
)
|
|
tokenizer_config_file = os.path.join(
|
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + TOKENIZER_CONFIG_FILE
|
|
)
|
|
|
|
tokenizer_config = copy.deepcopy(self.init_kwargs)
|
|
|
|
# Let's save the init kwargs
|
|
target_keys = set(self.init_kwargs.keys())
|
|
# Let's save the special tokens map (only the strings)
|
|
target_keys.update(["model_max_length", "clean_up_tokenization_spaces"])
|
|
|
|
for k in target_keys:
|
|
if hasattr(self, k):
|
|
tokenizer_config[k] = getattr(self, k)
|
|
|
|
# Let's make sure we properly save the special tokens.
|
|
tokenizer_config.update(self.special_tokens_map)
|
|
|
|
if self.chat_template is not None:
|
|
if isinstance(self.chat_template, dict):
|
|
# Chat template dicts are saved to the config as lists of dicts with fixed key names.
|
|
# They will be reconstructed as a single dict during loading.
|
|
tokenizer_config["chat_template"] = [{"name": k, "template": v} for k, v in self.chat_template.items()]
|
|
else:
|
|
tokenizer_config["chat_template"] = self.chat_template
|
|
|
|
if len(self.init_inputs) > 0:
|
|
tokenizer_config["init_inputs"] = copy.deepcopy(self.init_inputs)
|
|
for file_id in self.vocab_files_names.keys():
|
|
tokenizer_config.pop(file_id, None)
|
|
|
|
# no typefields, this way old fast and slow can load it
|
|
tokenizer_config = self.convert_added_tokens(tokenizer_config, add_type_field=True, save=True)
|
|
|
|
# Process added tokens seperatly: allows previous versions to ignore it!
|
|
added_tokens = {}
|
|
for key, value in self.added_tokens_decoder.items():
|
|
added_tokens[key] = value.__getstate__()
|
|
tokenizer_config["added_tokens_decoder"] = added_tokens
|
|
|
|
# Add tokenizer class to the tokenizer config to be able to reload it with from_pretrained
|
|
tokenizer_class = self.__class__.__name__
|
|
# Remove the Fast at the end unless we have a special `PreTrainedTokenizerFast`
|
|
if tokenizer_class.endswith("Fast") and tokenizer_class != "PreTrainedTokenizerFast":
|
|
tokenizer_class = tokenizer_class[:-4]
|
|
tokenizer_config["tokenizer_class"] = tokenizer_class
|
|
if getattr(self, "_auto_map", None) is not None:
|
|
tokenizer_config["auto_map"] = self._auto_map
|
|
if getattr(self, "_processor_class", None) is not None:
|
|
tokenizer_config["processor_class"] = self._processor_class
|
|
|
|
# If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
|
|
# loaded from the Hub.
|
|
if self._auto_class is not None:
|
|
custom_object_save(self, save_directory, config=tokenizer_config)
|
|
|
|
# remove private information
|
|
if "name_or_path" in tokenizer_config:
|
|
tokenizer_config.pop("name_or_path")
|
|
tokenizer_config.pop("special_tokens_map_file", None)
|
|
tokenizer_config.pop("tokenizer_file", None)
|
|
|
|
with open(tokenizer_config_file, "w", encoding="utf-8") as f:
|
|
out_str = json.dumps(tokenizer_config, indent=2, sort_keys=True, ensure_ascii=False) + "\n"
|
|
f.write(out_str)
|
|
logger.info(f"tokenizer config file saved in {tokenizer_config_file}")
|
|
|
|
# Sanitize AddedTokens in special_tokens_map
|
|
|
|
# kept for forward compatibility, will be removed in transoformers 5. Typefields are not saved for FC, special should not be save either
|
|
write_dict = self.convert_added_tokens(self.special_tokens_map_extended, save=True, add_type_field=False)
|
|
with open(special_tokens_map_file, "w", encoding="utf-8") as f:
|
|
out_str = json.dumps(write_dict, indent=2, sort_keys=True, ensure_ascii=False) + "\n"
|
|
f.write(out_str)
|
|
logger.info(f"Special tokens file saved in {special_tokens_map_file}")
|
|
|
|
file_names = (tokenizer_config_file, special_tokens_map_file)
|
|
|
|
save_files = self._save_pretrained(
|
|
save_directory=save_directory,
|
|
file_names=file_names,
|
|
legacy_format=legacy_format,
|
|
filename_prefix=filename_prefix,
|
|
)
|
|
|
|
if push_to_hub:
|
|
self._upload_modified_files(
|
|
save_directory,
|
|
repo_id,
|
|
files_timestamps,
|
|
commit_message=commit_message,
|
|
token=kwargs.get("token"),
|
|
)
|
|
|
|
return save_files
|
|
|
|
def _save_pretrained(
|
|
self,
|
|
save_directory: Union[str, os.PathLike],
|
|
file_names: Tuple[str],
|
|
legacy_format: Optional[bool] = None,
|
|
filename_prefix: Optional[str] = None,
|
|
) -> Tuple[str]:
|
|
"""
|
|
Save a tokenizer using the slow-tokenizer/legacy format: vocabulary + added tokens.
|
|
|
|
Fast tokenizers can also be saved in a unique JSON file containing {config + vocab + added-tokens} using the
|
|
specific [`~tokenization_utils_fast.PreTrainedTokenizerFast._save_pretrained`]
|
|
"""
|
|
if legacy_format is False:
|
|
raise ValueError(
|
|
"Only fast tokenizers (instances of PreTrainedTokenizerFast) can be saved in non legacy format."
|
|
)
|
|
|
|
save_directory = str(save_directory)
|
|
|
|
added_tokens_file = os.path.join(
|
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + ADDED_TOKENS_FILE
|
|
)
|
|
# the new get_added_vocab() also returns special tokens and tokens that have an index < vocab_size
|
|
added_vocab = {tok: index for tok, index in self.added_tokens_encoder.items() if index >= self.vocab_size}
|
|
if added_vocab:
|
|
with open(added_tokens_file, "w", encoding="utf-8") as f:
|
|
out_str = json.dumps(added_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n"
|
|
f.write(out_str)
|
|
logger.info(f"added tokens file saved in {added_tokens_file}")
|
|
|
|
vocab_files = self.save_vocabulary(save_directory, filename_prefix=filename_prefix)
|
|
|
|
return file_names + vocab_files + (added_tokens_file,)
|
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
|
"""
|
|
Save only the vocabulary of the tokenizer (vocabulary + added tokens).
|
|
|
|
This method won't save the configuration and special token mappings of the tokenizer. Use
|
|
[`~PreTrainedTokenizerFast._save_pretrained`] to save the whole state of the tokenizer.
|
|
|
|
Args:
|
|
save_directory (`str`):
|
|
The directory in which to save the vocabulary.
|
|
filename_prefix (`str`, *optional*):
|
|
An optional prefix to add to the named of the saved files.
|
|
|
|
Returns:
|
|
`Tuple(str)`: Paths to the files saved.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]:
|
|
"""
|
|
Converts a string into a sequence of tokens, replacing unknown tokens with the `unk_token`.
|
|
|
|
Args:
|
|
text (`str`):
|
|
The sequence to be encoded.
|
|
pair (`str`, *optional*):
|
|
A second sequence to be encoded with the first.
|
|
add_special_tokens (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to add the special tokens associated with the corresponding model.
|
|
kwargs (additional keyword arguments, *optional*):
|
|
Will be passed to the underlying model specific encode method. See details in
|
|
[`~PreTrainedTokenizerBase.__call__`]
|
|
|
|
Returns:
|
|
`List[str]`: The list of tokens.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@add_end_docstrings(
|
|
ENCODE_KWARGS_DOCSTRING,
|
|
"""
|
|
**kwargs: Passed along to the `.tokenize()` method.
|
|
""",
|
|
"""
|
|
Returns:
|
|
`List[int]`, `torch.Tensor`, `tf.Tensor` or `np.ndarray`: The tokenized ids of the text.
|
|
""",
|
|
)
|
|
def encode(
|
|
self,
|
|
text: Union[TextInput, PreTokenizedInput, EncodedInput],
|
|
text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None,
|
|
add_special_tokens: bool = True,
|
|
padding: Union[bool, str, PaddingStrategy] = False,
|
|
truncation: Union[bool, str, TruncationStrategy] = None,
|
|
max_length: Optional[int] = None,
|
|
stride: int = 0,
|
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
|
**kwargs,
|
|
) -> List[int]:
|
|
"""
|
|
Converts a string to a sequence of ids (integer), using the tokenizer and vocabulary.
