351 lines
16 KiB
Python
351 lines
16 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
""" Collection of utils to be used by backbones and their components."""
|
|
|
|
import enum
|
|
import inspect
|
|
from typing import Iterable, List, Optional, Tuple, Union
|
|
|
|
|
|
class BackboneType(enum.Enum):
|
|
TIMM = "timm"
|
|
TRANSFORMERS = "transformers"
|
|
|
|
|
|
def verify_out_features_out_indices(
|
|
out_features: Optional[Iterable[str]], out_indices: Optional[Iterable[int]], stage_names: Optional[Iterable[str]]
|
|
):
|
|
"""
|
|
Verify that out_indices and out_features are valid for the given stage_names.
|
|
"""
|
|
if stage_names is None:
|
|
raise ValueError("Stage_names must be set for transformers backbones")
|
|
|
|
if out_features is not None:
|
|
if not isinstance(out_features, (list,)):
|
|
raise ValueError(f"out_features must be a list got {type(out_features)}")
|
|
if any(feat not in stage_names for feat in out_features):
|
|
raise ValueError(f"out_features must be a subset of stage_names: {stage_names} got {out_features}")
|
|
if len(out_features) != len(set(out_features)):
|
|
raise ValueError(f"out_features must not contain any duplicates, got {out_features}")
|
|
if out_features != (sorted_feats := [feat for feat in stage_names if feat in out_features]):
|
|
raise ValueError(
|
|
f"out_features must be in the same order as stage_names, expected {sorted_feats} got {out_features}"
|
|
)
|
|
|
|
if out_indices is not None:
|
|
if not isinstance(out_indices, (list, tuple)):
|
|
raise ValueError(f"out_indices must be a list or tuple, got {type(out_indices)}")
|
|
# Convert negative indices to their positive equivalent: [-1,] -> [len(stage_names) - 1,]
|
|
positive_indices = tuple(idx % len(stage_names) if idx < 0 else idx for idx in out_indices)
|
|
if any(idx for idx in positive_indices if idx not in range(len(stage_names))):
|
|
raise ValueError(f"out_indices must be valid indices for stage_names {stage_names}, got {out_indices}")
|
|
if len(positive_indices) != len(set(positive_indices)):
|
|
msg = f"out_indices must not contain any duplicates, got {out_indices}"
|
|
msg += f"(equivalent to {positive_indices}))" if positive_indices != out_indices else ""
|
|
raise ValueError(msg)
|
|
if positive_indices != tuple(sorted(positive_indices)):
|
|
sorted_negative = tuple(idx for _, idx in sorted(zip(positive_indices, out_indices), key=lambda x: x[0]))
|
|
raise ValueError(
|
|
f"out_indices must be in the same order as stage_names, expected {sorted_negative} got {out_indices}"
|
|
)
|
|
|
|
if out_features is not None and out_indices is not None:
|
|
if len(out_features) != len(out_indices):
|
|
raise ValueError("out_features and out_indices should have the same length if both are set")
|
|
if out_features != [stage_names[idx] for idx in out_indices]:
|
|
raise ValueError("out_features and out_indices should correspond to the same stages if both are set")
|
|
|
|
|
|
def _align_output_features_output_indices(
|
|
out_features: Optional[List[str]],
|
|
out_indices: Optional[Union[List[int], Tuple[int]]],
|
|
stage_names: List[str],
|
|
):
|
|
"""
|
|
Finds the corresponding `out_features` and `out_indices` for the given `stage_names`.
|
|
|
|
The logic is as follows:
|
|
- `out_features` not set, `out_indices` set: `out_features` is set to the `out_features` corresponding to the
|
|
`out_indices`.
|
|
- `out_indices` not set, `out_features` set: `out_indices` is set to the `out_indices` corresponding to the
|
|
`out_features`.
|
|
- `out_indices` and `out_features` not set: `out_indices` and `out_features` are set to the last stage.
|
|
- `out_indices` and `out_features` set: input `out_indices` and `out_features` are returned.
|
|
|
|
Args:
|
|
out_features (`List[str]`): The names of the features for the backbone to output.
|
|
out_indices (`List[int]` or `Tuple[int]`): The indices of the features for the backbone to output.
|
|
stage_names (`List[str]`): The names of the stages of the backbone.
|
|
"""
|
|
if out_indices is None and out_features is None:
|
|
out_indices = [len(stage_names) - 1]
|
|
out_features = [stage_names[-1]]
|
|
elif out_indices is None and out_features is not None:
|
|
out_indices = [stage_names.index(layer) for layer in out_features]
|
|
elif out_features is None and out_indices is not None:
|
|
out_features = [stage_names[idx] for idx in out_indices]
|
|
return out_features, out_indices
|
|
|
|
|
|
def get_aligned_output_features_output_indices(
|
|
out_features: Optional[List[str]],
|
|
out_indices: Optional[Union[List[int], Tuple[int]]],
|
|
stage_names: List[str],
|
|
) -> Tuple[List[str], List[int]]:
|
|
"""
|
|
Get the `out_features` and `out_indices` so that they are aligned.
|
|
|
|
The logic is as follows:
|
|
- `out_features` not set, `out_indices` set: `out_features` is set to the `out_features` corresponding to the
|
|
`out_indices`.
|
|
- `out_indices` not set, `out_features` set: `out_indices` is set to the `out_indices` corresponding to the
|
|
`out_features`.
|
|
- `out_indices` and `out_features` not set: `out_indices` and `out_features` are set to the last stage.
|
|
- `out_indices` and `out_features` set: they are verified to be aligned.
|
|
|
|
Args:
|
|
out_features (`List[str]`): The names of the features for the backbone to output.
|
|
out_indices (`List[int]` or `Tuple[int]`): The indices of the features for the backbone to output.
|
|
stage_names (`List[str]`): The names of the stages of the backbone.
|
|
"""
|
|
# First verify that the out_features and out_indices are valid
|
|
verify_out_features_out_indices(out_features=out_features, out_indices=out_indices, stage_names=stage_names)
|
|
output_features, output_indices = _align_output_features_output_indices(
|
|
out_features=out_features, out_indices=out_indices, stage_names=stage_names
|
|
)
|
|
# Verify that the aligned out_features and out_indices are valid
|
|
verify_out_features_out_indices(out_features=output_features, out_indices=output_indices, stage_names=stage_names)
|
|
return output_features, output_indices
|
|
|
|
|
|
class BackboneMixin:
|
|
backbone_type: Optional[BackboneType] = None
|
|
|
|
def _init_timm_backbone(self, config) -> None:
|
|
"""
|
|
Initialize the backbone model from timm The backbone must already be loaded to self._backbone
|
|
"""
|
|
if getattr(self, "_backbone", None) is None:
|
|
raise ValueError("self._backbone must be set before calling _init_timm_backbone")
|
|
|
|
# These will diagree with the defaults for the transformers models e.g. for resnet50
|
|
# the transformer model has out_features = ['stem', 'stage1', 'stage2', 'stage3', 'stage4']
|
|
# the timm model has out_features = ['act', 'layer1', 'layer2', 'layer3', 'layer4']
|
|
self.stage_names = [stage["module"] for stage in self._backbone.feature_info.info]
|
|
self.num_features = [stage["num_chs"] for stage in self._backbone.feature_info.info]
|
|
out_indices = self._backbone.feature_info.out_indices
|
|
out_features = self._backbone.feature_info.module_name()
|
|
|
|
# We verify the out indices and out features are valid
|
|
verify_out_features_out_indices(
|
|
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
|
|
)
|
|
self._out_features, self._out_indices = out_features, out_indices
|
|
|
|
def _init_transformers_backbone(self, config) -> None:
|
|
stage_names = getattr(config, "stage_names")
|
|
out_features = getattr(config, "out_features", None)
|
|
out_indices = getattr(config, "out_indices", None)
|
|
|
|
self.stage_names = stage_names
|
|
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
|
|
out_features=out_features, out_indices=out_indices, stage_names=stage_names
|
|
)
|
|
# Number of channels for each stage. This is set in the transformer backbone model init
|
|
self.num_features = None
|
|
|
|
def _init_backbone(self, config) -> None:
|
|
"""
|
|
Method to initialize the backbone. This method is called by the constructor of the base class after the
|
|
pretrained model weights have been loaded.