|
|
|
|
Same as doing `self.convert_tokens_to_ids(self.tokenize(text))`.
|
|
|
|
Args:
|
|
text (`str`, `List[str]` or `List[int]`):
|
|
The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the
|
|
`tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids`
|
|
method).
|
|
text_pair (`str`, `List[str]` or `List[int]`, *optional*):
|
|
Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using
|
|
the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids`
|
|
method).
|
|
"""
|
|
encoded_inputs = self.encode_plus(
|
|
text,
|
|
text_pair=text_pair,
|
|
add_special_tokens=add_special_tokens,
|
|
padding=padding,
|
|
truncation=truncation,
|
|
max_length=max_length,
|
|
stride=stride,
|
|
return_tensors=return_tensors,
|
|
**kwargs,
|
|
)
|
|
|
|
return encoded_inputs["input_ids"]
|
|
|
|
def num_special_tokens_to_add(self, pair: bool = False) -> int:
|
|
raise NotImplementedError
|
|
|
|
def _get_padding_truncation_strategies(
|
|
self, padding=False, truncation=None, max_length=None, pad_to_multiple_of=None, verbose=True, **kwargs
|
|
):
|
|
"""
|
|
Find the correct padding/truncation strategy with backward compatibility for old arguments (truncation_strategy
|
|
and pad_to_max_length) and behaviors.
|
|
"""
|
|
old_truncation_strategy = kwargs.pop("truncation_strategy", "do_not_truncate")
|
|
old_pad_to_max_length = kwargs.pop("pad_to_max_length", False)
|
|
|
|
# Backward compatibility for previous behavior, maybe we should deprecate it:
|
|
# If you only set max_length, it activates truncation for max_length
|
|
if max_length is not None and padding is False and truncation is None:
|
|
if verbose:
|
|
if not self.deprecation_warnings.get("Truncation-not-explicitly-activated", False):
|
|
logger.warning(
|
|
"Truncation was not explicitly activated but `max_length` is provided a specific value, please"
|
|
" use `truncation=True` to explicitly truncate examples to max length. Defaulting to"
|
|
" 'longest_first' truncation strategy. If you encode pairs of sequences (GLUE-style) with the"
|
|
" tokenizer you can select this strategy more precisely by providing a specific strategy to"
|
|
" `truncation`."
|
|
)
|
|
self.deprecation_warnings["Truncation-not-explicitly-activated"] = True
|
|
truncation = "longest_first"
|
|
|
|
# Get padding strategy
|
|
if padding is False and old_pad_to_max_length:
|
|
if verbose:
|
|
warnings.warn(
|
|
"The `pad_to_max_length` argument is deprecated and will be removed in a future version, "
|
|
"use `padding=True` or `padding='longest'` to pad to the longest sequence in the batch, or "
|
|
"use `padding='max_length'` to pad to a max length. In this case, you can give a specific "
|
|
"length with `max_length` (e.g. `max_length=45`) or leave max_length to None to pad to the "
|
|
"maximal input size of the model (e.g. 512 for Bert).",
|
|
FutureWarning,
|
|
)
|
|
if max_length is None:
|
|
padding_strategy = PaddingStrategy.LONGEST
|
|
else:
|
|
padding_strategy = PaddingStrategy.MAX_LENGTH
|
|
elif padding is not False:
|
|
if padding is True:
|
|
if verbose:
|
|
if max_length is not None and (
|
|
truncation is None or truncation is False or truncation == "do_not_truncate"
|
|
):
|
|
warnings.warn(
|
|
"`max_length` is ignored when `padding`=`True` and there is no truncation strategy. "
|
|
"To pad to max length, use `padding='max_length'`."
|
|
)
|
|
if old_pad_to_max_length is not False:
|
|
warnings.warn("Though `pad_to_max_length` = `True`, it is ignored because `padding`=`True`.")
|
|
padding_strategy = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
|
|
elif not isinstance(padding, PaddingStrategy):
|
|
padding_strategy = PaddingStrategy(padding)
|
|
elif isinstance(padding, PaddingStrategy):
|
|
padding_strategy = padding
|
|
else:
|
|
padding_strategy = PaddingStrategy.DO_NOT_PAD
|
|
|
|
# Get truncation strategy
|
|
if truncation is None and old_truncation_strategy != "do_not_truncate":
|
|
if verbose:
|
|
warnings.warn(
|
|
"The `truncation_strategy` argument is deprecated and will be removed in a future version, use"
|
|
" `truncation=True` to truncate examples to a max length. You can give a specific length with"
|
|
" `max_length` (e.g. `max_length=45`) or leave max_length to None to truncate to the maximal input"
|
|
" size of the model (e.g. 512 for Bert). If you have pairs of inputs, you can give a specific"
|
|
" truncation strategy selected among `truncation='only_first'` (will only truncate the first"
|
|
" sentence in the pairs) `truncation='only_second'` (will only truncate the second sentence in the"
|
|
" pairs) or `truncation='longest_first'` (will iteratively remove tokens from the longest sentence"
|
|
" in the pairs).",
|
|
FutureWarning,
|
|
)
|
|
truncation_strategy = TruncationStrategy(old_truncation_strategy)
|
|
elif truncation is not False and truncation is not None:
|
|
if truncation is True:
|
|
truncation_strategy = (
|
|
TruncationStrategy.LONGEST_FIRST
|
|
) # Default to truncate the longest sequences in pairs of inputs
|
|
elif not isinstance(truncation, TruncationStrategy):
|
|
truncation_strategy = TruncationStrategy(truncation)
|
|
elif isinstance(truncation, TruncationStrategy):
|
|
truncation_strategy = truncation
|
|
else:
|
|
truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE
|
|
|
|
# Set max length if needed
|
|
if max_length is None:
|
|
if padding_strategy == PaddingStrategy.MAX_LENGTH:
|
|
if self.model_max_length > LARGE_INTEGER:
|
|
if verbose:
|
|
if not self.deprecation_warnings.get("Asking-to-pad-to-max_length", False):
|
|
logger.warning(
|
|
"Asking to pad to max_length but no maximum length is provided and the model has no"
|
|
" predefined maximum length. Default to no padding."
|
|
)
|
|
self.deprecation_warnings["Asking-to-pad-to-max_length"] = True
|
|
padding_strategy = PaddingStrategy.DO_NOT_PAD
|
|
else:
|
|
max_length = self.model_max_length
|
|
|
|
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE:
|
|
if self.model_max_length > LARGE_INTEGER:
|
|
if verbose:
|
|
if not self.deprecation_warnings.get("Asking-to-truncate-to-max_length", False):
|
|
logger.warning(
|
|
"Asking to truncate to max_length but no maximum length is provided and the model has"
|
|
" no predefined maximum length. Default to no truncation."
|
|
)
|
|
self.deprecation_warnings["Asking-to-truncate-to-max_length"] = True
|
|
truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE
|
|
else:
|
|
max_length = self.model_max_length
|
|
|
|
# Test if we have a padding token
|
|
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.pad_token is None or self.pad_token_id < 0):
|
|
raise ValueError(
|
|
"Asking to pad but the tokenizer does not have a padding token. "
|
|
"Please select a token to use as `pad_token` `(tokenizer.pad_token = tokenizer.eos_token e.g.)` "
|
|
"or add a new pad token via `tokenizer.add_special_tokens({'pad_token': '[PAD]'})`."
|
|
)
|
|
|
|
# Check that we will truncate to a multiple of pad_to_multiple_of if both are provided
|
|
if (
|
|
truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE
|
|
and padding_strategy != PaddingStrategy.DO_NOT_PAD
|
|
and pad_to_multiple_of is not None
|
|
and max_length is not None
|
|
and (max_length % pad_to_multiple_of != 0)
|
|
):
|
|
raise ValueError(
|
|
"Truncation and padding are both activated but "
|
|
f"truncation length ({max_length}) is not a multiple of pad_to_multiple_of ({pad_to_multiple_of})."