|
|
"""
|
|
self.config = config
|
|
|
|
self.use_timm_backbone = getattr(config, "use_timm_backbone", False)
|
|
self.backbone_type = BackboneType.TIMM if self.use_timm_backbone else BackboneType.TRANSFORMERS
|
|
|
|
if self.backbone_type == BackboneType.TIMM:
|
|
self._init_timm_backbone(config)
|
|
elif self.backbone_type == BackboneType.TRANSFORMERS:
|
|
self._init_transformers_backbone(config)
|
|
else:
|
|
raise ValueError(f"backbone_type {self.backbone_type} not supported.")
|
|
|
|
@property
|
|
def out_features(self):
|
|
return self._out_features
|
|
|
|
@out_features.setter
|
|
def out_features(self, out_features: List[str]):
|
|
"""
|
|
Set the out_features attribute. This will also update the out_indices attribute to match the new out_features.
|
|
"""
|
|
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
|
|
out_features=out_features, out_indices=None, stage_names=self.stage_names
|
|
)
|
|
|
|
@property
|
|
def out_indices(self):
|
|
return self._out_indices
|
|
|
|
@out_indices.setter
|
|
def out_indices(self, out_indices: Union[Tuple[int], List[int]]):
|
|
"""
|
|
Set the out_indices attribute. This will also update the out_features attribute to match the new out_indices.
|
|
"""
|
|
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
|
|
out_features=None, out_indices=out_indices, stage_names=self.stage_names
|
|
)
|
|
|
|
@property
|
|
def out_feature_channels(self):
|
|
# the current backbones will output the number of channels for each stage
|
|
# even if that stage is not in the out_features list.
|
|
return {stage: self.num_features[i] for i, stage in enumerate(self.stage_names)}
|
|
|
|
@property
|
|
def channels(self):
|
|
return [self.out_feature_channels[name] for name in self.out_features]
|
|
|
|
def forward_with_filtered_kwargs(self, *args, **kwargs):
|
|
signature = dict(inspect.signature(self.forward).parameters)
|
|
filtered_kwargs = {k: v for k, v in kwargs.items() if k in signature}
|
|
return self(*args, **filtered_kwargs)
|
|
|
|
def forward(
|
|
self,
|
|
pixel_values,
|
|
output_hidden_states: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
):
|
|
raise NotImplementedError("This method should be implemented by the derived class.")
|
|
|
|
def to_dict(self):
|
|
"""
|
|
Serializes this instance to a Python dictionary. Override the default `to_dict()` from `PretrainedConfig` to
|
|
include the `out_features` and `out_indices` attributes.
|
|
"""
|
|
output = super().to_dict()
|
|
output["out_features"] = output.pop("_out_features")
|
|
output["out_indices"] = output.pop("_out_indices")
|
|
return output
|
|
|
|
|
|
class BackboneConfigMixin:
|
|
"""
|
|
A Mixin to support handling the `out_features` and `out_indices` attributes for the backbone configurations.
|
|
"""
|
|
|
|
@property
|
|
def out_features(self):
|
|
return self._out_features
|
|
|
|
@out_features.setter
|
|
def out_features(self, out_features: List[str]):
|
|
"""
|
|
Set the out_features attribute. This will also update the out_indices attribute to match the new out_features.
|
|
"""
|
|
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
|
|
out_features=out_features, out_indices=None, stage_names=self.stage_names
|
|
)
|
|
|
|
@property
|
|
def out_indices(self):
|
|
return self._out_indices
|
|
|
|
@out_indices.setter
|
|
def out_indices(self, out_indices: Union[Tuple[int], List[int]]):
|
|
"""
|
|
Set the out_indices attribute. This will also update the out_features attribute to match the new out_indices.