|
|
)
|
|
|
|
return padding_strategy, truncation_strategy, max_length, kwargs
|
|
|
|
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
|
def __call__(
|
|
self,
|
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
|
text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
|
|
text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
|
text_pair_target: Optional[
|
|
Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]
|
|
] = None,
|
|
add_special_tokens: bool = True,
|
|
padding: Union[bool, str, PaddingStrategy] = False,
|
|
truncation: Union[bool, str, TruncationStrategy] = None,
|
|
max_length: Optional[int] = None,
|
|
stride: int = 0,
|
|
is_split_into_words: bool = False,
|
|
pad_to_multiple_of: Optional[int] = None,
|
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
|
return_token_type_ids: Optional[bool] = None,
|
|
return_attention_mask: Optional[bool] = None,
|
|
return_overflowing_tokens: bool = False,
|
|
return_special_tokens_mask: bool = False,
|
|
return_offsets_mapping: bool = False,
|
|
return_length: bool = False,
|
|
verbose: bool = True,
|
|
**kwargs,
|
|
) -> BatchEncoding:
|
|
"""
|
|
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
|
|
sequences.
|
|
|
|
Args:
|
|
text (`str`, `List[str]`, `List[List[str]]`, *optional*):
|
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
|
text_pair (`str`, `List[str]`, `List[List[str]]`, *optional*):
|
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
|
text_target (`str`, `List[str]`, `List[List[str]]`, *optional*):
|
|
The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a
|
|
list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized),
|
|
you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
|
text_pair_target (`str`, `List[str]`, `List[List[str]]`, *optional*):
|
|
The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a
|
|
list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized),
|
|
you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
|
"""
|
|
# To avoid duplicating
|
|
all_kwargs = {
|
|
"add_special_tokens": add_special_tokens,
|
|
"padding": padding,
|
|
"truncation": truncation,
|
|
"max_length": max_length,
|
|
"stride": stride,
|
|
"is_split_into_words": is_split_into_words,
|
|
"pad_to_multiple_of": pad_to_multiple_of,
|
|
"return_tensors": return_tensors,
|
|
"return_token_type_ids": return_token_type_ids,
|
|
"return_attention_mask": return_attention_mask,
|
|
"return_overflowing_tokens": return_overflowing_tokens,
|
|
"return_special_tokens_mask": return_special_tokens_mask,
|
|
"return_offsets_mapping": return_offsets_mapping,
|
|
"return_length": return_length,
|
|
"verbose": verbose,
|
|
}
|
|
all_kwargs.update(kwargs)
|
|
if text is None and text_target is None:
|
|
raise ValueError("You need to specify either `text` or `text_target`.")
|
|
if text is not None:
|
|
# The context manager will send the inputs as normal texts and not text_target, but we shouldn't change the
|
|
# input mode in this case.
|
|
if not self._in_target_context_manager:
|
|
self._switch_to_input_mode()
|
|
encodings = self._call_one(text=text, text_pair=text_pair, **all_kwargs)
|
|
if text_target is not None:
|
|
self._switch_to_target_mode()
|
|
target_encodings = self._call_one(text=text_target, text_pair=text_pair_target, **all_kwargs)
|
|
# Leave back tokenizer in input mode
|
|
self._switch_to_input_mode()
|
|
|
|
if text_target is None:
|
|
return encodings
|
|
elif text is None:
|
|
return target_encodings
|
|
else:
|
|
encodings["labels"] = target_encodings["input_ids"]
|
|
return encodings
|
|
|
|
def _call_one(
|
|
self,
|
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
|
text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
|
|
add_special_tokens: bool = True,
|
|
padding: Union[bool, str, PaddingStrategy] = False,
|
|
truncation: Union[bool, str, TruncationStrategy] = None,
|
|
max_length: Optional[int] = None,
|
|
stride: int = 0,
|
|
is_split_into_words: bool = False,
|
|
pad_to_multiple_of: Optional[int] = None,
|
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
|
return_token_type_ids: Optional[bool] = None,
|
|
return_attention_mask: Optional[bool] = None,
|
|
return_overflowing_tokens: bool = False,
|
|
return_special_tokens_mask: bool = False,
|
|
return_offsets_mapping: bool = False,
|
|
return_length: bool = False,
|
|
verbose: bool = True,
|
|
**kwargs,
|
|
) -> BatchEncoding:
|
|
# Input type checking for clearer error
|
|
def _is_valid_text_input(t):
|
|
if isinstance(t, str):
|
|
# Strings are fine
|
|
return True
|
|
elif isinstance(t, (list, tuple)):
|
|
# List are fine as long as they are...
|
|
if len(t) == 0:
|
|
# ... empty
|
|
return True
|
|
elif isinstance(t[0], str):
|
|
# ... list of strings
|
|
return True
|
|
elif isinstance(t[0], (list, tuple)):
|
|
# ... list with an empty list or with a list of strings
|
|
return len(t[0]) == 0 or isinstance(t[0][0], str)
|
|
else:
|
|
return False
|
|
else:
|
|
return False
|
|
|
|
if not _is_valid_text_input(text):
|
|
raise ValueError(
|
|
"text input must be of type `str` (single example), `List[str]` (batch or single pretokenized example) "
|
|
"or `List[List[str]]` (batch of pretokenized examples)."
|
|
)
|
|
|
|
if text_pair is not None and not _is_valid_text_input(text_pair):
|
|
raise ValueError(
|
|
"text input must be of type `str` (single example), `List[str]` (batch or single pretokenized example) "
|
|
"or `List[List[str]]` (batch of pretokenized examples)."
|
|
)
|
|
|
|
if is_split_into_words:
|
|
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
|
|
else:
|
|
is_batched = isinstance(text, (list, tuple))
|
|
|
|
if is_batched:
|
|
if isinstance(text_pair, str):
|
|
raise TypeError(
|
|
"when tokenizing batches of text, `text_pair` must be a list or tuple with the same length as"
|
|
" `text`."
|
|
)
|
|
if text_pair is not None and len(text) != len(text_pair):
|
|
raise ValueError(
|
|
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
|
|
f" {len(text_pair)}."
|
|
)
|
|
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
|
|
return self.batch_encode_plus(
|
|
batch_text_or_text_pairs=batch_text_or_text_pairs,
|
|
add_special_tokens=add_special_tokens,
|
|
padding=padding,
|
|
truncation=truncation,
|
|
max_length=max_length,
|
|
stride=stride,
|
|
is_split_into_words=is_split_into_words,
|
|
pad_to_multiple_of=pad_to_multiple_of,
|
|
return_tensors=return_tensors,
|
|
return_token_type_ids=return_token_type_ids,
|
|
return_attention_mask=return_attention_mask,
|
|
return_overflowing_tokens=return_overflowing_tokens,
|
|
return_special_tokens_mask=return_special_tokens_mask,
|
|
return_offsets_mapping=return_offsets_mapping,
|
|
return_length=return_length,
|
|
verbose=verbose,
|
|
**kwargs,
|
|
)
|
|
else:
|
|
return self.encode_plus(
|
|
text=text,
|
|
text_pair=text_pair,
|
|
add_special_tokens=add_special_tokens,
|
|
padding=padding,
|
|
truncation=truncation,
|
|
max_length=max_length,
|
|
stride=stride,
|
|
is_split_into_words=is_split_into_words,
|
|
pad_to_multiple_of=pad_to_multiple_of,
|
|
return_tensors=return_tensors,
|
|
return_token_type_ids=return_token_type_ids,
|
|
return_attention_mask=return_attention_mask,
|
|
return_overflowing_tokens=return_overflowing_tokens,
|
|
return_special_tokens_mask=return_special_tokens_mask,
|
|
return_offsets_mapping=return_offsets_mapping,
|
|
return_length=return_length,
|
|
verbose=verbose,
|
|
**kwargs,
|
|
)
|
|
|
|
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
|
def encode_plus(
|
|
self,
|
|
text: Union[TextInput, PreTokenizedInput, EncodedInput],
|
|
text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None,
|
|
add_special_tokens: bool = True,
|
|
padding: Union[bool, str, PaddingStrategy] = False,
|
|
truncation: Union[bool, str, TruncationStrategy] = None,
|
|
max_length: Optional[int] = None,
|
|
stride: int = 0,
|
|
is_split_into_words: bool = False,
|
|
pad_to_multiple_of: Optional[int] = None,
|
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
|
return_token_type_ids: Optional[bool] = None,
|
|
return_attention_mask: Optional[bool] = None,
|
|
return_overflowing_tokens: bool = False,
|
|
return_special_tokens_mask: bool = False,
|
|
return_offsets_mapping: bool = False,
|
|
return_length: bool = False,
|
|
verbose: bool = True,
|
|
**kwargs,
|
|
) -> BatchEncoding:
|
|
"""
|
|
Tokenize and prepare for the model a sequence or a pair of sequences.
|
|
|
|
<Tip warning={true}>
|
|
|
|
This method is deprecated, `__call__` should be used instead.
|
|
|
|
</Tip>
|
|
|
|
Args:
|
|
text (`str`, `List[str]` or `List[int]` (the latter only for not-fast tokenizers)):
|
|
The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the
|
|
`tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids`
|
|
method).
|
|
text_pair (`str`, `List[str]` or `List[int]`, *optional*):
|
|
Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using
|
|
the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids`
|
|
method).
|
|
"""
|
|
|
|
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
|
|
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
|
|
padding=padding,
|
|
truncation=truncation,
|
|
max_length=max_length,
|
|
pad_to_multiple_of=pad_to_multiple_of,
|
|
verbose=verbose,
|
|
**kwargs,
|
|
)
|
|
|
|
return self._encode_plus(
|
|
text=text,
|
|
text_pair=text_pair,
|
|
add_special_tokens=add_special_tokens,
|
|
padding_strategy=padding_strategy,
|
|
truncation_strategy=truncation_strategy,
|
|
max_length=max_length,
|
|
stride=stride,
|
|
is_split_into_words=is_split_into_words,
|
|
pad_to_multiple_of=pad_to_multiple_of,
|
|
return_tensors=return_tensors,
|
|
return_token_type_ids=return_token_type_ids,
|
|
return_attention_mask=return_attention_mask,
|
|
return_overflowing_tokens=return_overflowing_tokens,
|
|
return_special_tokens_mask=return_special_tokens_mask,
|
|
return_offsets_mapping=return_offsets_mapping,
|
|
return_length=return_length,
|
|
verbose=verbose,
|
|
**kwargs,
|
|
)
|
|
|
|
def _encode_plus(
|
|
self,
|
|
text: Union[TextInput, PreTokenizedInput, EncodedInput],
|
|
text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None,
|
|
add_special_tokens: bool = True,
|
|
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
|
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
|
max_length: Optional[int] = None,
|
|
stride: int = 0,
|
|
is_split_into_words: bool = False,
|
|
pad_to_multiple_of: Optional[int] = None,
|
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
|
return_token_type_ids: Optional[bool] = None,
|
|
return_attention_mask: Optional[bool] = None,
|
|
return_overflowing_tokens: bool = False,
|
|
return_special_tokens_mask: bool = False,
|
|
return_offsets_mapping: bool = False,
|
|
return_length: bool = False,
|
|
verbose: bool = True,
|
|
**kwargs,
|
|
) -> BatchEncoding:
|
|
raise NotImplementedError
|
|
|
|
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
|
def batch_encode_plus(
|
|
self,
|
|
batch_text_or_text_pairs: Union[
|
|
List[TextInput],
|
|
List[TextInputPair],
|
|
List[PreTokenizedInput],
|
|
List[PreTokenizedInputPair],
|
|
List[EncodedInput],
|
|
List[EncodedInputPair],
|
|
],
|
|
add_special_tokens: bool = True,
|
|
padding: Union[bool, str, PaddingStrategy] = False,
|
|
truncation: Union[bool, str, TruncationStrategy] = None,
|
|
max_length: Optional[int] = None,
|
|
stride: int = 0,
|
|
is_split_into_words: bool = False,
|
|
pad_to_multiple_of: Optional[int] = None,
|
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
|
return_token_type_ids: Optional[bool] = None,
|
|
return_attention_mask: Optional[bool] = None,
|
|
return_overflowing_tokens: bool = False,
|
|
return_special_tokens_mask: bool = False,
|
|
return_offsets_mapping: bool = False,
|
|
return_length: bool = False,
|
|
verbose: bool = True,
|
|
**kwargs,
|
|
) -> BatchEncoding:
|
|
"""
|
|
Tokenize and prepare for the model a list of sequences or a list of pairs of sequences.
|
|
|
|
<Tip warning={true}>
|
|
|
|
This method is deprecated, `__call__` should be used instead.
|
|
|
|
</Tip>
|
|
|
|
Args:
|
|
batch_text_or_text_pairs (`List[str]`, `List[Tuple[str, str]]`, `List[List[str]]`, `List[Tuple[List[str], List[str]]]`, and for not-fast tokenizers, also `List[List[int]]`, `List[Tuple[List[int], List[int]]]`):
|
|
Batch of sequences or pair of sequences to be encoded. This can be a list of
|
|
string/string-sequences/int-sequences or a list of pair of string/string-sequences/int-sequence (see
|
|
details in `encode_plus`).
|
|
"""
|
|
|
|
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
|
|
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
|
|
padding=padding,
|
|
truncation=truncation,
|
|
max_length=max_length,
|
|
pad_to_multiple_of=pad_to_multiple_of,
|
|
verbose=verbose,
|
|
**kwargs,
|
|
)
|
|
|
|
return self._batch_encode_plus(
|
|
batch_text_or_text_pairs=batch_text_or_text_pairs,
|
|
add_special_tokens=add_special_tokens,
|
|
padding_strategy=padding_strategy,
|
|
truncation_strategy=truncation_strategy,
|
|
max_length=max_length,
|
|
stride=stride,
|
|
is_split_into_words=is_split_into_words,
|
|
pad_to_multiple_of=pad_to_multiple_of,
|
|
return_tensors=return_tensors,
|
|
return_token_type_ids=return_token_type_ids,
|
|
return_attention_mask=return_attention_mask,
|
|
return_overflowing_tokens=return_overflowing_tokens,
|
|
return_special_tokens_mask=return_special_tokens_mask,
|
|
return_offsets_mapping=return_offsets_mapping,
|
|
return_length=return_length,
|
|
verbose=verbose,
|
|
**kwargs,
|
|
)
|
|
|
|
def _batch_encode_plus(
|
|
self,
|
|
batch_text_or_text_pairs: Union[
|
|
List[TextInput],
|
|
List[TextInputPair],
|
|
List[PreTokenizedInput],
|
|
List[PreTokenizedInputPair],
|
|
List[EncodedInput],
|
|
List[EncodedInputPair],
|
|
],
|
|
add_special_tokens: bool = True,
|
|
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
|
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
|
max_length: Optional[int] = None,
|
|
stride: int = 0,
|
|
is_split_into_words: bool = False,
|
|
pad_to_multiple_of: Optional[int] = None,
|
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
|
return_token_type_ids: Optional[bool] = None,
|
|
return_attention_mask: Optional[bool] = None,
|
|
return_overflowing_tokens: bool = False,
|
|
return_special_tokens_mask: bool = False,
|
|
return_offsets_mapping: bool = False,
|
|
return_length: bool = False,
|
|
verbose: bool = True,
|
|
**kwargs,
|
|
) -> BatchEncoding:
|
|
raise NotImplementedError
|
|
|
|
def pad(
|
|
self,
|
|
encoded_inputs: Union[
|
|
BatchEncoding,
|
|
List[BatchEncoding],
|
|
Dict[str, EncodedInput],
|
|
Dict[str, List[EncodedInput]],
|
|
List[Dict[str, EncodedInput]],
|
|
],
|
|
padding: Union[bool, str, PaddingStrategy] = True,
|
|
max_length: Optional[int] = None,
|
|
pad_to_multiple_of: Optional[int] = None,
|
|
return_attention_mask: Optional[bool] = None,
|
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
|
verbose: bool = True,
|
|
) -> BatchEncoding:
|
|
"""
|
|
Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
|
|
in the batch.
|
|
|
|
Padding side (left/right) padding token ids are defined at the tokenizer level (with `self.padding_side`,
|
|
`self.pad_token_id` and `self.pad_token_type_id`).
|
|
|
|
Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the
|
|
text followed by a call to the `pad` method to get a padded encoding.
|
|
|
|
<Tip>
|
|
|
|
If the `encoded_inputs` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
|
|
result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of
|
|
PyTorch tensors, you will lose the specific device of your tensors however.
|
|
|
|
</Tip>
|
|
|
|
Args:
|
|
encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`):
|
|
Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of
|
|
tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str,
|
|
List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader
|
|
collate function.
|
|
|
|
Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), see
|
|
the note above for the return type.
|
|
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
|
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
|
index) among:
|
|
|
|
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
|
sequence if provided).