|
|
"""
|
|
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
|
|
out_features=None, out_indices=out_indices, stage_names=self.stage_names
|
|
)
|
|
|
|
def to_dict(self):
|
|
"""
|
|
Serializes this instance to a Python dictionary. Override the default `to_dict()` from `PretrainedConfig` to
|
|
include the `out_features` and `out_indices` attributes.
|
|
"""
|
|
output = super().to_dict()
|
|
output["out_features"] = output.pop("_out_features")
|
|
output["out_indices"] = output.pop("_out_indices")
|
|
return output
|
|
|
|
|
|
def load_backbone(config):
|
|
"""
|
|
Loads the backbone model from a config object.
|
|
|
|
If the config is from the backbone model itself, then we return a backbone model with randomly initialized
|
|
weights.
|
|
|
|
If the config is from the parent model of the backbone model itself, then we load the pretrained backbone weights
|
|
if specified.
|
|
"""
|
|
from transformers import AutoBackbone, AutoConfig
|
|
|
|
backbone_config = getattr(config, "backbone_config", None)
|
|
use_timm_backbone = getattr(config, "use_timm_backbone", None)
|
|
use_pretrained_backbone = getattr(config, "use_pretrained_backbone", None)
|
|
backbone_checkpoint = getattr(config, "backbone", None)
|
|
backbone_kwargs = getattr(config, "backbone_kwargs", None)
|
|
|
|
backbone_kwargs = {} if backbone_kwargs is None else backbone_kwargs
|
|
|
|
if backbone_kwargs and backbone_config is not None:
|
|
raise ValueError("You can't specify both `backbone_kwargs` and `backbone_config`.")
|
|
|
|
# If there is a backbone_config and a backbone checkpoint, and use_pretrained_backbone=False then the desired
|
|
# behaviour is ill-defined: do you want to load from the checkpoint's config or the backbone_config?
|
|
if backbone_config is not None and backbone_checkpoint is not None and use_pretrained_backbone is not None:
|
|
raise ValueError("Cannot specify both config.backbone_config and config.backbone")
|
|
|
|
# If any of thhe following are set, then the config passed in is from a model which contains a backbone.
|
|
if (
|
|
backbone_config is None
|
|
and use_timm_backbone is None
|
|
and backbone_checkpoint is None
|
|
and backbone_checkpoint is None
|
|
):
|
|
return AutoBackbone.from_config(config=config, **backbone_kwargs)
|
|
|
|
# config from the parent model that has a backbone
|
|
if use_timm_backbone:
|
|
if backbone_checkpoint is None:
|
|
raise ValueError("config.backbone must be set if use_timm_backbone is True")
|
|
# Because of how timm backbones were originally added to models, we need to pass in use_pretrained_backbone
|
|
# to determine whether to load the pretrained weights.
|
|
backbone = AutoBackbone.from_pretrained(
|
|
backbone_checkpoint,
|
|
use_timm_backbone=use_timm_backbone,
|
|
use_pretrained_backbone=use_pretrained_backbone,
|
|
**backbone_kwargs,
|
|
)
|
|
elif use_pretrained_backbone:
|
|
if backbone_checkpoint is None:
|
|
raise ValueError("config.backbone must be set if use_pretrained_backbone is True")
|
|
backbone = AutoBackbone.from_pretrained(backbone_checkpoint, **backbone_kwargs)
|
|
else:
|
|
if backbone_config is None and backbone_checkpoint is None:
|
|
raise ValueError("Either config.backbone_config or config.backbone must be set")
|
|
if backbone_config is None:
|
|
backbone_config = AutoConfig.from_pretrained(backbone_checkpoint, **backbone_kwargs)
|
|
backbone = AutoBackbone.from_config(config=backbone_config)
|
|
return backbone
|