|
|
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
|
acceptable input length for the model if that argument is not provided.
|
|
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
|
lengths).
|
|
max_length (`int`, *optional*):
|
|
Maximum length of the returned list and optionally padding length (see above).
|
|
pad_to_multiple_of (`int`, *optional*):
|
|
If set will pad the sequence to a multiple of the provided value.
|
|
|
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
|
`>= 7.5` (Volta).
|
|
return_attention_mask (`bool`, *optional*):
|
|
Whether to return the attention mask. If left to the default, will return the attention mask according
|
|
to the specific tokenizer's default, defined by the `return_outputs` attribute.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
|
If set, will return tensors instead of list of python integers. Acceptable values are:
|
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
|
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
|
- `'np'`: Return Numpy `np.ndarray` objects.
|
|
verbose (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to print more information and warnings.
|
|
"""
|
|
if self.__class__.__name__.endswith("Fast"):
|
|
if not self.deprecation_warnings.get("Asking-to-pad-a-fast-tokenizer", False):
|
|
logger.warning_advice(
|
|
f"You're using a {self.__class__.__name__} tokenizer. Please note that with a fast tokenizer,"
|
|
" using the `__call__` method is faster than using a method to encode the text followed by a call"
|
|
" to the `pad` method to get a padded encoding."
|
|
)
|
|
self.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True
|
|
|
|
# If we have a list of dicts, let's convert it in a dict of lists
|
|
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
|
|
if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], Mapping):
|
|
encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()}
|
|
|
|
# The model's main input name, usually `input_ids`, has be passed for padding
|
|
if self.model_input_names[0] not in encoded_inputs:
|
|
raise ValueError(
|
|
"You should supply an encoding or a list of encodings to this method "
|
|
f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
|
|
)
|
|
|
|
required_input = encoded_inputs[self.model_input_names[0]]
|
|
|
|
if required_input is None or (isinstance(required_input, Sized) and len(required_input) == 0):
|
|
if return_attention_mask:
|
|
encoded_inputs["attention_mask"] = []
|
|
return encoded_inputs
|
|
|
|
# If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
|
|
# and rebuild them afterwards if no return_tensors is specified
|
|
# Note that we lose the specific device the tensor may be on for PyTorch
|
|
|
|
first_element = required_input[0]
|
|
if isinstance(first_element, (list, tuple)):
|
|
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
|
|
for item in required_input:
|
|
if len(item) != 0:
|
|
first_element = item[0]
|
|
break
|
|
# At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
|
|
if not isinstance(first_element, (int, list, tuple)):
|
|
if is_tf_tensor(first_element):
|
|
return_tensors = "tf" if return_tensors is None else return_tensors
|
|
elif is_torch_tensor(first_element):
|
|
return_tensors = "pt" if return_tensors is None else return_tensors
|
|
elif isinstance(first_element, np.ndarray):
|
|
return_tensors = "np" if return_tensors is None else return_tensors
|
|
else:
|
|
raise ValueError(
|
|
f"type of {first_element} unknown: {type(first_element)}. "
|
|
"Should be one of a python, numpy, pytorch or tensorflow object."
|
|
)
|
|
|
|
for key, value in encoded_inputs.items():
|
|
encoded_inputs[key] = to_py_obj(value)
|
|
|
|
# Convert padding_strategy in PaddingStrategy
|
|
padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
|
|
padding=padding, max_length=max_length, verbose=verbose
|
|
)
|
|
|
|
required_input = encoded_inputs[self.model_input_names[0]]
|
|
if required_input and not isinstance(required_input[0], (list, tuple)):
|
|
encoded_inputs = self._pad(
|
|
encoded_inputs,
|
|
max_length=max_length,
|
|
padding_strategy=padding_strategy,
|
|
pad_to_multiple_of=pad_to_multiple_of,
|
|
return_attention_mask=return_attention_mask,
|
|
)
|
|
return BatchEncoding(encoded_inputs, tensor_type=return_tensors)
|
|
|
|
batch_size = len(required_input)
|
|
assert all(
|
|
len(v) == batch_size for v in encoded_inputs.values()
|
|
), "Some items in the output dictionary have a different batch size than others."
|
|
|
|
if padding_strategy == PaddingStrategy.LONGEST:
|
|
max_length = max(len(inputs) for inputs in required_input)
|
|
padding_strategy = PaddingStrategy.MAX_LENGTH
|
|
|
|
batch_outputs = {}
|
|
for i in range(batch_size):
|
|
inputs = {k: v[i] for k, v in encoded_inputs.items()}
|
|
outputs = self._pad(
|
|
inputs,
|
|
max_length=max_length,
|
|
padding_strategy=padding_strategy,
|
|
pad_to_multiple_of=pad_to_multiple_of,
|
|
return_attention_mask=return_attention_mask,
|
|
)
|
|
|
|
for key, value in outputs.items():
|
|
if key not in batch_outputs:
|
|
batch_outputs[key] = []
|
|
batch_outputs[key].append(value)
|
|
|
|
return BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
|
|
|
def create_token_type_ids_from_sequences(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Create the token type IDs corresponding to the sequences passed. [What are token type
|
|
IDs?](../glossary#token-type-ids)
|
|
|
|
Should be overridden in a subclass if the model has a special way of building those.
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`): The first tokenized sequence.
|
|
token_ids_1 (`List[int]`, *optional*): The second tokenized sequence.
|
|
|
|
Returns:
|
|
`List[int]`: The token type ids.
|
|
"""
|
|
if token_ids_1 is None:
|
|
return len(token_ids_0) * [0]
|
|
return [0] * len(token_ids_0) + [1] * len(token_ids_1)
|
|
|
|
def build_inputs_with_special_tokens(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
|
adding special tokens.
|
|
|
|
This implementation does not add special tokens and this method should be overridden in a subclass.
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`): The first tokenized sequence.
|
|
token_ids_1 (`List[int]`, *optional*): The second tokenized sequence.
|
|
|
|
Returns:
|
|
`List[int]`: The model input with special tokens.
|
|
"""
|
|
if token_ids_1 is None:
|
|
return token_ids_0
|
|
return token_ids_0 + token_ids_1
|
|
|
|
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
|
def prepare_for_model(
|
|
self,
|
|
ids: List[int],
|
|
pair_ids: Optional[List[int]] = None,
|
|
add_special_tokens: bool = True,
|
|
padding: Union[bool, str, PaddingStrategy] = False,
|
|
truncation: Union[bool, str, TruncationStrategy] = None,
|
|
max_length: Optional[int] = None,
|
|
stride: int = 0,
|
|
pad_to_multiple_of: Optional[int] = None,
|
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
|
return_token_type_ids: Optional[bool] = None,
|
|
return_attention_mask: Optional[bool] = None,
|
|
return_overflowing_tokens: bool = False,
|
|
return_special_tokens_mask: bool = False,
|
|
return_offsets_mapping: bool = False,
|
|
return_length: bool = False,
|
|
verbose: bool = True,
|
|
prepend_batch_axis: bool = False,
|
|
**kwargs,
|
|
) -> BatchEncoding:
|
|
"""
|
|
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
|
|
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
|
|
manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *pair_ids*
|
|
different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return
|
|
overflowing tokens. Such a combination of arguments will raise an error.
|
|
|
|
Args:
|
|
ids (`List[int]`):
|
|
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
|
|
`convert_tokens_to_ids` methods.
|
|
pair_ids (`List[int]`, *optional*):
|
|
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
|
|
and `convert_tokens_to_ids` methods.
|
|
"""
|
|
|
|
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
|
|
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
|
|
padding=padding,
|
|
truncation=truncation,
|
|
max_length=max_length,
|
|
pad_to_multiple_of=pad_to_multiple_of,
|
|
verbose=verbose,
|
|
**kwargs,
|
|
)
|
|
|
|
pair = bool(pair_ids is not None)
|
|
len_ids = len(ids)
|
|
len_pair_ids = len(pair_ids) if pair else 0
|
|
|
|
if return_token_type_ids and not add_special_tokens:
|
|
raise ValueError(
|
|
"Asking to return token_type_ids while setting add_special_tokens to False "
|
|
"results in an undefined behavior. Please set add_special_tokens to True or "
|
|
"set return_token_type_ids to None."
|
|
)
|
|
|
|
if (
|
|
return_overflowing_tokens
|
|
and truncation_strategy == TruncationStrategy.LONGEST_FIRST
|
|
and pair_ids is not None
|
|
):
|
|
raise ValueError(
|
|
"Not possible to return overflowing tokens for pair of sequences with the "
|
|
"`longest_first`. Please select another truncation strategy than `longest_first`, "
|
|
"for instance `only_second` or `only_first`."
|
|
)
|
|
|
|
# Load from model defaults
|
|
if return_token_type_ids is None:
|
|
return_token_type_ids = "token_type_ids" in self.model_input_names
|
|
if return_attention_mask is None:
|
|
return_attention_mask = "attention_mask" in self.model_input_names
|
|
|
|
encoded_inputs = {}
|
|
|
|
# Compute the total size of the returned encodings
|
|
total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
|
|
|
|
# Truncation: Handle max sequence length
|
|
overflowing_tokens = []
|
|
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
|
|
ids, pair_ids, overflowing_tokens = self.truncate_sequences(
|
|
ids,
|
|
pair_ids=pair_ids,
|
|
num_tokens_to_remove=total_len - max_length,
|
|
truncation_strategy=truncation_strategy,
|
|
stride=stride,
|
|
)
|
|
|
|
if return_overflowing_tokens:
|
|
encoded_inputs["overflowing_tokens"] = overflowing_tokens
|
|
encoded_inputs["num_truncated_tokens"] = total_len - max_length
|
|
|
|
# Add special tokens
|
|
if add_special_tokens:
|
|
sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
|
|
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
|
|
else:
|
|
sequence = ids + pair_ids if pair else ids
|
|
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
|
|
|
|
# Build output dictionary
|
|
encoded_inputs["input_ids"] = sequence
|
|
if return_token_type_ids:
|
|
encoded_inputs["token_type_ids"] = token_type_ids
|
|
if return_special_tokens_mask:
|
|
if add_special_tokens:
|
|
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
|
|
else:
|
|
encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
|
|
|
|
# Check lengths
|
|
self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)
|
|
|
|
# Padding
|
|
if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
|
|
encoded_inputs = self.pad(
|
|
encoded_inputs,
|
|
max_length=max_length,
|
|
padding=padding_strategy.value,
|
|
pad_to_multiple_of=pad_to_multiple_of,
|
|
return_attention_mask=return_attention_mask,
|
|
)
|
|
|
|
if return_length:
|
|
encoded_inputs["length"] = len(encoded_inputs["input_ids"])
|
|
|
|
batch_outputs = BatchEncoding(
|
|
encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
|
|
)
|
|
|
|
return batch_outputs
|
|
|
|
def truncate_sequences(
|
|
self,
|
|
ids: List[int],
|
|
pair_ids: Optional[List[int]] = None,
|
|
num_tokens_to_remove: int = 0,
|
|
truncation_strategy: Union[str, TruncationStrategy] = "longest_first",
|
|
stride: int = 0,
|
|
) -> Tuple[List[int], List[int], List[int]]:
|
|
"""
|
|
Truncates a sequence pair in-place following the strategy.
|
|
|
|
Args:
|
|
ids (`List[int]`):
|
|
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
|
|
`convert_tokens_to_ids` methods.
|
|
pair_ids (`List[int]`, *optional*):
|
|
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
|
|
and `convert_tokens_to_ids` methods.
|
|
num_tokens_to_remove (`int`, *optional*, defaults to 0):
|
|
Number of tokens to remove using the truncation strategy.
|
|
truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
|
|
The strategy to follow for truncation. Can be:
|
|
|
|
- `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
|
maximum acceptable input length for the model if that argument is not provided. This will truncate
|
|
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a
|
|
batch of pairs) is provided.
|
|
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
|
maximum acceptable input length for the model if that argument is not provided. This will only
|
|
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
|
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
|
maximum acceptable input length for the model if that argument is not provided. This will only
|
|
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
|
- `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater
|
|
than the model maximum admissible input size).
|
|
stride (`int`, *optional*, defaults to 0):
|
|
If set to a positive number, the overflowing tokens returned will contain some tokens from the main
|
|
sequence returned. The value of this argument defines the number of additional tokens.
|
|
|
|
Returns:
|
|
`Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of
|
|
overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair
|
|
of sequences (or a batch of pairs) is provided.
|
|
"""
|
|
if num_tokens_to_remove <= 0:
|
|
return ids, pair_ids, []
|
|
|
|
if not isinstance(truncation_strategy, TruncationStrategy):
|
|
truncation_strategy = TruncationStrategy(truncation_strategy)
|
|
|
|
overflowing_tokens = []
|
|
if truncation_strategy == TruncationStrategy.ONLY_FIRST or (
|
|
truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None
|
|
):
|
|
if len(ids) > num_tokens_to_remove:
|
|
window_len = min(len(ids), stride + num_tokens_to_remove)
|
|
if self.truncation_side == "left":
|
|
overflowing_tokens = ids[:window_len]
|
|
ids = ids[num_tokens_to_remove:]
|
|
elif self.truncation_side == "right":
|
|
overflowing_tokens = ids[-window_len:]
|
|
ids = ids[:-num_tokens_to_remove]
|
|
else:
|
|
raise ValueError(f"invalid truncation strategy: {self.truncation_side}, use 'left' or 'right'.")
|
|
|
|
else:
|
|
error_msg = (
|
|
f"We need to remove {num_tokens_to_remove} to truncate the input "
|
|
f"but the first sequence has a length {len(ids)}. "
|
|
)
|
|
if truncation_strategy == TruncationStrategy.ONLY_FIRST:
|
|
error_msg = (
|
|
error_msg + "Please select another truncation strategy than "
|
|
f"{truncation_strategy}, for instance 'longest_first' or 'only_second'."
|
|
)
|
|
logger.error(error_msg)
|
|
elif truncation_strategy == TruncationStrategy.LONGEST_FIRST:
|
|
logger.warning(
|
|
"Be aware, overflowing tokens are not returned for the setting you have chosen,"
|
|
f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' "
|
|
"truncation strategy. So the returned list will always be empty even if some "
|
|
"tokens have been removed."
|
|
)
|
|
len_pair_ids = len(pair_ids) if pair_ids is not None else 0
|
|
len_ids = len(ids)
|
|
first_remove = min(abs(len_pair_ids - len_ids), num_tokens_to_remove)
|
|
second_remove = num_tokens_to_remove - first_remove
|
|
if len_ids > len_pair_ids:
|
|
ids_to_move = first_remove + second_remove // 2
|
|
pair_ids_to_move = second_remove - second_remove // 2
|
|
else:
|
|
ids_to_move = second_remove // 2
|
|
pair_ids_to_move = first_remove + second_remove - (second_remove // 2)
|
|
|
|
if self.truncation_side == "right":
|
|
ids = ids[:-ids_to_move] if ids_to_move > 0 else ids
|
|
pair_ids = pair_ids[:-pair_ids_to_move] if pair_ids is not None and pair_ids_to_move > 0 else pair_ids
|
|
elif self.truncation_side == "left":
|
|
ids = ids[ids_to_move:]
|
|
pair_ids = pair_ids[pair_ids_to_move:] if pair_ids is not None else None
|
|
else:
|
|
raise ValueError(f"invalid truncation strategy:{self.truncation_side}")
|
|
|
|
elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None:
|
|
if len(pair_ids) > num_tokens_to_remove:
|
|
window_len = min(len(pair_ids), stride + num_tokens_to_remove)
|
|
if self.truncation_side == "right":
|
|
overflowing_tokens = pair_ids[-window_len:]
|
|
pair_ids = pair_ids[:-num_tokens_to_remove]
|
|
elif self.truncation_side == "left":
|
|
overflowing_tokens = pair_ids[:window_len]
|
|
pair_ids = pair_ids[num_tokens_to_remove:]
|
|
else:
|
|
raise ValueError(f"invalid truncation strategy:{self.truncation_side}")
|
|
else:
|
|
logger.error(
|
|
f"We need to remove {num_tokens_to_remove} to truncate the input "
|
|
f"but the second sequence has a length {len(pair_ids)}. "
|
|
f"Please select another truncation strategy than {truncation_strategy}, "
|
|
"for instance 'longest_first' or 'only_first'."
|
|
)
|
|
|
|
return (ids, pair_ids, overflowing_tokens)
|
|
|
|
def _pad(
|
|
self,
|
|
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
|
max_length: Optional[int] = None,
|
|
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
|
pad_to_multiple_of: Optional[int] = None,
|
|
return_attention_mask: Optional[bool] = None,
|
|
) -> dict:
|
|
"""
|
|
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
|
|
|
Args:
|
|
encoded_inputs:
|
|
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
|
max_length: maximum length of the returned list and optionally padding length (see below).
|
|
Will truncate by taking into account the special tokens.
|
|
padding_strategy: PaddingStrategy to use for padding.
|
|
|
|
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
|
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
|
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
|
The tokenizer padding sides are defined in self.padding_side:
|
|
|
|
- 'left': pads on the left of the sequences
|
|
- 'right': pads on the right of the sequences
|
|
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
|
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
|
`>= 7.5` (Volta).
|
|
return_attention_mask:
|
|
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
|
"""
|
|
# Load from model defaults
|
|
if return_attention_mask is None:
|
|
return_attention_mask = "attention_mask" in self.model_input_names
|
|
|
|
required_input = encoded_inputs[self.model_input_names[0]]
|
|
|
|
if padding_strategy == PaddingStrategy.LONGEST:
|
|
max_length = len(required_input)
|
|
|
|
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
|
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
|
|
|
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
|
|
|
# Initialize attention mask if not present.
|
|
if return_attention_mask and "attention_mask" not in encoded_inputs:
|
|
encoded_inputs["attention_mask"] = [1] * len(required_input)
|
|
|
|
if needs_to_be_padded:
|
|
difference = max_length - len(required_input)
|
|
|
|
if self.padding_side == "right":
|
|
if return_attention_mask:
|
|
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
|
|
if "token_type_ids" in encoded_inputs:
|
|
encoded_inputs["token_type_ids"] = (
|
|
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
|
|
)
|
|
if "special_tokens_mask" in encoded_inputs:
|
|
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
|
|
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
|
|
elif self.padding_side == "left":
|
|
if return_attention_mask:
|
|
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
|
if "token_type_ids" in encoded_inputs:
|
|
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
|
"token_type_ids"
|
|
]
|
|
if "special_tokens_mask" in encoded_inputs:
|
|
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
|
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
|
else:
|
|
raise ValueError(f"Invalid padding strategy:{self.padding_side}")
|
|
|
|
return encoded_inputs
|
|
|
|
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
|
"""
|
|
Converts a sequence of tokens in a single string. The most simple way to do it is `" ".join(tokens)` but we
|
|
often want to remove sub-word tokenization artifacts at the same time.
|
|
|
|
Args:
|
|
tokens (`List[str]`): The token to join in a string.
|
|
|
|
Returns:
|
|
`str`: The joined tokens.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def batch_decode(
|
|
self,
|
|
sequences: Union[List[int], List[List[int]], "np.ndarray", "torch.Tensor", "tf.Tensor"],
|
|
skip_special_tokens: bool = False,
|
|
clean_up_tokenization_spaces: bool = None,
|
|
**kwargs,
|
|
) -> List[str]:
|
|
"""
|
|
Convert a list of lists of token ids into a list of strings by calling decode.
|
|
|
|
Args:
|
|
sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`):
|
|
List of tokenized input ids. Can be obtained using the `__call__` method.
|
|
skip_special_tokens (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to remove special tokens in the decoding.
|
|
clean_up_tokenization_spaces (`bool`, *optional*):
|
|
Whether or not to clean up the tokenization spaces. If `None`, will default to
|
|
`self.clean_up_tokenization_spaces`.
|
|
kwargs (additional keyword arguments, *optional*):
|
|
Will be passed to the underlying model specific decode method.
|
|
|
|
Returns:
|
|
`List[str]`: The list of decoded sentences.
|
|
"""
|
|
return [
|
|
self.decode(
|
|
seq,
|
|
skip_special_tokens=skip_special_tokens,
|
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
|
**kwargs,
|
|
)
|
|
for seq in sequences
|
|
]
|
|
|
|
def decode(
|
|
self,
|
|
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
|
|
skip_special_tokens: bool = False,
|
|
clean_up_tokenization_spaces: bool = None,
|
|
**kwargs,
|
|
) -> str:
|
|
"""
|
|
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
|
|
tokens and clean up tokenization spaces.
|
|
|
|
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
|
|
|
|
Args:
|
|
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
|
|
List of tokenized input ids. Can be obtained using the `__call__` method.
|
|
skip_special_tokens (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to remove special tokens in the decoding.
|
|
clean_up_tokenization_spaces (`bool`, *optional*):
|
|
Whether or not to clean up the tokenization spaces. If `None`, will default to
|
|
`self.clean_up_tokenization_spaces`.
|
|
kwargs (additional keyword arguments, *optional*):
|
|
Will be passed to the underlying model specific decode method.
|
|
|
|
Returns:
|
|
`str`: The decoded sentence.
|
|
"""
|
|
# Convert inputs to python lists
|
|
token_ids = to_py_obj(token_ids)
|
|
|
|
return self._decode(
|
|
token_ids=token_ids,
|
|
skip_special_tokens=skip_special_tokens,
|
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
|
**kwargs,
|
|
)
|
|
|
|
def _decode(
|
|
self,
|
|
token_ids: Union[int, List[int]],
|
|
skip_special_tokens: bool = False,
|
|
clean_up_tokenization_spaces: bool = None,
|
|
**kwargs,
|
|
) -> str:
|
|
raise NotImplementedError
|
|
|
|
def get_special_tokens_mask(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
|
) -> List[int]:
|
|
"""
|
|
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
|
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of ids of the first sequence.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
List of ids of the second sequence.
|
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
|
Whether or not the token list is already formatted with special tokens for the model.
|
|
|
|
Returns:
|
|
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
|
"""
|
|
assert already_has_special_tokens and token_ids_1 is None, (
|
|
"You cannot use ``already_has_special_tokens=False`` with this tokenizer. "
|
|
"Please use a slow (full python) tokenizer to activate this argument. "
|
|
"Or set `return_special_tokens_mask=True` when calling the encoding method "
|
|
"to get the special tokens mask in any tokenizer. "
|
|
)
|
|
|
|
all_special_ids = self.all_special_ids # cache the property
|
|
|
|
special_tokens_mask = [1 if token in all_special_ids else 0 for token in token_ids_0]
|
|
|
|
return special_tokens_mask
|
|
|
|
@staticmethod
|
|
def clean_up_tokenization(out_string: str) -> str:
|
|
"""
|
|
Clean up a list of simple English tokenization artifacts like spaces before punctuations and abbreviated forms.
|
|
|
|
Args:
|
|
out_string (`str`): The text to clean up.
|
|
|
|
Returns:
|
|
`str`: The cleaned-up string.
|
|
"""
|
|
out_string = (
|
|
out_string.replace(" .", ".")
|
|
.replace(" ?", "?")
|
|
.replace(" !", "!")
|
|
.replace(" ,", ",")
|
|
.replace(" ' ", "'")
|
|
.replace(" n't", "n't")
|
|
.replace(" 'm", "'m")
|
|
.replace(" 's", "'s")
|
|
.replace(" 've", "'ve")
|
|
.replace(" 're", "'re")
|
|
)
|
|
return out_string
|
|
|
|
def _eventual_warn_about_too_long_sequence(self, ids: List[int], max_length: Optional[int], verbose: bool):
|
|
"""
|
|
Depending on the input and internal state we might trigger a warning about a sequence that is too long for its
|
|
corresponding model
|
|
|
|
Args:
|
|
ids (`List[str]`): The ids produced by the tokenization
|
|
max_length (`int`, *optional*): The max_length desired (does not trigger a warning if it is set)
|
|
verbose (`bool`): Whether or not to print more information and warnings.
|
|
|
|
"""
|
|
if max_length is None and len(ids) > self.model_max_length and verbose:
|
|
if not self.deprecation_warnings.get("sequence-length-is-longer-than-the-specified-maximum", False):
|
|
logger.warning(
|
|
"Token indices sequence length is longer than the specified maximum sequence length "
|
|
f"for this model ({len(ids)} > {self.model_max_length}). Running this sequence through the model "
|
|
"will result in indexing errors"
|
|
)
|
|
self.deprecation_warnings["sequence-length-is-longer-than-the-specified-maximum"] = True
|
|
|
|
def _switch_to_input_mode(self):
|
|
"""
|
|
Private method to put the tokenizer in input mode (when it has different modes for input/outputs)
|
|
"""
|
|
pass
|
|
|
|
def _switch_to_target_mode(self):
|
|
"""
|
|
Private method to put the tokenizer in target mode (when it has different modes for input/outputs)
|
|
"""
|
|
pass
|
|
|
|
@contextmanager
|
|
def as_target_tokenizer(self):
|
|
"""
|
|
Temporarily sets the tokenizer for encoding the targets. Useful for tokenizer associated to
|
|
sequence-to-sequence models that need a slightly different processing for the labels.
|
|
"""
|
|
warnings.warn(
|
|
"`as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your "
|
|
"labels by using the argument `text_target` of the regular `__call__` method (either in the same call as "
|
|
"your input texts if you use the same keyword arguments, or in a separate call."
|
|
)
|
|
self._switch_to_target_mode()
|
|
self._in_target_context_manager = True
|
|
yield
|
|
self._in_target_context_manager = False
|
|
self._switch_to_input_mode()
|
|
|
|
@classmethod
|
|
def register_for_auto_class(cls, auto_class="AutoTokenizer"):
|
|
"""
|
|
Register this class with a given auto class. This should only be used for custom tokenizers as the ones in the
|
|
library are already mapped with `AutoTokenizer`.
|
|
|
|
<Tip warning={true}>
|
|
|
|
This API is experimental and may have some slight breaking changes in the next releases.
|
|
|
|
</Tip>
|
|
|
|
Args:
|
|
auto_class (`str` or `type`, *optional*, defaults to `"AutoTokenizer"`):
|
|
The auto class to register this new tokenizer with.
|
|
"""
|
|
if not isinstance(auto_class, str):
|
|
auto_class = auto_class.__name__
|
|
|
|
import transformers.models.auto as auto_module
|
|
|
|
if not hasattr(auto_module, auto_class):
|
|
raise ValueError(f"{auto_class} is not a valid auto class.")
|
|
|
|
cls._auto_class = auto_class
|
|
|
|
def prepare_seq2seq_batch(
|
|
self,
|
|
src_texts: List[str],
|
|
tgt_texts: Optional[List[str]] = None,
|
|
max_length: Optional[int] = None,
|
|
max_target_length: Optional[int] = None,
|
|
padding: str = "longest",
|
|
return_tensors: str = None,
|
|
truncation: bool = True,
|
|
**kwargs,
|
|
) -> BatchEncoding:
|
|
"""
|
|
Prepare model inputs for translation. For best performance, translate one sentence at a time.
|
|
|
|
Arguments:
|
|
src_texts (`List[str]`):
|
|
List of documents to summarize or source language texts.
|
|
tgt_texts (`list`, *optional*):
|
|
List of summaries or target language texts.
|
|
max_length (`int`, *optional*):
|
|
Controls the maximum length for encoder inputs (documents to summarize or source language texts) If
|
|
left unset or set to `None`, this will use the predefined model maximum length if a maximum length is
|
|
required by one of the truncation/padding parameters. If the model has no specific maximum input length
|
|
(like XLNet) truncation/padding to a maximum length will be deactivated.
|
|
max_target_length (`int`, *optional*):
|
|
Controls the maximum length of decoder inputs (target language texts or summaries) If left unset or set
|
|
to `None`, this will use the max_length value.
|
|
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
|
Activates and controls padding. Accepts the following values:
|
|
|
|
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
|
sequence if provided).
|
|
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
|
acceptable input length for the model if that argument is not provided.
|
|
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
|
lengths).
|
|
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
|
If set, will return tensors instead of list of python integers. Acceptable values are:
|
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
|
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
|
- `'np'`: Return Numpy `np.ndarray` objects.
|
|
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `True`):
|
|
Activates and controls truncation. Accepts the following values:
|
|
|
|
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
|
|
to the maximum acceptable input length for the model if that argument is not provided. This will
|
|
truncate token by token, removing a token from the longest sequence in the pair if a pair of
|
|
sequences (or a batch of pairs) is provided.
|
|
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
|
maximum acceptable input length for the model if that argument is not provided. This will only
|
|
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
|
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
|
maximum acceptable input length for the model if that argument is not provided. This will only
|
|
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
|
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
|
|
greater than the model maximum admissible input size).
|
|
**kwargs:
|
|
Additional keyword arguments passed along to `self.__call__`.
|
|
|
|
Return:
|
|
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
|
|
|
- **input_ids** -- List of token ids to be fed to the encoder.
|
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model.
|
|
- **labels** -- List of token ids for tgt_texts.
|
|
|
|
The full set of keys `[input_ids, attention_mask, labels]`, will only be returned if tgt_texts is passed.
|
|
Otherwise, input_ids, attention_mask will be the only keys.
|
|
"""
|
|
# docstyle-ignore
|
|
formatted_warning = """
|
|
`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of HuggingFace Transformers. Use the regular
|
|
`__call__` method to prepare your inputs and targets.
|
|
|
|
Here is a short example:
|
|
|
|
model_inputs = tokenizer(src_texts, text_target=tgt_texts, ...)
|
|
|
|
If you either need to use different keyword arguments for the source and target texts, you should do two calls like
|
|
this:
|
|
|
|
model_inputs = tokenizer(src_texts, ...)
|
|
labels = tokenizer(text_target=tgt_texts, ...)
|
|
model_inputs["labels"] = labels["input_ids"]
|
|
|
|
See the documentation of your specific tokenizer for more details on the specific arguments to the tokenizer of choice.
|
|
For a more complete example, see the implementation of `prepare_seq2seq_batch`.
|
|
"""
|
|
warnings.warn(formatted_warning, FutureWarning)
|
|
# mBART-specific kwargs that should be ignored by other models.
|
|
kwargs.pop("src_lang", None)
|
|
kwargs.pop("tgt_lang", None)
|
|
if max_length is None:
|
|
max_length = self.model_max_length
|
|
model_inputs = self(
|
|
src_texts,
|
|
add_special_tokens=True,
|
|
return_tensors=return_tensors,
|
|
max_length=max_length,
|
|
padding=padding,
|
|
truncation=truncation,
|
|
**kwargs,
|
|
)
|
|
if tgt_texts is None:
|
|
return model_inputs
|
|
# Process tgt_texts
|
|
if max_target_length is None:
|
|
max_target_length = max_length
|
|
with self.as_target_tokenizer():
|
|
labels = self(
|
|
tgt_texts,
|
|
add_special_tokens=True,
|
|
return_tensors=return_tensors,
|
|
padding=padding,
|
|
max_length=max_target_length,
|
|
truncation=truncation,
|
|
**kwargs,
|
|
)
|
|
model_inputs["labels"] = labels["input_ids"]
|
|
return model_inputs
|
|
|
|
|
|
def get_fast_tokenizer_file(tokenization_files: List[str]) -> str:
|
|
"""
|
|
Get the tokenization file to use for this version of transformers.
|
|
|
|
Args:
|
|
tokenization_files (`List[str]`): The list of available configuration files.
|
|
|
|
Returns:
|
|
`str`: The tokenization file to use.
|
|
"""
|
|
tokenizer_files_map = {}
|
|
for file_name in tokenization_files:
|
|
search = _re_tokenizer_file.search(file_name)
|
|
if search is not None:
|
|
v = search.groups()[0]
|
|
tokenizer_files_map[v] = file_name
|
|
available_versions = sorted(tokenizer_files_map.keys())
|
|
|
|
# Defaults to FULL_TOKENIZER_FILE and then try to look at some newer versions.
|
|
tokenizer_file = FULL_TOKENIZER_FILE
|
|
transformers_version = version.parse(__version__)
|
|
for v in available_versions:
|
|
if version.parse(v) <= transformers_version:
|
|
tokenizer_file = tokenizer_files_map[v]
|
|
else:
|
|
# No point going further since the versions are sorted.
|
|
break
|
|
|
|
return tokenizer_file
|
|
|
|
|
|
# To update the docstring, we need to copy the method, otherwise we change the original docstring.
|
|
PreTrainedTokenizerBase.push_to_hub = copy_func(PreTrainedTokenizerBase.push_to_hub)
|
|
if PreTrainedTokenizerBase.push_to_hub.__doc__ is not None:
|
|
PreTrainedTokenizerBase.push_to_hub.__doc__ = PreTrainedTokenizerBase.push_to_hub.__doc__.format(
|
|
object="tokenizer", object_class="AutoTokenizer", object_files="tokenizer files"
|
|
)
|